1
|
Liggieri F, Chiodaroli E, Pellegrini M, Puuvuori E, Sigfridsson J, Velikyan I, Chiumello D, Ball L, Pelosi P, Stramaglia S, Antoni G, Eriksson O, Perchiazzi G. Regional distribution of mechanical strain and macrophage-associated lung inflammation after ventilator-induced lung injury: an experimental study. Intensive Care Med Exp 2024; 12:77. [PMID: 39225817 PMCID: PMC11371987 DOI: 10.1186/s40635-024-00663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Alveolar macrophages activation to the pro-inflammatory phenotype M1 is pivotal in the pathophysiology of Ventilator-Induced Lung Injury (VILI). Increased lung strain is a known determinant of VILI, but a direct correspondence between regional lung strain and macrophagic activation remains unestablished. [68Ga]Ga-DOTA-TATE is a Positron Emission Tomography (PET) radiopharmaceutical with a high affinity for somatostatin receptor subtype 2 (SSTR2), which is overexpressed by pro-inflammatory-activated macrophages. Aim of the study was to determine, in a porcine model of VILI, whether mechanical strain correlates topographically with distribution of activated macrophages detected by [68Ga]Ga-DOTA-TATE uptake. METHODS Seven anesthetized pigs underwent VILI, while three served as control. Lung CT scans were acquired at incremental tidal volumes, simultaneously recording lung mechanics. [68Ga]Ga-DOTA-TATE was administered, followed by dynamic PET scans. Custom MatLab scripts generated voxel-by-voxel gas volume and strain maps from CT slices at para-diaphragmatic (Para-D) and mid-thoracic (Mid-T) levels. Analysis of regional Voxel-associated Normal Strain (VoStrain) and [68Ga]Ga-DOTA-TATE uptake was performed and a measure of the statistical correlation between these two variables was quantified using the linear mutual information (LMI) method. RESULTS Compared to controls, the VILI group exhibited statistically significant higher VoStrain and Standardized Uptake Value Ratios (SUVR) both at Para-D and Mid-T levels. Both VoStrain and SUVR increased along the gravitational axis with an increment described by statistically different regression lines between VILI and healthy controls and reaching the peak in the dependent regions of the lung (for strain in VILI vs. control was at Para-D: 760 ± 210 vs. 449 ± 106; at Mid-T level 497 ± 373 vs. 193 ± 160; for SUVR, in VILI vs. control was at Para-D: 2.2 ± 1.3 vs. 1.3 ± 0.1; at Mid-T level 1.3 ± 1.0 vs. 0.6 ± 0.03). LMI in both Para-D and Mid-T was statistically significantly higher in VILI than in controls. CONCLUSIONS In this porcine model of VILI, we found a topographical correlation between lung strain and [68Ga]Ga-DOTA-TATE uptake at voxel level, suggesting that mechanical alteration and specific activation of inflammatory cells are strongly linked in VILI. This study represents the first voxel-by-voxel examination of this relationship in a multi-modal imaging analysis.
Collapse
Affiliation(s)
- Francesco Liggieri
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Elena Chiodaroli
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Mariangela Pellegrini
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Department of Anesthesia and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Emmi Puuvuori
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonathan Sigfridsson
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
- Coordinated Research Center on Respiratory Failure, University of Milan, Milan, Italy
| | - Lorenzo Ball
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Paolo Pelosi
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Sebastiano Stramaglia
- Department of Physics, National Institute for Nuclear Physics, University of Bari Aldo Moro, Bari, Italy
| | - Gunnar Antoni
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaetano Perchiazzi
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden.
- Department of Anesthesia and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
2
|
Mlček M, Borges JB, Otáhal M, Alcala GC, Hladík D, Kuriščák E, Tejkl L, Amato M, Kittnar O. Real-time effects of lateral positioning on regional ventilation and perfusion in an experimental model of acute respiratory distress syndrome. Front Physiol 2023; 14:1113568. [PMID: 37020459 PMCID: PMC10067565 DOI: 10.3389/fphys.2023.1113568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/01/2023] [Indexed: 03/22/2023] Open
Abstract
Low-volume lung injury encompasses local concentration of stresses in the vicinity of collapsed regions in heterogeneously ventilated lungs. We aimed to study the effects on ventilation and perfusion distributions of a sequential lateral positioning (30°) strategy using electrical impedance tomography imaging in a porcine experimental model of early acute respiratory distress syndrome (ARDS). We hypothesized that such strategy, including a real-time individualization of positive end-expiratory pressure (PEEP) whenever in lateral positioning, would provide attenuation of collapse in the dependent lung regions. A two-hit injury acute respiratory distress syndrome experimental model was established by lung lavages followed by injurious mechanical ventilation. Then, all animals were studied in five body positions in a sequential order, 15 min each: Supine 1; Lateral Left; Supine 2; Lateral Right; Supine 3. The following functional images were analyzed by electrical impedance tomography: ventilation distributions and regional lung volumes, and perfusion distributions. The induction of the acute respiratory distress syndrome model resulted in a marked fall in oxygenation along with low regional ventilation and compliance of the dorsal half of the lung (gravitational-dependent in supine position). Both the regional ventilation and compliance of the dorsal half of the lung greatly increased along of the sequential lateral positioning strategy, and maximally at its end. In addition, a corresponding improvement of oxygenation occurred. In conclusion, our sequential lateral positioning strategy, with sufficient positive end-expiratory pressure to prevent collapse of the dependent lung units during lateral positioning, provided a relevant diminution of collapse in the dorsal lung in a porcine experimental model of early acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Mikuláš Mlček
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - João Batista Borges
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
- *Correspondence: João Batista Borges,
| | - Michal Otáhal
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
- Department of Anaesthesiology, Resuscitation and Intensive Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Glasiele Cristina Alcala
- Pulmonology Division, Cardiopulmonary Department, Heart Institute, University of Sao Paulo, São Paulo, Brazil
| | - Dominik Hladík
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
- Department of Anaesthesiology, Resuscitation and Intensive Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Eduard Kuriščák
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - Leoš Tejkl
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - Marcelo Amato
- Pulmonology Division, Cardiopulmonary Department, Heart Institute, University of Sao Paulo, São Paulo, Brazil
| | - Otomar Kittnar
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Bachmann MC, Cruces P, Díaz F, Oviedo V, Goich M, Fuenzalida J, Damiani LF, Basoalto R, Jalil Y, Carpio D, Hamidi Vadeghani N, Cornejo R, Rovegno M, Bugedo G, Bruhn A, Retamal J. Spontaneous breathing promotes lung injury in an experimental model of alveolar collapse. Sci Rep 2022; 12:12648. [PMID: 35879511 PMCID: PMC9310356 DOI: 10.1038/s41598-022-16446-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Vigorous spontaneous breathing has emerged as a promotor of lung damage in acute lung injury, an entity known as “patient self-inflicted lung injury”. Mechanical ventilation may prevent this second injury by decreasing intrathoracic pressure swings and improving regional air distribution. Therefore, we aimed to determine the effects of spontaneous breathing during the early stage of acute respiratory failure on lung injury and determine whether early and late controlled mechanical ventilation may avoid or revert these harmful effects. A model of partial surfactant depletion and lung collapse was induced in eighteen intubated pigs of 32 ±4 kg. Then, animals were randomized to (1) SB‐group: spontaneous breathing with very low levels of pressure support for the whole experiment (eight hours), (2) Early MV-group: controlled mechanical ventilation for eight hours, or (3) Late MV-group: first half of the experiment on spontaneous breathing (four hours) and the second half on controlled mechanical ventilation (four hours). Respiratory, hemodynamic, and electric impedance tomography data were collected. After the protocol, animals were euthanized, and lungs were extracted for histologic tissue analysis and cytokines quantification. SB-group presented larger esophageal pressure swings, progressive hypoxemia, lung injury, and more dorsal and inhomogeneous ventilation compared to the early MV-group. In the late MV-group switch to controlled mechanical ventilation improved the lung inhomogeneity and esophageal pressure swings but failed to prevent hypoxemia and lung injury. In a lung collapse model, spontaneous breathing is associated to large esophageal pressure swings and lung inhomogeneity, resulting in progressive hypoxemia and lung injury. Mechanical ventilation prevents these mechanisms of patient self-inflicted lung injury if applied early, before spontaneous breathing occurs, but not when applied late.
