1
|
Niendorf T, Gladytz T, Cantow K, Millward JM, Waiczies S, Seeliger E. Magnetic resonance imaging of renal oxygenation. Nat Rev Nephrol 2025:10.1038/s41581-025-00956-z. [PMID: 40269325 DOI: 10.1038/s41581-025-00956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
Renal hypoxia has a key role in the pathophysiology of many kidney diseases. MRI provides surrogate markers of oxygenation, offering a critical opportunity to detect renal hypoxia. However, studies that have assessed the diagnostic performance of oxygenation MRI for kidney disorders have provided inconsistent results because MRI metrics do not fully capture the complexity of renal oxygenation. Most oxygenation MRI studies are descriptive in nature and fail to detail the pathophysiological importance of the imaging findings. These limitations have restricted the clinical application of oxygenation MRI and the full potential of this technology to facilitate early diagnosis, risk prediction and treatment monitoring of kidney disease has not yet been realized. Understanding of the relationship between renal tissue oxygenation and MRI metrics, which is affected by kidney size, tubular volume fraction and renal blood volume fraction, and measurement of these factors using novel MR methods is imperative for correct physiological interpretation of renal MR oximetry findings. Next steps to enable the clinical adoption of MR oximetry should involve multidisciplinary collaboration to address standardization of acquisition and data analysis protocols and establish reference values of MRI metrics.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany.
- Experimental and Clinical Research Center, A joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Thomas Gladytz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany
- Experimental and Clinical Research Center, A joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kathleen Cantow
- Institute of Translational Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Jason M Millward
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany
- Experimental and Clinical Research Center, A joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany
- Experimental and Clinical Research Center, A joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| |
Collapse
|
2
|
Puccinelli C, Lippi I, Pelligra T, Citi S. Prognostic value of contrast-enhanced ultrasound in dogs with acute renal injury treated with haemodialysis. Vet Rec 2025; 196:e4959. [PMID: 39844446 PMCID: PMC11907752 DOI: 10.1002/vetr.4959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND It is clinically relevant to predict outcomes in dogs with acute kidney injury (AKI) treated with haemodialysis. The aim of this study was to evaluate the prognostic value of contrast-enhanced ultrasound (CEUS) and its role in discriminating between AKI and acute impairment associated with chronic kidney disease (AKI/CKD). METHODS Dogs diagnosed with AKI or AKI/CKD were prospectively enrolled in the study. For all dogs, CEUS was performed at admission (T0). In addition, in haemodialysis-treated dogs, it was performed after the first dialysis (T1) and 7 days (T7) and 30 days (T30) after admission. RESULTS A total of 41 dogs were enrolled, of which 30 were treated with haemodialysis and 11 received medical therapy. No significant difference was found between CEUS values at T0 in surviving and non-surviving patients after haemodialysis. A significant difference in cortical peak enhancement intensity (PI) values was found between T0, T1, T7 and T30, with the highest PI value at T0, a significant reduction at T1 and a progressive reduction in subsequent checks. There were no significant differences in CEUS parameters at T0 between patients with AKI and AKI/CKD. LIMITATIONS AKI aetiology was unknown in most cases, which limits the generalisability of the findings. Furthermore, the small sample size means that the statistical analysis is likely underpowered. CONCLUSION CEUS could be helpful in evaluating of the prognosis of dogs with AKI during haemodialysis.
Collapse
Affiliation(s)
| | - Ilaria Lippi
- Department of Veterinary SciencesUniversity of PisaPisaItaly
| | - Tina Pelligra
- Department of Veterinary SciencesUniversity of PisaPisaItaly
| | - Simonetta Citi
- Department of Veterinary SciencesUniversity of PisaPisaItaly
| |
Collapse
|
3
|
Li Q, Li R, Wang C, Zhang Q, Zhang Q, Huo Y, Chao Y, Wang X, Hu Z, Liu L. Decreased renal cortical perfusion post-EGDT is associated with MAKE-30 in sepsis. J Crit Care 2025; 85:154943. [PMID: 39510025 DOI: 10.1016/j.jcrc.2024.154943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/30/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE This study explores alterations in renal cortical perfusion post-Early Goal-Directed Therapy (EGDT) in sepsis patients, to investigate its association with major adverse kidney events within 30 days (MAKE-30) and identify hemodynamic factors associated with renal cortical perfusion. METHODS Sepsis patients admitted to the ICU from Jan 2022 to Jul 2023 were prospectively enrolled. Contrast-enhanced ultrasound (CEUS) assessed renal cortical perfusion post-EGDT. Hemodynamic parameters and renal resistive index (RRI) were collected. Patients were categorized into MAKE-30 and non-MAKE-30 groups. The study examined the association between renal cortical perfusion and MAKE-30, explored the hemodynamic factors related to renal cortical perfusion. RESULTS Of 94 sepsis patients, 46 (48.9 %) experienced MAKE-30. Distinctions in pulmonary (P = 0.012) and abdominal infection sites (P = 0.001) and significant SOFA (P < 0.001) and APACHE II scores (P = 0.003) differences were observed. No significant differences in baseline characteristics, vasopressor, or diuretic doses were noted (P > 0.05). Hemodynamic parameters in MAKE-30 and non-MAKE-30 patients showed no significant differences. RRI was higher in MAKE-30 patients (0.71 vs 0.66 P = 0.005). Renal microcirculation parameters, including AUC (p = 0.035), rBV (p = 0.021), and PI (p = 0.003), were lower in MAKE-30. Reduced cortical renal perfusion was associated with an increased risk of MAKE-30. Renal cortical perfusion RT was identified as an independent factor associated with this risk (HR 2.278, 95 % CI (1.152-4.507), P = 0.018). RRI correlated with renal cortical perfusion AUC (r = -0.220 p 0.033). CONCLUSION Despite normal systemic hemodynamics post-sepsis EGDT, MAKE-30 patients show reduced renal cortical perfusion. CEUS-derived RT is an independent factor associated with this change. RRI correlates with renal cortical perfusion.
