1
|
Mi Y, Burnham KL, Charles PD, Heilig R, Vendrell I, Whalley J, Torrance HD, Antcliffe DB, May SM, Neville MJ, Berridge G, Hutton P, Geoghegan CG, Radhakrishnan J, Nesvizhskii AI, Yu F, Davenport EE, McKechnie S, Davies R, O'Callaghan DJP, Patel P, Del Arroyo AG, Karpe F, Gordon AC, Ackland GL, Hinds CJ, Fischer R, Knight JC. High-throughput mass spectrometry maps the sepsis plasma proteome and differences in patient response. Sci Transl Med 2024; 16:eadh0185. [PMID: 38838133 DOI: 10.1126/scitranslmed.adh0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Sepsis, the dysregulated host response to infection causing life-threatening organ dysfunction, is a global health challenge requiring better understanding of pathophysiology and new therapeutic approaches. Here, we applied high-throughput tandem mass spectrometry to delineate the plasma proteome for sepsis and comparator groups (noninfected critical illness, postoperative inflammation, and healthy volunteers) involving 2612 samples (from 1611 patients) and 4553 liquid chromatography-mass spectrometry analyses acquired through a single batch of continuous measurements, with a throughput of 100 samples per day. We show how this scale of data can delineate proteins, pathways, and coexpression modules in sepsis and be integrated with paired leukocyte transcriptomic data (837 samples from n = 649 patients). We mapped the plasma proteomic landscape of the host response in sepsis, including changes over time, and identified features relating to etiology, clinical phenotypes (including organ failures), and severity. This work reveals subphenotypes informative for sepsis response state, disease processes, and outcome; identifies potential biomarkers; and advances opportunities for a precision medicine approach to sepsis.
Collapse
Affiliation(s)
- Yuxin Mi
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Katie L Burnham
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Philip D Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Raphael Heilig
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Justin Whalley
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Hew D Torrance
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
| | - David B Antcliffe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Shaun M May
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Georgina Berridge
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Paula Hutton
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Cyndi G Geoghegan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Jayachandran Radhakrishnan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma E Davenport
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Stuart McKechnie
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Roger Davies
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
| | - David J P O'Callaghan
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Parind Patel
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Ana G Del Arroyo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Anthony C Gordon
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Charles J Hinds
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| |
Collapse
|
3
|
Fan SL, Miller NS, Lee J, Remick DG. Diagnosing sepsis - The role of laboratory medicine. Clin Chim Acta 2016; 460:203-10. [PMID: 27387712 DOI: 10.1016/j.cca.2016.07.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 02/08/2023]
Abstract
Sepsis is the host response to microbial pathogens resulting in significant morbidity and mortality. An accurate and timely diagnosis of sepsis allows prompt and appropriate treatment. This review discusses laboratory testing for sepsis because differentiating systemic inflammation from infection is challenging. Procalcitonin (PCT) is currently an FDA approved test to aid in the diagnosis of sepsis but with questionable efficacy. However, studies support the use of PCT for antibiotic de-escalation. Serial lactate measurements have been recommended for monitoring treatment efficacy as part of sepsis bundles. The 2016 sepsis consensus definitions include lactate concentrations >2mmol/L (>18mg/dL) as part of the definition of septic shock. Also included in the 2016 definitions are measuring bilirubin and creatinine to determine progression of organ failure indicating worse prognosis. Hematologic parameters, including a simple white blood cell count and differential, are frequently part of the initial sepsis diagnostic protocols. Several new biomarkers have been proposed to diagnose sepsis or to predict mortality, but they currently lack sufficient sensitivity and specificity to be considered as stand-alone testing. If sepsis is suspected, new technologies and microbiologic assays allow rapid and specific identification of pathogens. In 2016 there is no single laboratory test that accurately diagnoses sepsis.
Collapse
Affiliation(s)
- Shu-Ling Fan
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine/Boston Medical Center, United States
| | - Nancy S Miller
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine/Boston Medical Center, United States
| | - John Lee
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine/Boston Medical Center, United States
| | - Daniel G Remick
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine/Boston Medical Center, United States.
| |
Collapse
|
4
|
Rasid O, Cavaillon JM. Recent developments in severe sepsis research: from bench to bedside and back. Future Microbiol 2016; 11:293-314. [PMID: 26849633 DOI: 10.2217/fmb.15.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Severe sepsis remains a worldwide threat, not only in industrialized countries, due to their aging population, but also in developing countries where there still are numerous cases of neonatal and puerperal sepsis. Tools for early diagnosis, a prerequisite for rapid and appropriate antibiotic therapy, are still required. In this review, we highlight some recent developments in our understanding of the associated systemic inflammatory response that help deciphering pathophysiology (e.g., epigenetic, miRNA, regulatory loops, compartmentalization, apoptosis and synergy) and discuss some of the consequences of sepsis (e.g., immune status, neurological and muscular alterations). We also emphasize the challenge to better define animal models and discuss past failures in clinical investigations in order to define new efficient therapies.
Collapse
Affiliation(s)
- Orhan Rasid
- Unit Cytokines & Inflammation, Institut Pasteur, 28 rue Dr. Roux, Paris, France
| | - Jean-Marc Cavaillon
- Unit Cytokines & Inflammation, Institut Pasteur, 28 rue Dr. Roux, Paris, France
| |
Collapse
|