Collapse
Affiliation(s)
- María Consuelo Bachmann
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Cruces
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago, Chile
| | - Franco Díaz
- Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago, Chile.,Escuela de Postgrado, Universidad Finis Terrae, Santiago, Chile
| | - Vanessa Oviedo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariela Goich
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - José Fuenzalida
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Luis Felipe Damiani
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias de La Salud, Carrera de Kinesiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roque Basoalto
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yorschua Jalil
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias de La Salud, Carrera de Kinesiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Carpio
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Niki Hamidi Vadeghani
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Cornejo
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Bugedo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Bruhn
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Petersen AG, Lind PC, Jensen ASB, Eggertsen MA, Granfeldt A, Simonsen U. Treatment with senicapoc in a porcine model of acute respiratory distress syndrome. Intensive Care Med Exp 2021; 9:20. [PMID: 33870468 PMCID: PMC8053424 DOI: 10.1186/s40635-021-00381-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
Background Senicapoc is a potent and selective blocker of KCa3.1, a calcium-activated potassium channel of intermediate conductance. In the present study, we investigated whether there is a beneficial effect of senicapoc in a large animal model of acute respiratory distress syndrome (ARDS). The primary end point was the PaO2/FiO2 ratio. Methods ARDS was induced in female pigs (42–49 kg) by repeated lung lavages followed by injurious mechanical ventilation. Animals were then randomly assigned to vehicle (n = 9) or intravenous senicapoc (10 mg, n = 9) and received lung-protective ventilation for 6 h. Results Final senicapoc plasma concentrations were 67 ± 18 nM (n = 9). Senicapoc failed to change the primary endpoint PaO2/FiO2 ratio (senicapoc, 133 ± 23 mmHg; vehicle, 149 ± 68 mmHg). Lung compliance remained similar in the two groups. Senicapoc reduced the level of white blood cells and neutrophils, while the proinflammatory cytokines TNFα, IL-1β, and IL-6 in the bronchoalveolar lavage fluid were unaltered 6 h after induction of the lung injury. Senicapoc-treatment reduced the level of neutrophils in the alveolar space but with no difference between groups in the cumulative lung injury score. Histological analysis of pulmonary hemorrhage indicated a positive effect of senicapoc on alveolar–capillary barrier function, but this was not supported by measurements of albumin content and total protein in the bronchoalveolar lavage fluid. Conclusions In summary, senicapoc failed to improve the primary endpoint PaO2/FiO2 ratio, but reduced pulmonary hemorrhage and the influx of neutrophils into the lung. These findings open the perspective that blocking KCa3.1 channels is a potential treatment to reduce alveolar neutrophil accumulation and improve long-term outcome in ARDS. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-021-00381-z.
Collapse
Affiliation(s)
| | - Peter C Lind
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Asger Granfeldt
- Department of Clinical Medicine, Anesthesiology, Aarhus University Hospital, Aarhus, Denmark. .,Department of Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99 G304, 8200, Aarhus, Denmark.
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Hinoshita T, Ribeiro GM, Winkler T, de Prost N, Tucci MR, Costa ELV, Wellman TJ, Hashimoto S, Zeng C, Carvalho AR, Melo MFV. Inflammatory Activity in Atelectatic and Normally Aerated Regions During Early Acute Lung Injury. Acad Radiol 2020; 27:1679-1690. [PMID: 32173290 DOI: 10.1016/j.acra.2019.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/07/2019] [Accepted: 12/14/2019] [Indexed: 11/15/2022]
Abstract
RATIONALE AND OBJECTIVES Pulmonary atelectasis presumably promotes and facilitates lung injury. However, data are limited on its direct and remote relation to inflammation. We aimed to assess regional 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) kinetics representative of inflammation in atelectatic and normally aerated regions in models of early lung injury. MATERIALS AND METHODS We studied supine sheep in four groups: Permissive Atelectasis (n = 6)-16 hours protective tidal volume (VT) and zero positive end-expiratory pressure; Mild (n = 5) and Moderate Endotoxemia (n = 6)- 20-24 hours protective ventilation and intravenous lipopolysaccharide (Mild = 2.5 and Moderate = 10.0 ng/kg/min), and Surfactant Depletion (n = 6)-saline lung lavage and 4 hours high VT. Measurements performed immediately after anesthesia induction served as controls (n = 8). Atelectasis was defined as regions of gas fraction <0.1 in transmission or computed tomography scans. 18F-FDG kinetics measured with positron emission tomography were analyzed with a three-compartment model. RESULTS 18F-FDG net uptake rate in atelectatic tissue was larger during Moderate Endotoxemia (0.0092 ± 0.0019/min) than controls (0.0051 ± 0.0014/min, p = 0.01). 18F-FDG phosphorylation rate in atelectatic tissue was larger in both endotoxemia groups (0.0287 ± 0.0075/min) than controls (0.0198 ± 0.0039/min, p = 0.05) while the 18F-FDG volume of distribution was not significantly different among groups. Additionally, normally aerated regions showed larger 18F-FDG uptake during Permissive Atelectasis (0.0031 ± 0.0005/min, p < 0.01), Mild (0.0028 ± 0.0006/min, p = 0.04), and Moderate Endotoxemia (0.0039 ± 0.0005/min, p < 0.01) than controls (0.0020 ± 0.0003/min). CONCLUSION Atelectatic regions present increased metabolic activation during moderate endotoxemia mostly due to increased 18F-FDG phosphorylation, indicative of increased cellular metabolic activation. Increased 18F-FDG uptake in normally aerated regions during permissive atelectasis suggests an injurious remote effect of atelectasis even with protective tidal volumes.