Collapse
Affiliation(s)
- Qiqi Li
- Department of Critical Care Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rong Li
- Department of Critical Care Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Can Wang
- Department of Critical Care Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Zhang
- Department of Intensive Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qian Zhang
- Department of Critical Care Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Huo
- Department of Critical Care Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yangong Chao
- Department of Critical Care Medicine, The First Affiliated Hospital of Tsinghua University, Beijing, China
| | - Xiaoting Wang
- Department of Intensive Care Department, Peking Union Medical College Hospital, Beijing, China
| | - Zhenjie Hu
- Department of Critical Care Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lixia Liu
- Department of Critical Care Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
4
|
Contrera Rolón N, Cantos J, Huespe I, Prado E, Bratti GI, Schreck C, Giannasi S, Rosa Diez G, Varela CF. Fractional excretion of sodium and potassium and urinary strong ion difference in the evaluation of persistent AKI in sepsis. Med Intensiva 2025; 49:1-7. [PMID: 38403531 DOI: 10.1016/j.medine.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE To evaluate the diagnostic performance of FENa (Fractional excretion of sodium), FEK (fractional excretion of potassium) and uSID (urinary strong ion difference) in predicting pAKI in sepsis and septic shock. DESIGN Retrospective cohort study. SETTING Two intensive care units in Argentina. PATIENTS Adult patients with a confirmed diagnosis of sepsis or septic shock and AKI, and had a urinary biochemistry within 24h of the AKI diagnosis. INTERVENTIONS None. MAIN VARIABLES OF INTEREST We evaluated the diagnostic accuracy of FENa, FEK and uSID through a ROC (Receiver Operating Characteristic) curve analysis. RESULTS 80 patients were included. 40 patients presented pAKI. pAKI group had higher APACHE, SOFA score, and mortality rate. In the ROC curve analysis, uSID had no diagnostic utility (AUC=0.52, p=0.69). FENa presented moderate accuracy showing an AUC of 0.71 (95% CI 0.60-0.83; p=0.001), while FEK presented low accuracy with an AUC of 0.69 (95% CI 0.57-0.80; p=0.04). The optimal Youden point for identifying pAKI was at a FENa higher than 0.51 % with a specificity of 72.5% and a sensitivity of 65.0%. In the case of FEK, a value higher than 21.9 % presented the best relation, with a specificity of 67.5% and a sensitivity of 65.0%. CONCLUSIONS urine biochemistry interpretation in septic patients must be revised. FENa and FEK are related to the severity of AKI and could be helpful complementary tools for diagnosing pAKI.
Collapse
Affiliation(s)
- Nicolás Contrera Rolón
- Critical Care Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina; Nephrology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina.
| | - Joaquín Cantos
- Critical Care Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Iván Huespe
- Critical Care Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Prado
- Critical Care Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Griselda I Bratti
- Nephrology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Schreck
- Nephrology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Sergio Giannasi
- Critical Care Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Rosa Diez
- Nephrology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Carlos F Varela
- Nephrology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Yang QJ, Xiang BX, Song MH, Yang CY, Liang JH, Xie YL, Zuo XC. Acute kidney injury with intravenous colistin sulfate compared with polymyxin B in critically ill patients: A real-world, retrospective cohort study. Pharmacotherapy 2024; 44:631-641. [PMID: 39046197 DOI: 10.1002/phar.4601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Polymyxins have re-emerged as a last-resort therapeutic option for infections caused by carbapenem-resistant gram-negative bacteria. Nephrotoxicity induced by polymyxins is a significant limitation of its use in the clinic. Polymyxin B and colistin sulfate are two widely used active formulations of polymyxins. However, there is a lack of studies conducting a comparative assessment of nephrotoxicity between the two formulations. This study aimed to compare the nephrotoxicity of polymyxin B and colistin sulfate in critically ill patients. METHODS We conducted a retrospective cohort study among critically ill patients who received intravenous polymyxin B or colistin sulfate for over 48 h from January 2017 to January 2024. The primary outcome was the incidence of acute kidney injury (AKI) associated with polymyxins, and the secondary outcome was 30-day all-cause mortality. Additionally, the risk factors of polymyxins-induced AKI and 30-day all-cause mortality were identified by Cox proportional hazard regression analysis. RESULTS A total of 473 patients were included in this study. The overall incidence of AKI was significantly higher in patients who received polymyxin B compared to those who received colistin sulfate in the unmatched cohort (20.8% vs. 9.0%, p = 0.002) and in the propensity score matching cohort (21.1% vs. 7.0%, p = 0.004), respectively. However, there was no significant difference in 30-day all-cause mortality between the two groups. Polymyxin type, septic shock, and concomitant use of vasopressors were identified as independent risk factors for polymyxin-induced AKI. CONCLUSIONS The prevalence of AKI was higher among patients who received polymyxin B compared to those treated with colistin sulfate. However, there was no significant difference in 30-day all-cause mortality between the two groups. Further prospective, multicenter studies with larger sample sizes are needed to validate these findings.