Collapse
Affiliation(s)
- Takuga Hinoshita
- Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit St. Boston, MA; Tokyo Medical and Dental University, Department of Intensive Care Medicine, Tokyo, Japan.
| | | | - Tilo Winkler
- Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit St. Boston, MA
| | - Nicolas de Prost
- Hôpital Henri Mondor, Medical Intensive Care Unit, Créteil, France
| | - Mauro R Tucci
- Hospital das Clínicas, Faculdade de Medicina, São Paulo, Brasil
| | | | | | - Soshi Hashimoto
- Kyoto Okamoto Memorial Hospital, Department of Anesthesiology, Kyoto, Japan
| | - Congli Zeng
- Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit St. Boston, MA; The First Affiliated Hospital, Department of Anesthesiology and Intensive Care, Zhejiang Sheng, China
| | - Alysson R Carvalho
- Carlos Chagas Filho Institute of Biophysics, Laboratory of Respiration Physiology, Rio de Janeiro, Brazil
| | - Marcos Francisco Vidal Melo
- Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit St. Boston, MA
| |
Collapse
|
6
|
Individualized Positive End-expiratory Pressure and Regional Gas Exchange in Porcine Lung Injury. Anesthesiology 2020; 132:808-824. [DOI: 10.1097/aln.0000000000003151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Background
In acute respiratory failure elevated intraabdominal pressure aggravates lung collapse, tidal recruitment, and ventilation inhomogeneity. Low positive end-expiratory pressure (PEEP) may promote lung collapse and intrapulmonary shunting, whereas high PEEP may increase dead space by inspiratory overdistension. The authors hypothesized that an electrical impedance tomography–guided PEEP approach minimizing tidal recruitment improves regional ventilation and perfusion matching when compared to a table-based low PEEP/no recruitment and an oxygenation-guided high PEEP/full recruitment strategy in a hybrid model of lung injury and elevated intraabdominal pressure.
Methods
In 15 pigs with oleic acid–induced lung injury intraabdominal pressure was increased by intraabdominal saline infusion. PEEP was set in randomized order: (1) guided by a PEEP/inspired oxygen fraction table, without recruitment maneuver; (2) minimizing tidal recruitment guided by electrical impedance tomography after a recruitment maneuver; and (3) maximizing oxygenation after a recruitment maneuver. Single photon emission computed tomography was used to analyze regional ventilation, perfusion, and aeration. Primary outcome measures were differences in PEEP levels and regional ventilation/perfusion matching.
Results
Resulting PEEP levels were different (mean ± SD) with (1) table PEEP: 11 ± 3 cm H2O; (2) minimal tidal recruitment PEEP: 22 ± 3 cm H2O; and (3) maximal oxygenation PEEP: 25 ± 4 cm H2O; P < 0.001. Table PEEP without recruitment maneuver caused highest lung collapse (28 ± 11% vs. 5 ± 5% vs. 4 ± 4%; P < 0.001), shunt perfusion (3.2 ± 0.8 l/min vs. 1.0 ± 0.8 l/min vs. 0.7 ± 0.6 l/min; P < 0.001) and dead space ventilation (2.9 ± 1.0 l/min vs. 1.5 ± 0.7 l/min vs. 1.7 ± 0.8 l/min; P < 0.001). Although resulting in different PEEP levels, minimal tidal recruitment and maximal oxygenation PEEP, both following a recruitment maneuver, had similar effects on regional ventilation/perfusion matching.
Conclusions
When compared to table PEEP without a recruitment maneuver, both minimal tidal recruitment PEEP and maximal oxygenation PEEP following a recruitment maneuver decreased shunting and dead space ventilation, and the effects of minimal tidal recruitment PEEP and maximal oxygenation PEEP were comparable.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
7
|
Yoshida T, Piraino T, Lima CAS, Kavanagh BP, Amato MBP, Brochard L. Regional Ventilation Displayed by Electrical Impedance Tomography as an Incentive to Decrease Positive End-Expiratory Pressure. Am J Respir Crit Care Med 2020; 200:933-937. [PMID: 31225973 DOI: 10.1164/rccm.201904-0797le] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Takeshi Yoshida
- University Graduate School of MedicineSuita, Japan.,St. Michael's Hospital Toronto, Ontario, Canada.,University of Toronto Toronto, Ontario, Canada
| | - Thomas Piraino
- St. Michael's Hospital Toronto, Ontario, Canada.,University of Toronto Toronto, Ontario, Canada
| | | | | | | | - Laurent Brochard
- St. Michael's Hospital Toronto, Ontario, Canada.,University of Toronto Toronto, Ontario, Canada
| |
Collapse
|
8
|
Scaramuzzo G, Ball L, Pino F, Ricci L, Larsson A, Guérin C, Pelosi P, Perchiazzi G. Influence of Positive End-Expiratory Pressure Titration on the Effects of Pronation in Acute Respiratory Distress Syndrome: A Comprehensive Experimental Study. Front Physiol 2020; 11:179. [PMID: 32226390 PMCID: PMC7080860 DOI: 10.3389/fphys.2020.00179] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/17/2020] [Indexed: 01/08/2023] Open
Abstract
Prone position can reduce mortality in acute respiratory distress syndrome (ARDS), but several studies found variable effects on oxygenation and lung mechanics. It is unclear whether different positive end-expiratory pressure (PEEP) titration techniques modify the effect of prone position. We tested, in an animal model of ARDS, if the PEEP titration method may influence the effect of prone position on oxygenation and lung protection. In a crossover study in 10 piglets with a two-hit injury ARDS model, we set the "best PEEP" according to the ARDS Network low-PEEP table (BPARDS) or targeting the lowest transpulmonary driving pressure (BPDPL). We measured gas exchange, lung mechanics, aeration, ventilation, and perfusion with computed tomography (CT) and electrical impedance tomography in each position with both PEEP titration techniques. The primary endpoint was the PaO2/FiO2 ratio. Secondary outcomes were lung mechanics, regional distribution of ventilation, regional distribution of perfusion, and homogeneity of strain derived by CT scan. The PaO2/FiO2 ratio increased in prone position when PEEP was set with BPARDS [difference 54 (19-106) mmHg, p = 0.04] but not with BPDPL [difference 17 (-24 to 68) mmHg, p = 0.99]. The transpulmonary driving pressure significantly decreased during prone position with both BPARDS [difference -0.9 (-1.5 to -0.9) cmH2O, p = 0.009] and BPDPL [difference -0.55 (-1.6 to -0.4) cmH2O, p = 0.04]. Pronation homogenized lung regional strain and ventilation and redistributed the ventilation/perfusion ratio along the sternal-to-vertebral gradient. The PEEP titration technique influences the oxygenation response to prone position. However, the lung-protective effects of prone position could be independent of the PEEP titration strategy.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Fabio Pino
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Lucia Ricci
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Anders Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Claude Guérin
- Groupement Hospitalier Centre, Médecine Intensive Réanimation, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,INSERM 955 - Eq13, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Anesthesia, Operation and Intensive Care Medicine, Akademiska Sjukhuset, Uppsala, Sweden
| |
Collapse
|
9
|
Borges JB. A conceivable mechanism of harm in a stretched “teen lung”. Crit Care 2019; 23:8. [PMID: 30630518 PMCID: PMC6327457 DOI: 10.1186/s13054-018-2284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 11/10/2022] Open
|
10
|
Valuable Lung Injury Lessons From a Little Known Disease. Crit Care Med 2019; 47:295-296. [PMID: 30653061 DOI: 10.1097/ccm.0000000000003556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An Experimental Porcine Study. Crit Care Med 2019. [PMID: 29528946 DOI: 10.1097/ccm.0000000000003072] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE It is known that ventilator-induced lung injury causes increased pulmonary inflammation. It has been suggested that one of the underlying mechanisms may be strain. The aim of this study was to investigate whether lung regional strain correlates with regional inflammation in a porcine model of acute respiratory distress syndrome. DESIGN Retrospective analysis of CT images and positron emission tomography images using [F]fluoro-2-deoxy-D-glucose. SETTING University animal research laboratory. SUBJECTS Seven piglets subjected to experimental acute respiratory distress syndrome and five ventilated controls. INTERVENTIONS Acute respiratory distress syndrome was induced by repeated lung lavages, followed by 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressures (mean, 4 cm H2O) and high inspiratory pressures (mean plateau pressure, 45 cm H2O). All animals were subsequently studied with CT scans acquired at end-expiration and end-inspiration, to obtain maps of volumetric strain (inspiratory volume - expiratory volume)/expiratory volume, and dynamic positron emission tomography imaging. Strain maps and positron emission tomography images were divided into 10 isogravitational horizontal regions-of-interest, from which spatial correlation was calculated for each animal. MEASUREMENTS AND MAIN RESULTS The acute respiratory distress syndrome model resulted in a decrease in respiratory system compliance (20.3 ± 3.4 to 14.0 ± 4.9 mL/cm H2O; p < 0.05) and oxygenation (PaO2/FIO2, 489 ± 80 to 92 ± 59; p < 0.05), whereas the control animals did not exhibit changes. In the acute respiratory distress syndrome group, strain maps showed a heterogeneous distribution with a greater concentration in the intermediate gravitational regions, which was similar to the distribution of [F]fluoro-2-deoxy-D-glucose uptake observed in the positron emission tomography images, resulting in a positive spatial correlation between both variables (median R = 0.71 [0.02-0.84]; p < 0.05 in five of seven animals), which was not observed in the control animals. CONCLUSION In this porcine acute respiratory distress syndrome model, regional lung strain was spatially correlated with regional inflammation, supporting that strain is a relevant and prominent determinant of ventilator-induced lung injury.
Collapse
|
12
|
Cereda M, Xin Y, Goffi A, Herrmann J, Kaczka DW, Kavanagh BP, Perchiazzi G, Yoshida T, Rizi RR. Imaging the Injured Lung: Mechanisms of Action and Clinical Use. Anesthesiology 2019; 131:716-749. [PMID: 30664057 PMCID: PMC6692186 DOI: 10.1097/aln.0000000000002583] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Acute respiratory distress syndrome (ARDS) consists of acute hypoxemic respiratory failure characterized by massive and heterogeneously distributed loss of lung aeration caused by diffuse inflammation and edema present in interstitial and alveolar spaces. It is defined by consensus criteria, which include diffuse infiltrates on chest imaging-either plain radiography or computed tomography. This review will summarize how imaging sciences can inform modern respiratory management of ARDS and continue to increase the understanding of the acutely injured lung. This review also describes newer imaging methodologies that are likely to inform future clinical decision-making and potentially improve outcome. For each imaging modality, this review systematically describes the underlying principles, technology involved, measurements obtained, insights gained by the technique, emerging approaches, limitations, and future developments. Finally, integrated approaches are considered whereby multimodal imaging may impact management of ARDS.
Collapse
Affiliation(s)
- Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Goffi
- Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, ON, Canada
| | - Jacob Herrmann
- Departments of Anesthesia and Biomedical Engineering, University of Iowa, IA
| | - David W. Kaczka
- Departments of Anesthesia, Radiology, and Biomedical Engineering, University of Iowa, IA
| | | | - Gaetano Perchiazzi
- Hedenstierna Laboratory and Uppsala University Hospital, Uppsala University, Sweden
| | - Takeshi Yoshida
- Hospital for Sick Children, University of Toronto, ON, Canada
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Yoshida T, Amato MBP, Grieco DL, Chen L, Lima CAS, Roldan R, Morais CCA, Gomes S, Costa ELV, Cardoso PFG, Charbonney E, Richard JCM, Brochard L, Kavanagh BP. Esophageal Manometry and Regional Transpulmonary Pressure in Lung Injury. Am J Respir Crit Care Med 2019; 197:1018-1026. [PMID: 29323931 DOI: 10.1164/rccm.201709-1806oc] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Esophageal manometry is the clinically available method to estimate pleural pressure, thus enabling calculation of transpulmonary pressure (Pl). However, many concerns make it uncertain in which lung region esophageal manometry reflects local Pl. OBJECTIVES To determine the accuracy of esophageal pressure (Pes) and in which regions esophageal manometry reflects pleural pressure (Ppl) and Pl; to assess whether lung stress in nondependent regions can be estimated at end-inspiration from Pl. METHODS In lung-injured pigs (n = 6) and human cadavers (n = 3), Pes was measured across a range of positive end-expiratory pressure, together with directly measured Ppl in nondependent and dependent pleural regions. All measurements were obtained with minimal nonstressed volumes in the pleural sensors and esophageal balloons. Expiratory and inspiratory Pl was calculated by subtracting local Ppl or Pes from airway pressure; inspiratory Pl was also estimated by subtracting Ppl (calculated from chest wall and respiratory system elastance) from the airway plateau pressure. MEASUREMENTS AND MAIN RESULTS In pigs and human cadavers, expiratory and inspiratory Pl using Pes closely reflected values in dependent to middle lung (adjacent to the esophagus). Inspiratory Pl estimated from elastance ratio reflected the directly measured nondependent values. CONCLUSIONS These data support the use of esophageal manometry in acute respiratory distress syndrome. Assuming correct calibration, expiratory Pl derived from Pes reflects Pl in dependent to middle lung, where atelectasis usually predominates; inspiratory Pl estimated from elastance ratio may indicate the highest level of lung stress in nondependent "baby" lung, where it is vulnerable to ventilator-induced lung injury.