Collapse
Affiliation(s)
- Qin-Jie Yang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bi-Xiao Xiang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mong-Hsiu Song
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Chien-Yi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Jun-Hao Liang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yue-Liang Xie
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Garcia B, Ter Schiphorst B, Santos K, Su F, Dewachter L, Vasques-Nóvoa F, Rocha-Oliveira E, Roncon-Albuquerque R, Uba T, Hartmann O, Picod A, Azibani F, Callebert J, Goldman S, Annoni F, Favory R, Vincent JL, Creteur J, Taccone FS, Mebazaa A, Herpain A. Inhibition of circulating dipeptidyl-peptidase 3 by procizumab in experimental septic shock reduces catecholamine exposure and myocardial injury. Intensive Care Med Exp 2024; 12:53. [PMID: 38849640 PMCID: PMC11161450 DOI: 10.1186/s40635-024-00638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Dipeptidyl peptidase 3 (DPP3) is a ubiquitous cytosolic enzyme released into the bloodstream after tissue injury, that can degrade angiotensin II. High concentrations of circulating DPP3 (cDPP3) have been associated with worse outcomes during sepsis. The aim of this study was to assess the effect of Procizumab (PCZ), a monoclonal antibody that neutralizes cDPP3, in an experimental model of septic shock. METHODS In this randomized, open-label, controlled study, 16 anesthetized and mechanically ventilated pigs with peritonitis were randomized to receive PCZ or standard treatment when the mean arterial pressure (MAP) dropped below 50 mmHg. Resuscitation with fluids, antimicrobial therapy, peritoneal lavage, and norepinephrine was initiated one hour later to maintain MAP between 65-75 mmHg for 12 h. Hemodynamic variables, tissue oxygenation indices, and measures of organ failure and myocardial injury were collected. Organ blood flow was assessed using isotopic assessment (99mtechnetium albumin). cDPP3 activity, equilibrium analysis of the renin-angiotensin system and circulating catecholamines were measured. Tissue mRNA expression of interleukin-6 and downregulation of adrenergic and angiotensin receptors were assessed on vascular and myocardial samples. RESULTS PCZ-treated animals had reduced cDPP3 levels and required less norepinephrine and fluid than septic control animals for similar organ perfusion and regional blood flow. PCZ-treated animals had less myocardial injury, and higher PaO2/FiO2 ratios. PCZ was associated with lower circulating catecholamine levels; higher circulating angiotensin II and higher angiotensin II receptor type 1 myocardial protein expression, and with lower myocardial and radial artery mRNA interleukin-6 expression. CONCLUSIONS In an experimental model of septic shock, PCZ administration was associated with reduced fluid and catecholamine requirements, less myocardial injury and cardiovascular inflammation, along with preserved angiotensin II signaling.
Collapse
Affiliation(s)
- Bruno Garcia
- Experimental Laboratory of the Department of Intensive Care, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France.
| | - Benoit Ter Schiphorst
- Experimental Laboratory of the Department of Intensive Care, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France
| | | | - Fuhong Su
- Experimental Laboratory of the Department of Intensive Care, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Estela Rocha-Oliveira
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Theo Uba
- 4TEEN4 Pharmaceuticals GmbH, Hennigsdorf, Germany
| | | | - Adrien Picod
- Université Paris Cité, UMR-S 942, INSERM, MASCOT, Paris, France
| | - Feriel Azibani
- Université Paris Cité, UMR-S 942, INSERM, MASCOT, Paris, France
| | - Jacques Callebert
- Université Paris Cité, UMR-S 942, INSERM, MASCOT, Paris, France
- Department of Biochemistry, Assistance Publique Hôpitaux de Paris, Hôpital Lariboisière, Paris, France
| | - Serge Goldman
- Department of Nuclear Medicine, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Filippo Annoni
- Experimental Laboratory of the Department of Intensive Care, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Raphaël Favory
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Jean-Louis Vincent
- Experimental Laboratory of the Department of Intensive Care, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jacques Creteur
- Experimental Laboratory of the Department of Intensive Care, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fabio Silvio Taccone
- Experimental Laboratory of the Department of Intensive Care, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alexandre Mebazaa
- Université Paris Cité, UMR-S 942, INSERM, MASCOT, Paris, France
- Department of Anesthesia, Burn and Critical Care, University Hospitals Saint-Louis-Lariboisière, AP-HP, Paris, France
| | - Antoine Herpain
- Experimental Laboratory of the Department of Intensive Care, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Intensive Care, Saint-Pierre University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
7
|
Wang JY, Song QL, Wang YL, Jiang ZM. Urinary oxygen tension and its role in predicting acute kidney injury: A narrative review. J Clin Anesth 2024; 93:111359. [PMID: 38061226 DOI: 10.1016/j.jclinane.2023.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024]
Abstract
Acute kidney injury occurs frequently in the perioperative setting. The renal medulla often endures hypoxia or hypoperfusion and is susceptible to the imbalance between oxygen supply and demand due to the nature of renal blood flow distribution and metabolic rate in the kidney. The current available evidence demonstrated that the urine oxygen pressure is proportional to the variations of renal medullary tissue oxygen pressure. Thus, urine oxygenation can be a candidate for reflecting the change of oxygen in the renal medulla. In this review, we discuss the basic physiology of acute kidney injury, as well as techniques for monitoring urine oxygen tension, confounding factors affecting the reliable measurement of urine oxygen tension, and its clinical use, highlighting its potential role in early detection and prevention of acute kidney injury.