Collapse
Affiliation(s)
- Takeshi Yoshida
- 1 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,2 Translational Medicine, Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, and.,3 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Domenico Luca Grieco
- 1 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,2 Translational Medicine, Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, and.,5 Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Fondazione "Policlinico universitario A. Gemelli," Rome, Italy.,6 Cardiac Arrest and Ventilation International Association for Research, Laboratoire d'anatomie, Université du Québec à Trois-Rivières et Centre Intégré Universitaire de Santé et de Services Sociaux de la Mauricie-et-du-Centre-du-Québec, Trois-Rivières, Canada
| | - Lu Chen
- 1 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,2 Translational Medicine, Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, and
| | | | - Rollin Roldan
- 4 Divisao de Pneumologia and.,7 Unidad de Cuidados Intensivos, Hospital Rebagliati, Lima, Perú
| | | | | | | | - Paulo F G Cardoso
- 8 Disciplina de Cirurgia Torácica, Instituto do Coração, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Emmanuel Charbonney
- 6 Cardiac Arrest and Ventilation International Association for Research, Laboratoire d'anatomie, Université du Québec à Trois-Rivières et Centre Intégré Universitaire de Santé et de Services Sociaux de la Mauricie-et-du-Centre-du-Québec, Trois-Rivières, Canada.,9 Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada; and
| | - Jean-Christophe M Richard
- 6 Cardiac Arrest and Ventilation International Association for Research, Laboratoire d'anatomie, Université du Québec à Trois-Rivières et Centre Intégré Universitaire de Santé et de Services Sociaux de la Mauricie-et-du-Centre-du-Québec, Trois-Rivières, Canada.,10 Department of Pre-Hospital and Emergency Medicine, General Hospital of Annecy, Annecy, France
| | - Laurent Brochard
- 1 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,3 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,6 Cardiac Arrest and Ventilation International Association for Research, Laboratoire d'anatomie, Université du Québec à Trois-Rivières et Centre Intégré Universitaire de Santé et de Services Sociaux de la Mauricie-et-du-Centre-du-Québec, Trois-Rivières, Canada
| | - Brian P Kavanagh
- 2 Translational Medicine, Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, and.,3 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Morais CCA, Koyama Y, Yoshida T, Plens GM, Gomes S, Lima CAS, Ramos OPS, Pereira SM, Kawaguchi N, Yamamoto H, Uchiyama A, Borges JB, Vidal Melo MF, Tucci MR, Amato MBP, Kavanagh BP, Costa ELV, Fujino Y. High Positive End-Expiratory Pressure Renders Spontaneous Effort Noninjurious. Am J Respir Crit Care Med 2019; 197:1285-1296. [PMID: 29323536 DOI: 10.1164/rccm.201706-1244oc] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RATIONALE In acute respiratory distress syndrome (ARDS), atelectatic solid-like lung tissue impairs transmission of negative swings in pleural pressure (Ppl) that result from diaphragmatic contraction. The localization of more negative Ppl proportionally increases dependent lung stretch by drawing gas either from other lung regions (e.g., nondependent lung [pendelluft]) or from the ventilator. Lowering the level of spontaneous effort and/or converting solid-like to fluid-like lung might render spontaneous effort noninjurious. OBJECTIVES To determine whether spontaneous effort increases dependent lung injury, and whether such injury would be reduced by recruiting atelectatic solid-like lung with positive end-expiratory pressure (PEEP). METHODS Established models of severe ARDS (rabbit, pig) were used. Regional histology (rabbit), inflammation (positron emission tomography; pig), regional inspiratory Ppl (intrabronchial balloon manometry), and stretch (electrical impedance tomography; pig) were measured. Respiratory drive was evaluated in 11 patients with ARDS. MEASUREMENTS AND MAIN RESULTS Although injury during muscle paralysis was predominantly in nondependent and middle lung regions at low (vs. high) PEEP, strong inspiratory effort increased injury (indicated by positron emission tomography and histology) in dependent lung. Stronger effort (vs. muscle paralysis) caused local overstretch and greater tidal recruitment in dependent lung, where more negative Ppl was localized and greater stretch was generated. In contrast, high PEEP minimized lung injury by more uniformly distributing negative Ppl, and lowering the magnitude of spontaneous effort (i.e., deflection in esophageal pressure observed in rabbits, pigs, and patients). CONCLUSIONS Strong effort increased dependent lung injury, where higher local lung stress and stretch was generated; effort-dependent lung injury was minimized by high PEEP in severe ARDS, which may offset need for paralysis.
Collapse
Affiliation(s)
- Caio C A Morais
- 1 Divisao de Pneumologia, Instituto do Coracao (Incor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Yukiko Koyama
- 2 Intensive Care Unit, Osaka University Hospital, Suita, Japan
| | - Takeshi Yoshida
- 2 Intensive Care Unit, Osaka University Hospital, Suita, Japan.,3 Translational Medicine, Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Glauco M Plens
- 1 Divisao de Pneumologia, Instituto do Coracao (Incor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Susimeire Gomes
- 1 Divisao de Pneumologia, Instituto do Coracao (Incor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Cristhiano A S Lima
- 1 Divisao de Pneumologia, Instituto do Coracao (Incor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ozires P S Ramos
- 1 Divisao de Pneumologia, Instituto do Coracao (Incor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sérgio M Pereira
- 1 Divisao de Pneumologia, Instituto do Coracao (Incor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Naomasa Kawaguchi
- 4 The Department of Pathology, School of Allied Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirofumi Yamamoto
- 4 The Department of Pathology, School of Allied Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - João B Borges
- 5 Hedenstierna Laboratory, Department of Surgical Sciences, Section of Anesthesiology & Critical Care, Uppsala University, Uppsala, Sweden; and
| | - Marcos F Vidal Melo
- 6 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | - Mauro R Tucci
- 1 Divisao de Pneumologia, Instituto do Coracao (Incor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo B P Amato
- 1 Divisao de Pneumologia, Instituto do Coracao (Incor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Brian P Kavanagh
- 3 Translational Medicine, Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Eduardo L V Costa
- 1 Divisao de Pneumologia, Instituto do Coracao (Incor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Yuji Fujino
- 2 Intensive Care Unit, Osaka University Hospital, Suita, Japan
| |
Collapse
|
15
|
Affiliation(s)
- João Batista Borges
- 1 Uppsala University Uppsala, Sweden and.,2 University of São Paulo São Paulo, Brazil
| |
Collapse
|
16
|
Bachmann MC, Morais C, Bugedo G, Bruhn A, Morales A, Borges JB, Costa E, Retamal J. Electrical impedance tomography in acute respiratory distress syndrome. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:263. [PMID: 30360753 PMCID: PMC6203288 DOI: 10.1186/s13054-018-2195-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a clinical entity that acutely affects the lung parenchyma, and is characterized by diffuse alveolar damage and increased pulmonary vascular permeability. Currently, computed tomography (CT) is commonly used for classifying and prognosticating ARDS. However, performing this examination in critically ill patients is complex, due to the need to transfer these patients to the CT room. Fortunately, new technologies have been developed that allow the monitoring of patients at the bedside. Electrical impedance tomography (EIT) is a monitoring tool that allows one to evaluate at the bedside the distribution of pulmonary ventilation continuously, in real time, and which has proven to be useful in optimizing mechanical ventilation parameters in critically ill patients. Several clinical applications of EIT have been developed during the last years and the technique has been generating increasing interest among researchers. However, among clinicians, there is still a lack of knowledge regarding the technical principles of EIT and potential applications in ARDS patients. The aim of this review is to present the characteristics, technical concepts, and clinical applications of EIT, which may allow better monitoring of lung function during ARDS.
Collapse
Affiliation(s)
- M Consuelo Bachmann
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Acute Respiratory and Critical Illness Center (ARCI), Santiago, Chile
| | - Caio Morais
- Divisao de Pneumologia, Instituto do Coracao (Incor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Guillermo Bugedo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Acute Respiratory and Critical Illness Center (ARCI), Santiago, Chile
| | - Alejandro Bruhn
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Acute Respiratory and Critical Illness Center (ARCI), Santiago, Chile
| | - Arturo Morales
- Departamento Enfermedades Respiratorias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - João B Borges
- Divisao de Pneumologia, Instituto do Coracao (Incor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Hedenstierna Laboratory, Department of Surgical Sciences, Section of Anaesthesiology and Critical Care, Uppsala University, Uppsala, Sweden
| | - Eduardo Costa
- Divisao de Pneumologia, Instituto do Coracao (Incor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Acute Respiratory and Critical Illness Center (ARCI), Santiago, Chile.
| |
Collapse
|
17
|
Ju YN, Gong J, Wang XT, Zhu JL, Gao W. Endothelial Colony-forming Cells Attenuate Ventilator-induced Lung Injury in Rats with Acute Respiratory Distress Syndrome. Arch Med Res 2018; 49:172-181. [PMID: 30119979 DOI: 10.1016/j.arcmed.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mechanical ventilation (MV) can cause ventilator-induced lung injury (VILI). AIM OF THE STUDY This study investigated whether endothelial colony-forming cells (ECFC) could inhibit VILI in a rat model of acute respiratory distress syndrome (ARDS). METHODS Male Wistar rats received the femoral artery and venous cannulation (sham group) or were injected intravenously with 500 μg/kg lipopolysaccharide to induce ARDS. The ARDS rats were subjected to MV. Immediately after the MV, the rats were randomized and injected intravenously with vehicle (ARDS group) or ECFC (ECFC group, n = 8 per group). The oxygen index, lung wet-to-dry weight (W/D) ratios, cytokine protein levels in serum or bronchoalveolar lavage fluid (BALF), neutrophil counts, neutrophil elastase and total protein levels in BALF, histology and cell apoptosis in the lung were detected. The protein levels of endothelin-1, inducible nitric oxide synthase (iNOS), endothelial NOS, matrix metalloproteinase (MMP)-9, Bax, Bcl-2, gelsolin, cleaved caspase-3, phosphorylated NF-κBp65 and myosin light chain (MLC) in the lung were analyzed. RESULTS Compared with the ARDS group, treatment with ECFC significantly increased the oxygen index, and decreased the lung W/D ratios and injury, and the numbers of apoptotic cells in the lungs, neutrophils counts, total protein and elastase concentrations in BALF of rats. ECFC treatment significantly minimized the protein levels of pro-inflammatory cytokines in BALF and serum, but increased interleukin 10 in rats. Furthermore, ECFC treatment significantly reduced the protein levels of endothelin-1, iNOS, Bax, Gelsolin, MMP-9, cleaved caspase-3, phosphorylated NF-κBp65 and MLC, but enhanced eNOS and Bcl-2 in the lungs of rats. CONCLUSIONS Therefore, ECFC attenuated inflammation, cell apoptosis and VILI in ARDS rats.
Collapse
Affiliation(s)
- Ying-Nan Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Gong
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue-Ting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing-Li Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
18
|
Marini JJ. Conditional Value of Raising Positive End-Expiratory Pressure to Counter Vigorous Breathing Efforts in Injured Lungs. Am J Respir Crit Care Med 2018; 197:1239-1240. [DOI: 10.1164/rccm.201712-2615ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- John J. Marini
- Regions HospitalUniversity of MinnesotaSt. Paul, Minnesota
| |
Collapse
|
19
|
Looking closer at acute respiratory distress syndrome: the role of advanced imaging techniques. Curr Opin Crit Care 2018; 23:30-37. [PMID: 27906709 DOI: 10.1097/mcc.0000000000000380] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Advanced imaging techniques have provided invaluable insights in understanding of acute respiratory distress syndrome (ARDS) and the effect of therapeutic strategies, thanks to the possibility of gaining regional information and moving from simple 'anatomical' information to in-vivo functional imaging. RECENT FINDINGS Computed tomography (CT) led to the understanding of several ARDS mechanisms and interaction with mechanical ventilation. It is nowadays frequently part of routine diagnostic workup, often leading to treatment changes. Moreover, CT is a reference for novel techniques both in clinical and preclinical studies. Bedside transthoracic lung ultrasound allows semiquantitative regional analysis of lung aeration, identifies ARDS lung morphology and response to therapeutic maneuvers. Electrical impedance tomography is a radiation-free, functional, bedside, imaging modality which allows a real-time monitoring of regional ventilation. Finally, positron emission tomography (PET) is a functional imaging technique that allows to trace physiologic processes, by administration of a radioactive molecule. PET with FDG has been applied to patients with ARDS, thanks to its ability to track the inflammatory cells activity. SUMMARY Progresses in lung imaging are key to individualize therapy, diagnosis, and pathophysiological mechanism at play in any patient at any specified time, helping to move toward personalized medicine for ARDS.
Collapse
|
20
|
Wohlrab P, Kraft F, Tretter V, Ullrich R, Markstaller K, Klein KU. Recent advances in understanding acute respiratory distress syndrome. F1000Res 2018; 7. [PMID: 29568488 PMCID: PMC5840611 DOI: 10.12688/f1000research.11148.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by acute diffuse lung injury, which results in increased pulmonary vascular permeability and loss of aerated lung tissue. This causes bilateral opacity consistent with pulmonary edema, hypoxemia, increased venous admixture, and decreased lung compliance such that patients with ARDS need supportive care in the intensive care unit to maintain oxygenation and prevent adverse outcomes. Recently, advances in understanding the underlying pathophysiology of ARDS led to new approaches in managing these patients. In this review, we want to focus on recent scientific evidence in the field of ARDS research and discuss promising new developments in the treatment of this disease.
Collapse
Affiliation(s)
- Peter Wohlrab
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Felix Kraft
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Verena Tretter
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Roman Ullrich
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Klaus Markstaller
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Klaus Ulrich Klein
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
21
|
Henderson WR, Chen L, Amato MBP, Brochard LJ. Fifty Years of Research in ARDS. Respiratory Mechanics in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2017; 196:822-833. [PMID: 28306327 DOI: 10.1164/rccm.201612-2495ci] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute respiratory distress syndrome is a multifactorial lung injury that continues to be associated with high levels of morbidity and mortality. Mechanical ventilation, although lifesaving, is associated with new iatrogenic injury. Current best practice involves the use of small Vt, low plateau and driving pressures, and high levels of positive end-expiratory pressure. Collectively, these interventions are termed "lung-protective ventilation." Recent investigations suggest that individualized measurements of pulmonary mechanical variables rather than population-based ventilation prescriptions may be used to set the ventilator with the potential to improve outcomes beyond those achieved with standard lung protective ventilation. This review outlines the measurement and application of clinically applicable pulmonary mechanical concepts, such as plateau pressures, driving pressure, transpulmonary pressures, stress index, and measurement of strain. In addition, the concept of the "baby lung" and the utility of dynamic in addition to static measures of pulmonary mechanical variables are discussed.