Collapse
Affiliation(s)
- Jing-Yan Wang
- Department of Anesthesia, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Qi-Liang Song
- Department of Anesthesia, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Yu-Long Wang
- Department of Anesthesia, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Zong-Ming Jiang
- Department of Anesthesia, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang Province, China.
| |
Collapse
|
8
|
Klein T, Gladytz T, Millward JM, Cantow K, Hummel L, Seeliger E, Waiczies S, Lippert C, Niendorf T. Dynamic parametric MRI and deep learning: Unveiling renal pathophysiology through accurate kidney size quantification. NMR IN BIOMEDICINE 2024; 37:e5075. [PMID: 38043545 DOI: 10.1002/nbm.5075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 12/05/2023]
Abstract
Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data-driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom-tailored deep dilated U-Net (DDU-Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self-configuring no new U-Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU-Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (-8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (-2% ± 1%), and contrast agent-induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI-based tools for kidney disorders, offering unparalleled insights into renal pathophysiology.
Collapse
Affiliation(s)
- Tobias Klein
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Digital Health - Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
| | - Thomas Gladytz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kathleen Cantow
- Institute of Translational Physiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Luis Hummel
- Institute of Translational Physiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christoph Lippert
- Digital Health - Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
9
|
Chen R, Gao B, Wang X, Zhao H, Wang X, Liu D. Ultrasonographic assessment of renal microcirculation is a new vision for the treatment of intensive care unit associated acute kidney injury. Eur J Med Res 2024; 29:115. [PMID: 38341556 PMCID: PMC10858548 DOI: 10.1186/s40001-024-01704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Affiliation(s)
- Rongping Chen
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Beijun Gao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xinchen Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Hua Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Chen R, Liu D, Zhao H, Wang X. Renal medullary perfusion differs from that in renal cortex in patients with sepsis associated acute kidney injury and correlates with renal function prognosis: A prospective cohort study. Clin Hemorheol Microcirc 2024; 88:181-198. [PMID: 39121113 PMCID: PMC11492038 DOI: 10.3233/ch-242296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
BACKGROUND Renal perfusion status remains poorly studied at the bedside during sepsis associated acute kidney injury (AKI). The aim of the study is to examine renal cortical and medullary perfusion using renal contrast enhanced ultrasound (CEUS) in septic patients. METHODS In this single-center, prospective longitudinal study, septic patients were enrolled. Renal ultrasonography was performed within 24 hours of ICU admission (D1), then repeated at D3, D5 and D7. Each measurement consisted of three destruction replenishment sequences that were recorded for delayed analysis with dedicated software (Vuebox). Renal cortex and medulla perfusion were quantified by measuring time to peak (TTP). Receiver operating characteristic (ROC) analysis was used to evaluate 28-day renal prognosis. RESULTS The study included 149 septic patients, including 70 non-AKI patients and 79 AKI patients. Both renal cortical and medullary TTP was longer in the AKI group than in the non-AKI group. The difference of TTP between renal cortex and medulla in AKI group was higher than that in the non-AKI group (p = 0.000). Medullary TTP on day 3 had the best performance in predicting the prognosis of 28-day renal function (AUC 0.673, 95% confidence interval 0.528-0.818, p = 0.024), and its cut-off value was 45 s with a sensitivity 52.2% and a specificity of 82.1%. Cortical TTP on day 3 also had the performance in predicting the prognosis of 28-day renal function (AUC 0.657, 95% confidence interval 0.514-0.800, p = 0.039), and its cut-off value was 33 s with a sensitivity 78.3% and a specificity of 55.0%. CONCLUSION Renal medullary perfusion alterations differ from those in cortex, with the medulla is worse. Simultaneous and dynamic assessment of cortical and medullary microcirculatory flow alterations necessary. TTP on day 3, especially medullary TTP, seems to be a relatively stable and useful indicator, which correlates with 28-day renal function prognosis in septic patients. Early correction of renal cortical and medullary perfusion alterations reduces the incidence of adverse renal events.
Collapse
Affiliation(s)
- Rongping Chen
- Peking Union Medical College Hospital, Beijing, China
| | - Dawei Liu
- Peking Union Medical College Hospital, Beijing, China
| | - Hua Zhao
- Peking Union Medical College Hospital, Beijing, China
| | - Xiaoting Wang
- Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
11
|
Garcia B, Zarbock A, Bellomo R, Legrand M. The role of renin-angiotensin system in sepsis-associated acute kidney injury: mechanisms and therapeutic implications. Curr Opin Crit Care 2023; 29:607-613. [PMID: 37861190 DOI: 10.1097/mcc.0000000000001092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore the relationship between the renin angiotensin system (RAS) and sepsis-associated acute kidney injury (SA-AKI), a common complication in critically ill patients associated with mortality, morbidity, and long-term cardiovascular complications. Additionally, this review aims to identify potential therapeutic approaches to intervene with the RAS and prevent the development of AKI. RECENT FINDINGS Recent studies have provided increasing evidence of RAS alteration during sepsis, with systemic and local RAS disturbance, which can contribute to SA-AKI. Angiotensin II was recently approved for catecholamine resistant vasodilatory shock and has been associated with improved outcomes in selected patients. SUMMARY SA-AKI is a common condition that can involve disturbances in the RAS, particularly the canonical angiotensin-converting enzyme (ACE) angiotensin-II (Ang II)/angiotensin II receptor 1 (AT-1R) axis. Increased renin levels, a key enzyme in the RAS, have been shown to be associated with AKI and may also guide vasopressor therapy in shock. In patients with high renin levels, angiotensin II administration may reduce renin concentration, improve intra-renal hemodynamics, and enhance signaling through the angiotensin II receptor 1. Further studies are needed to explore the role of the RAS in SA-AKI and the potential for targeted therapies.