Collapse
Affiliation(s)
- William R Henderson
- 1 Division of Critical Care Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lu Chen
- 2 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,3 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Marcelo B P Amato
- 4 Cardio-Pulmonary Department, Pulmonary Division, Heart Institute (Incor), University of São Paulo, São Paulo, Brazil
| | - Laurent J Brochard
- 2 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,3 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| |
Collapse
|
22
|
Eronia N, Mauri T, Maffezzini E, Gatti S, Bronco A, Alban L, Binda F, Sasso T, Marenghi C, Grasselli G, Foti G, Pesenti A, Bellani G. Bedside selection of positive end-expiratory pressure by electrical impedance tomography in hypoxemic patients: a feasibility study. Ann Intensive Care 2017; 7:76. [PMID: 28730554 PMCID: PMC5519511 DOI: 10.1186/s13613-017-0299-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/06/2017] [Indexed: 01/28/2023] Open
Abstract
Background Positive end-expiratory pressure (PEEP) is a key element of mechanical ventilation. It should optimize recruitment, without causing excessive overdistension, but controversy exists on the best method to set it. The purpose of the study was to test the feasibility of setting PEEP with electrical impedance tomography in order to prevent lung de-recruitment following a recruitment maneuver. We enrolled 16 patients undergoing mechanical ventilation with PaO2/FiO2 <300 mmHg. In all patients, under constant tidal volume (6–8 ml/kg) PEEP was set based on the PEEP/FiO2 table proposed by the ARDS network (PEEPARDSnet). We performed a recruitment maneuver and monitored the end-expiratory lung impedance (EELI) over 10 min. If the EELI signal decreased during this period, the recruitment maneuver was repeated and PEEP increased by 2 cmH2O. This procedure was repeated until the EELI maintained a stability over time (PEEPEIT). Results The procedure was feasible in 87% patients. PEEPEIT was higher than PEEPARDSnet (13 ± 3 vs. 9 ± 2 cmH2O, p < 0.001). PaO2/FiO2 improved during PEEPEIT and driving pressure decreased. Recruited volume correlated with the decrease in driving pressure but not with oxygenation improvement. Finally, regional alveolar hyperdistention and collapse was reduced in dependent lung layers and increased in non-dependent lung layers. Conclusions In hypoxemic patients, a PEEP selection strategy aimed at stabilizing alveolar recruitment guided by EIT at the bedside was feasible and safe. This strategy led, in comparison with the ARDSnet table, to higher PEEP, improved oxygenation and reduced driving pressure, allowing to estimate the relative weight of overdistension and recruitment. Electronic supplementary material The online version of this article (doi:10.1186/s13613-017-0299-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nilde Eronia
- Department of Emergency and Intensive Care, San Gerardo Hospital, Via Pergolesi 33, Monza, Italy
| | - Tommaso Mauri
- Department of Pathophysiology and Transplantation, University of Milan, Via Festa del Perdono 7, Milan, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, Milan, Italy
| | - Elisabetta Maffezzini
- Department of Medicine, School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, Monza, Italy
| | - Stefano Gatti
- Department of Medicine, School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, Monza, Italy
| | - Alfio Bronco
- Department of Medicine, School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, Monza, Italy
| | - Laura Alban
- Department of Pathophysiology and Transplantation, University of Milan, Via Festa del Perdono 7, Milan, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, Milan, Italy
| | - Filippo Binda
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, Milan, Italy
| | - Tommaso Sasso
- Department of Pathophysiology and Transplantation, University of Milan, Via Festa del Perdono 7, Milan, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, Milan, Italy
| | - Cristina Marenghi
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, Milan, Italy
| | - Giuseppe Foti
- Department of Emergency and Intensive Care, San Gerardo Hospital, Via Pergolesi 33, Monza, Italy.,Department of Medicine, School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, Monza, Italy
| | - Antonio Pesenti
- Department of Pathophysiology and Transplantation, University of Milan, Via Festa del Perdono 7, Milan, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, Milan, Italy
| | - Giacomo Bellani
- Department of Emergency and Intensive Care, San Gerardo Hospital, Via Pergolesi 33, Monza, Italy. .,Department of Medicine, School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, Monza, Italy.
| |
Collapse
|
23
|
Comparative Effects of Volutrauma and Atelectrauma on Lung Inflammation in Experimental Acute Respiratory Distress Syndrome. Crit Care Med 2017; 44:e854-65. [PMID: 27035236 DOI: 10.1097/ccm.0000000000001721] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Volutrauma and atelectrauma promote ventilator-induced lung injury, but their relative contribution to inflammation in ventilator-induced lung injury is not well established. The aim of this study was to determine the impact of volutrauma and atelectrauma on the distribution of lung inflammation in experimental acute respiratory distress syndrome. DESIGN Laboratory investigation. SETTING University-hospital research facility. SUBJECTS Ten pigs (five per group; 34.7-49.9 kg) INTERVENTIONS : Animals were anesthetized and intubated, and saline lung lavage was performed. Lungs were separated with a double-lumen tube. Following lung recruitment and decremental positive end-expiratory pressure trial, animals were randomly assigned to 4 hours of ventilation of the left (ventilator-induced lung injury) lung with tidal volume of approximately 3 mL/kg and 1) high positive end-expiratory pressure set above the level where dynamic compliance increased more than 5% during positive end-expiratory pressure trial (volutrauma); or 2) low positive end-expiratory pressure to achieve driving pressure comparable with volutrauma (atelectrauma). The right (control) lung was kept on continuous positive airway pressure of 20 cm H2O, and CO2 was partially removed extracorporeally. MEASUREMENTS AND MAIN RESULTS Regional lung aeration, specific [F]fluorodeoxyglucose uptake rate, and perfusion were assessed using computed and positron emission tomography. Volutrauma yielded higher [F]fluorodeoxyglucose uptake rate in the ventilated lung compared with atelectrauma (median [interquartile range], 0.017 [0.014-0.025] vs 0.013 min [0.010-0.014 min]; p < 0.01), mainly in central lung regions. Volutrauma yielded higher [F]fluorodeoxyglucose uptake rate in ventilator-induced lung injury versus control lung (0.017 [0.014-0.025] vs 0.011 min [0.010-0.016 min]; p < 0.05), whereas atelectrauma did not. Volutrauma decreased blood fraction at similar perfusion and increased normally as well as hyperaerated lung compartments and tidal hyperaeration. Atelectrauma yielded higher poorly and nonaerated lung compartments, and tidal recruitment. Driving pressure increased in atelectrauma. CONCLUSIONS In this model of acute respiratory distress syndrome, volutrauma promoted higher lung inflammation than atelectrauma at comparable low tidal volume and lower driving pressure, suggesting that static stress and strain are major determinants of ventilator-induced lung injury.
Collapse
|
24
|
Mapping Regional Differences of Local Pressure-Volume Curves With Electrical Impedance Tomography. Crit Care Med 2017; 45:679-686. [DOI: 10.1097/ccm.0000000000002233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Wellman TJ, de Prost N, Tucci M, Winkler T, Baron RM, Filipczak P, Raby B, Chu JH, Harris RS, Musch G, Dos Reis Falcao LF, Capelozzi V, Venegas JG, Vidal Melo MF. Lung Metabolic Activation as an Early Biomarker of Acute Respiratory Distress Syndrome and Local Gene Expression Heterogeneity. Anesthesiology 2016; 125:992-1004. [PMID: 27611185 PMCID: PMC5096592 DOI: 10.1097/aln.0000000000001334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is an inflammatory condition comprising diffuse lung edema and alveolar damage. ARDS frequently results from regional injury mechanisms. However, it is unknown whether detectable inflammation precedes lung edema and opacification and whether topographically differential gene expression consistent with heterogeneous injury occurs in early ARDS. The authors aimed to determine the temporal relationship between pulmonary metabolic activation and density in a large animal model of early ARDS and to assess gene expression in differentially activated regions. METHODS The authors produced ARDS in sheep with intravenous lipopolysaccharide (10 ng ⋅ kg ⋅ h) and mechanical ventilation for 20 h. Using positron emission tomography, the authors assessed regional cellular metabolic activation with 2-deoxy-2-[(18)F]fluoro-D-glucose, perfusion and ventilation with NN-saline, and aeration using transmission scans. Species-specific microarray technology was used to assess regional gene expression. RESULTS Metabolic activation preceded detectable increases in lung density (as required for clinical diagnosis) and correlated with subsequent histologic injury, suggesting its predictive value for severity of disease progression. Local time courses of metabolic activation varied, with highly perfused and less aerated dependent lung regions activated earlier than nondependent regions. These regions of distinct metabolic trajectories demonstrated differential gene expression for known and potential novel candidates for ARDS pathogenesis. CONCLUSIONS Heterogeneous lung metabolic activation precedes increases in lung density in the development of ARDS due to endotoxemia and mechanical ventilation. Local differential gene expression occurs in these early stages and reveals molecular pathways relevant to ARDS biology and of potential use as treatment targets.