Collapse
Affiliation(s)
- Bruno Garcia
- Department of Anesthesia & Peri-operative Care, Division of Critical Care Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Münster, Münster, Germany
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital
- Australian and New Zealand Intensive Care Research Centre, Monash University
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Matthieu Legrand
- Department of Anesthesia & Peri-operative Care, Division of Critical Care Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| |
Collapse
|
12
|
PUCCINELLI C, PELLIGRA T, LIPPI I, CITI S. Diagnostic utility of two-dimensional shear wave elastography in nephropathic dogs and its correlation with renal contrast-enhanced ultrasound in course of acute kidney injury. J Vet Med Sci 2023; 85:1216-1225. [PMID: 37793837 PMCID: PMC10686770 DOI: 10.1292/jvms.23-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023] Open
Abstract
Aims of our study were to evaluate the feasibility and diagnostic value of two-dimensional shear wave elastography in dogs with acute kidney injury, chronic kidney disease, and acute on chronic kidney disease, its correlation with renal functional (creatinine, urea), and prognostic parameters (serum calcium-phosphorus product, urinary output), and with contrast-enhanced ultrasound (qualitative and quantitative evaluation). The study was prospective. A group of healthy (Group A) and a group of nephropathic dogs (Group B) were included. Shear wave elastography was performed on the left kidney of the subjects of both groups; contrast-enhanced ultrasound was performed only in dogs with acute kidney injury and acute on chronic kidney disease. Sixty-four dogs were included (Group A, n=24; Group B, n=40). The renal stiffness values were significantly higher in Group B than Group A; optimal cut-off stiffness values for detection of renal pathology were: ≥1.51 m/sec (area under the curve, 0.84; 95% confidence interval 0.74-0.94) and ≥6.75 kPa (area under the curve, 0.84; 95% confidence interval 0.73-0.94). For contrast-enhanced ultrasound, a significant positive correlation was found between renal stiffness, area under the curve, and wash-out area under the curve values of cortex quantitative analysis. No correlations were found between renal stiffness and renal functional and prognostic parameters. Shear wave elastography showed diagnostic utility to detect renal abnormalities in dogs with acute kidney injury, chronic kidney disease and acute on chronic kidney disease, however, it could not differentiate between these different nephropathies.
Collapse
Affiliation(s)
| | - Tina PELLIGRA
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Ilaria LIPPI
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Simonetta CITI
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Betrie AH, Ma S, Ow CPC, Peiris RM, Evans RG, Ayton S, Lane DJR, Southon A, Bailey SR, Bellomo R, May CN, Lankadeva YR. Renal arterial infusion of tempol prevents medullary hypoperfusion, hypoxia, and acute kidney injury in ovine Gram-negative sepsis. Acta Physiol (Oxf) 2023; 239:e14025. [PMID: 37548350 PMCID: PMC10909540 DOI: 10.1111/apha.14025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
AIM Renal medullary hypoperfusion and hypoxia precede acute kidney injury (AKI) in ovine sepsis. Oxidative/nitrosative stress, inflammation, and impaired nitric oxide generation may contribute to such pathophysiology. We tested whether the antioxidant and anti-inflammatory drug, tempol, may modify these responses. METHODS Following unilateral nephrectomy, we inserted renal arterial catheters and laser-Doppler/oxygen-sensing probes in the renal cortex and medulla. Noanesthetized sheep were administered intravenous (IV) Escherichia coli and, at sepsis onset, IV tempol (IVT; 30 mg kg-1 h-1 ), renal arterial tempol (RAT; 3 mg kg-1 h-1 ), or vehicle. RESULTS Septic sheep receiving vehicle developed renal medullary hypoperfusion (76 ± 16% decrease in perfusion), hypoxia (70 ± 13% decrease in oxygenation), and AKI (87 ± 8% decrease in creatinine clearance) with similar changes during IVT. However, RAT preserved medullary perfusion (1072 ± 307 to 1005 ± 271 units), oxygenation (46 ± 8 to 43 ± 6 mmHg), and creatinine clearance (61 ± 10 to 66 ± 20 mL min-1 ). Plasma, renal medullary, and cortical tissue malonaldehyde and medullary 3-nitrotyrosine decreased significantly with sepsis but were unaffected by IVT or RAT. Consistent with decreased oxidative/nitrosative stress markers, cortical and medullary nuclear factor-erythroid-related factor-2 increased significantly and were unaffected by IVT or RAT. However, RAT prevented sepsis-induced overexpression of cortical tissue tumor necrosis factor alpha (TNF-α; 51 ± 16% decrease; p = 0.003) and medullary Thr-495 phosphorylation of endothelial nitric oxide synthase (eNOS; 63 ± 18% decrease; p = 0.015). CONCLUSIONS In ovine Gram-negative sepsis, renal arterial infusion of tempol prevented renal medullary hypoperfusion and hypoxia and AKI and decreased TNF-α expression and uncoupling of eNOS. However, it did not affect markers of oxidative/nitrosative stress, which were significantly decreased by Gram-negative sepsis.