Collapse
Affiliation(s)
- Tyler J Wellman
- From the Departments of Anesthesia, Critical Care and Pain Medicine (T.J.W., M.T., T.W., G.M., L.F.d.R.F., J.G.V., M.F.V.M.) and Medicine (Pulmonary and Critical Care; R.S.H.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Medical Intensive Care Unit, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France (N.d.P.); Department of Medicine (Pulmonary and Critical Care) (R.M.B., P.F.) and Channing Laboratory (B.R., J.-h.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and Laboratory of Histomorphometry and Lung Genomics, University of Sao Paulo, Sao Paulo, Brazil (V.C.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pesenti A, Musch G, Lichtenstein D, Mojoli F, Amato MBP, Cinnella G, Gattinoni L, Quintel M. Imaging in acute respiratory distress syndrome. Intensive Care Med 2016; 42:686-698. [PMID: 27033882 DOI: 10.1007/s00134-016-4328-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE Imaging has become increasingly important across medical specialties for diagnostic, monitoring, and investigative purposes in acute respiratory distress syndrome (ARDS). METHODS This review addresses the use of imaging techniques for the diagnosis and management of ARDS as well as gaining knowledge about its pathogenesis and pathophysiology. The techniques described in this article are computed tomography, positron emission tomography, and two easily accessible imaging techniques available at the bedside-ultrasound and electrical impedance tomography (EIT). RESULTS The use of computed tomography has provided new insights into ARDS pathophysiology, demonstrating that ARDS does not homogeneously affect the lung parenchyma and that lung injury severity is widely distributed in the ARDS population. Positron emission tomography is a functional imaging technique whose value resides in adding incremental insights to morphological imaging. It can quantify regional perfusion, ventilation, aeration, lung vascular permeability, edema, and inflammation. Lung ultrasound and EIT are radiation-free, noninvasive tools available at the bedside. Lung ultrasound can provide useful information on ARDS diagnosis when x-rays or CT scan are not available. EIT is a useful tool to monitor lung ventilation and to assess the regional distribution of perfusion. CONCLUSIONS The future of imaging in critical care will probably develop in two main directions: easily accessible imaging techniques that can be used at the bedside and sophisticated imaging methods that will be used to aid in difficult diagnostic cases or to advance our understanding of the pathogenesis and pathophysiology of an array of critical illnesses.
Collapse
Affiliation(s)
- Antonio Pesenti
- Dipartimento di Anestesia, Rianimazione ed Emergenza Urgenza, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy.
| | - Guido Musch
- Department of Anesthesiology, Washington University and General Anesthesiology, Barnes Jewish Hospital, St. Louis, USA
| | - Daniel Lichtenstein
- Medical ICU, Hospital Ambroise-Pare, Paris-West University, Nanterre, France
| | - Francesco Mojoli
- Anesthesia and Intensive Care, Emergency Department, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
- Anesthesia, Intensive Care and Pain Therapy, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Marcelo B P Amato
- Respiratory Intensive Care Unit, University of Sao Paulo School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Gilda Cinnella
- Department of Anesthesia and Intensive Care, University of Foggia, Foggia, Italy
| | - Luciano Gattinoni
- Department of Anesthesiology, Emergency and Intensive Care Medicine, Georg-August University of Göttingen, Göttingen, Germany
| | - Michael Quintel
- Department of Anesthesiology, Emergency and Intensive Care Medicine, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
27
|
Retamal J, Borges JB, Bruhn A, Cao X, Feinstein R, Hedenstierna G, Johansson S, Suarez-Sipmann F, Larsson A. High respiratory rate is associated with early reduction of lung edema clearance in an experimental model of ARDS. Acta Anaesthesiol Scand 2016; 60:79-92. [PMID: 26256848 DOI: 10.1111/aas.12596] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/08/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND The independent impact of respiratory rate on ventilator-induced lung injury has not been fully elucidated. The aim of this study was to investigate the effects of two clinically relevant respiratory rates on early ventilator-induced lung injury evolution and lung edema during the protective ARDSNet strategy. We hypothesized that the use of a higher respiratory rate during a protective ARDSNet ventilation strategy increases lung inflammation and, in addition, lung edema associated to strain-induced activation of transforming growth factor beta (TGF-β) in the lung epithelium. METHODS Twelve healthy piglets were submitted to a two-hit lung injury model and randomized into two groups: LRR (20 breaths/min) and HRR (40 breaths/min). They were mechanically ventilated during 6 h according to the ARDSNet strategy. We assessed respiratory mechanics, hemodynamics, and extravascular lung water (EVLW). At the end of the experiment, the lungs were excised and wet/dry ratio, TGF-β pathway markers, regional histology, and cytokines were evaluated. RESULTS No differences in oxygenation, PaCO2 levels, systemic and pulmonary arterial pressures were observed during the study. Respiratory system compliance and mean airway pressure were lower in LRR group. A decrease in EVLW over time occurred only in the LRR group (P < 0.05). Wet/dry ratio was higher in the HRR group (P < 0.05), as well as TGF-β pathway activation. Histological findings suggestive of inflammation and inflammatory tissue cytokines were higher in LRR. CONCLUSION HRR was associated with more pulmonary edema and higher activation of the TGF-β pathway. In contrast with our hypothesis, HRR was associated with less lung inflammation.
Collapse
Affiliation(s)
- J. Retamal
- Hedenstierna Laboratory; Department of Surgical Sciences; Section of Anaesthesiology & Critical Care; Uppsala University; Uppsala Sweden
- Departamento de Medicina Intensiva; Pontificia Universidad Cat ó lica de Chile; Santiago Chile
| | - J. B. Borges
- Hedenstierna Laboratory; Department of Surgical Sciences; Section of Anaesthesiology & Critical Care; Uppsala University; Uppsala Sweden
- Cardio-Pulmonary Department; Pulmonary Divison; Heart Institute (Incor); University of São Paulo; São Paulo Brazil
| | - A. Bruhn
- Departamento de Medicina Intensiva; Pontificia Universidad Cat ó lica de Chile; Santiago Chile
| | - X. Cao
- Department of Medical Biochemistry and Microbiology; Uppsala University; Uppsala Sweden
| | - R. Feinstein
- Department of Pathology and Wildlife Diseases; National Veterinary Institute; Uppsala Sweden
| | - G. Hedenstierna
- Department of Medical Science, Clinical Physiology; Uppsala University Hospital; Uppsala Sweden
| | - S. Johansson
- Department of Medical Biochemistry and Microbiology; Uppsala University; Uppsala Sweden
| | - F. Suarez-Sipmann
- Hedenstierna Laboratory; Department of Surgical Sciences; Section of Anaesthesiology & Critical Care; Uppsala University; Uppsala Sweden
| | - A. Larsson
- Hedenstierna Laboratory; Department of Surgical Sciences; Section of Anaesthesiology & Critical Care; Uppsala University; Uppsala Sweden
| |
Collapse
|