Collapse
Affiliation(s)
- Ashenafi H. Betrie
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Shuai Ma
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Division of Nephrology, Shanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Connie P. C. Ow
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Rachel M. Peiris
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Roger G. Evans
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Biomedicine Discovery Institute and Department of PhysiologyMonash UniversityMelbourneVictoriaAustralia
| | - Scott Ayton
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Darius J. R. Lane
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Adam Southon
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Simon R. Bailey
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Rinaldo Bellomo
- Department of Critical Care, Melbourne Medical SchoolThe University of MelbourneMelbourneVictoriaAustralia
- Australian and New Zealand Intensive Care Research CentreMonash UniversityMelbourneVictoriaAustralia
- Department of Intensive CareAustin HospitalMelbourneVictoriaAustralia
- Department of Intensive CareRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Clive N. May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Department of Critical Care, Melbourne Medical SchoolThe University of MelbourneMelbourneVictoriaAustralia
| | - Yugeesh R. Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Department of Critical Care, Melbourne Medical SchoolThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
14
|
Li Y, Chen L, Feng L, Li M. Contrast-Enhanced Ultrasonography for Acute Kidney Injury: A Systematic Review and Meta-Analysis. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00178-3. [PMID: 37391293 DOI: 10.1016/j.ultrasmedbio.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVE The aim of the work described here was to provide an evidence-based evaluation of contrast-enhanced ultrasonography (CEUS) in acute kidney injury (AKI) and assess variations in renal microperfusion with CEUS quantitative parameters in patients at a high risk of developing AKI. METHODS A meta-analysis and systematic review were conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the Embase, MEDLINE, Web of Science and the Cochrane Library databases were used to search the relevant articles systematically (2000-2022). Studies using CEUS to assess renal cortical microcirculation in AKI were included. RESULTS Six prospective studies (374 patients) were included. The overall quality of included studies was moderate to high. CEUS measures, maximum intensity (standard mean difference [SMD]: -1.37, 95% confidence interval [CI]: -1.64 to -1.09) and wash-in rate (SMD: -0.77, 95% CI: -1.09 to -0.45) were lower in the AKI+ group than in the AKI- group, and mean transit time (SMD: 0.76, 95% CI: 0.11-1.40) and time to peak (SMD: 1.63, 95% CI: 0.99-2.27) were higher in the AKI+ group. Moreover, maximum intensity and wash-in rate values changed before creatinine changed in the AKI+ group. CONCLUSION Patients with AKI had reduced microcirculatory perfusion, prolonged perfusion time and a reduced rising slope in the renal cortex, which occurred before serum creatinine changes. And they could be measured using CEUS, indicating that CEUS could help in the diagnosis of AKI.
Collapse
Affiliation(s)
- Yini Li
- Southwest Medical University, Luzhou, Sichuan Province, China.
| | - Lingzhi Chen
- Southwest Medical University, Luzhou, Sichuan Province, China
| | - Lu Feng
- Southwest Medical University, Luzhou, Sichuan Province, China
| | - Mingxing Li
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
15
|
Nguyen TC, Marini JC, Guillory B, Valladolid-Brown C, Martinez-Vargas M, Subramanyam D, Cohen D, Cirlos SC, Lam F, Stoll B, Didelija IC, Vonderohe C, Orellana R, Saini A, Pradhan S, Bashir D, Desai MS, Flores S, Virk M, Tcharmtchi H, Navaei A, Kaplan S, Lamberth L, Hulten KG, Scull BP, Allen CE, Akcan-Arikan A, Vijayan KV, Cruz MA. Pediatric Swine Model of Methicillin-Resistant Staphylococcus aureus Sepsis-Induced Coagulopathy, Disseminated Microvascular Thrombosis, and Organ Injuries. Crit Care Explor 2023; 5:e0916. [PMID: 37255626 PMCID: PMC10226618 DOI: 10.1097/cce.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Abstract
Sepsis-induced coagulopathy leading to disseminated microvascular thrombosis is associated with high mortality and has no existing therapy. Despite the high prevalence of Gram-positive bacterial sepsis, especially methicillin-resistant Staphylococcus aureus (MRSA), there is a paucity of published Gram-positive pediatric sepsis models. Large animal models replicating sepsis-induced coagulopathy are needed to test new therapeutics before human clinical trials. HYPOTHESIS Our objective is to develop a pediatric sepsis-induced coagulopathy swine model that last 70 hours. METHODS AND MODELS Ten 3 weeks old piglets, implanted with telemetry devices for continuous hemodynamic monitoring, were IV injected with MRSA (n = 6) (USA300, Texas Children's Hospital 1516 strain) at 1 × 109 colony forming units/kg or saline (n = 4). Fluid resuscitation was given for heart rate greater than 50% or mean arterial blood pressure less than 30% from baseline. Acetaminophen and dextrose were provided as indicated. Point-of-care complete blood count, prothrombin time (PT), activated thromboplastin time, d-dimer, fibrinogen, and specialized coagulation assays were performed at pre- and post-injection, at 0, 24, 48, 60, and 70 hours. Piglets were euthanized and necropsies performed. RESULTS Compared with the saline treated piglets (control), the septic piglets within 24 hours had significantly lower neurologic and respiratory scores. Over time, PT, d-dimer, and fibrinogen increased, while platelet counts and activities of factors V, VII, protein C, antithrombin, and a disintegrin and metalloproteinase with thrombospondin-1 motifs (13th member of the family) (ADAMTS-13) decreased significantly in septic piglets compared with control. Histopathologic examination showed minor focal organ injuries including microvascular thrombi and necrosis in the kidney and liver of septic piglets. INTERPRETATIONS AND CONCLUSIONS We established a 70-hour swine model of MRSA sepsis-induced coagulopathy with signs of consumptive coagulopathy, disseminated microvascular thrombosis, and early organ injuries with histological minor focal organ injuries. This model is clinically relevant to pediatric sepsis and can be used to study dysregulated host immune response and coagulopathy to infection, identify potential early biomarkers, and to test new therapeutics.
Collapse
Affiliation(s)
- Trung C Nguyen
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
| | - Juan C Marini
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Houston, TX
| | - Bobby Guillory
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Christian Valladolid-Brown
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
| | - Marina Martinez-Vargas
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
| | - Deepika Subramanyam
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
| | - Daniel Cohen
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Department of Pathology, Houston, TX
| | - Sonya C Cirlos
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
| | - Fong Lam
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
| | - Barbara Stoll
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Houston, TX
| | - Inka C Didelija
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Houston, TX
| | - Caitlin Vonderohe
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Houston, TX
| | - Renan Orellana
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Arun Saini
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
| | - Subhashree Pradhan
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
| | - Dalia Bashir
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Moreshwar S Desai
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Saul Flores
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Manpreet Virk
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Hossein Tcharmtchi
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Amir Navaei
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Sheldon Kaplan
- Division of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Linda Lamberth
- Division of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Kristina G Hulten
- Division of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Brooks P Scull
- Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Carl E Allen
- Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Ayse Akcan-Arikan
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
- Division of Critical Care & Nephrology, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - K Vinod Vijayan
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Miguel A Cruz
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
16
|
Jufar AH, Evans RG, May CN, Hood SG, Betrie AH, Trask‐Marino A, Bellomo R, Lankadeva YR. The effects of recruitment of renal functional reserve on renal cortical and medullary oxygenation in non-anesthetized sheep. Acta Physiol (Oxf) 2023; 237:e13919. [PMID: 36598336 PMCID: PMC10909474 DOI: 10.1111/apha.13919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/18/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
AIM Recruitment of renal functional reserve (RFR) with amino acid loading increases renal blood flow and glomerular filtration rate. However, its effects on renal cortical and medullary oxygenation have not been determined. Accordingly, we tested the effects of recruitment of RFR on renal cortical and medullary oxygenation in non-anesthetized sheep. METHODS Under general anesthesia, we instrumented 10 sheep to enable subsequent continuous measurements of systemic and renal hemodynamics, renal oxygen delivery and consumption, and cortical and medullary tissue oxygen tension (PO2 ). We then measured the effects of recruitment of RFR with an intravenous infusion of 500 ml of a clinically used amino acid solution (10% Synthamin® 17) in the non-anesthetized state. RESULTS Compared with baseline, Synthamin® 17 infusion significantly increased renal oxygen delivery mean ± SD maximum increase: (from 0.79 ± 0.17 to 1.06 ± 0.16 ml/kg/min, p < 0.001), renal oxygen consumption (from 0.08 ± 0.01 to 0.15 ± 0.02 ml/kg/min, p < 0.001), and glomerular filtration rate (+45.2 ± 2.7%, p < 0.001). Renal cortical tissue PO2 increased by a maximum of 26.4 ± 1.1% (p = 0.001) and medullary tissue PO2 increased by a maximum of 23.9 ± 2.8% (p = 0. 001). CONCLUSIONS In non-anesthetized healthy sheep, recruitment of RFR improved renal cortical and medullary oxygenation. These observations might have implications for the use of recruitment of RFR for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Alemayehu H. Jufar
- Pre‐Clinical Critical Care UnitFlorey Institute of Neuroscience and Mental Health, University of MelbourneMelbourneVictoriaAustralia
- Cardiovascular Disease Program, Department of PhysiologyBiomedicine Discovery Institute, Monash UniversityMelbourneVictoriaAustralia
| | - Roger G. Evans
- Pre‐Clinical Critical Care UnitFlorey Institute of Neuroscience and Mental Health, University of MelbourneMelbourneVictoriaAustralia
- Cardiovascular Disease Program, Department of PhysiologyBiomedicine Discovery Institute, Monash UniversityMelbourneVictoriaAustralia
| | - Clive N. May
- Pre‐Clinical Critical Care UnitFlorey Institute of Neuroscience and Mental Health, University of MelbourneMelbourneVictoriaAustralia
- Department of Critical CareMelbourne Medical School, University of MelbourneMelbourneVictoriaAustralia
| | - Sally G. Hood
- Pre‐Clinical Critical Care UnitFlorey Institute of Neuroscience and Mental Health, University of MelbourneMelbourneVictoriaAustralia
| | - Ashenafi H. Betrie
- Pre‐Clinical Critical Care UnitFlorey Institute of Neuroscience and Mental Health, University of MelbourneMelbourneVictoriaAustralia
- Melbourne Dementia Research CentreFlorey Institute of Neuroscience and Mental Health, The University of MelbourneMelbourneVictoriaAustralia
| | - Anton Trask‐Marino
- Pre‐Clinical Critical Care UnitFlorey Institute of Neuroscience and Mental Health, University of MelbourneMelbourneVictoriaAustralia
| | - Rinaldo Bellomo
- Pre‐Clinical Critical Care UnitFlorey Institute of Neuroscience and Mental Health, University of MelbourneMelbourneVictoriaAustralia
- Department of Critical CareMelbourne Medical School, University of MelbourneMelbourneVictoriaAustralia
| | - Yugeesh R. Lankadeva
- Pre‐Clinical Critical Care UnitFlorey Institute of Neuroscience and Mental Health, University of MelbourneMelbourneVictoriaAustralia
- Department of Critical CareMelbourne Medical School, University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
17
|
Hu RT, Lankadeva YR, Yanase F, Osawa EA, Evans RG, Bellomo R. Continuous bladder urinary oxygen tension as a new tool to monitor medullary oxygenation in the critically ill. Crit Care 2022; 26:389. [PMID: 36527088 PMCID: PMC9758873 DOI: 10.1186/s13054-022-04230-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury (AKI) is common in the critically ill. Inadequate renal medullary tissue oxygenation has been linked to its pathogenesis. Moreover, renal medullary tissue hypoxia can be detected before biochemical evidence of AKI in large mammalian models of critical illness. This justifies medullary hypoxia as a pathophysiological biomarker for early detection of impending AKI, thereby providing an opportunity to avert its evolution. Evidence from both animal and human studies supports the view that non-invasively measured bladder urinary oxygen tension (PuO2) can provide a reliable estimate of renal medullary tissue oxygen tension (tPO2), which can only be measured invasively. Furthermore, therapies that modify medullary tPO2 produce corresponding changes in bladder PuO2. Clinical studies have shown that bladder PuO2 correlates with cardiac output, and that it increases in response to elevated cardiopulmonary bypass (CPB) flow and mean arterial pressure. Clinical observational studies in patients undergoing cardiac surgery involving CPB have shown that bladder PuO2 has prognostic value for subsequent AKI. Thus, continuous bladder PuO2 holds promise as a new clinical tool for monitoring the adequacy of renal medullary oxygenation, with its implications for the recognition and prevention of medullary hypoxia and thus AKI.
Collapse
Affiliation(s)
- Raymond T. Hu
- grid.410678.c0000 0000 9374 3516Department of Anaesthesia, Austin Health, Heidelberg, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Critical Care, Melbourne Medical School, The University of Melbourne, Parkville, VIC Australia
| | - Yugeesh R. Lankadeva
- grid.1008.90000 0001 2179 088XDepartment of Critical Care, Melbourne Medical School, The University of Melbourne, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XPre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC Australia
| | - Fumitake Yanase
- grid.414094.c0000 0001 0162 7225Department of Intensive Care, Austin Hospital, Heidelberg, Australia
| | - Eduardo A. Osawa
- Cardiology Intensive Care Unit, DF Star Hospital, Brasília, Brazil ,grid.472984.4D’Or Institute for Research and Education (IDOR), DF Star Hospital, Brasília, Brazil
| | - Roger G. Evans
- grid.1008.90000 0001 2179 088XPre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC Australia ,grid.1002.30000 0004 1936 7857Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC Australia
| | - Rinaldo Bellomo
- grid.1008.90000 0001 2179 088XDepartment of Critical Care, Melbourne Medical School, The University of Melbourne, Parkville, VIC Australia ,grid.414094.c0000 0001 0162 7225Department of Intensive Care, Austin Hospital, Heidelberg, Australia ,grid.1002.30000 0004 1936 7857Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia ,grid.416153.40000 0004 0624 1200Department of Intensive Care, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
18
|
Osawa EA, Cutuli SL, Yanase F, Iguchi N, Bitker L, Maciel AT, Lankadeva YR, May CN, Evans RG, Eastwood GM, Bellomo R. Effects of changes in inspired oxygen fraction on urinary oxygen tension measurements. Intensive Care Med Exp 2022; 10:52. [PMID: 36504004 PMCID: PMC9742069 DOI: 10.1186/s40635-022-00479-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Continuous measurement of urinary PO2 (PuO2) is being applied to indirectly monitor renal medullary PO2. However, when applied to critically ill patients with shock, its measurement may be affected by changes in FiO2 and PaO2 and potential associated O2 diffusion between urine and ureteric or bladder tissue. We aimed to investigate PuO2 measurements in septic shock patients with a fiberoptic luminescence optode inserted into the urinary catheter lumen in relation to episodes of FiO2 change. We also evaluated medullary and urinary oxygen tension values in Merino ewes at two different FiO2 levels. RESULTS In 10 human patients, there were 32 FiO2 decreases and 31 increases in FiO2. Median pre-decrease FiO2 was 0.36 [0.30, 0.39] and median post-decrease FiO2 was 0.30 [0.23, 0.30], p = 0.006. PaO2 levels decreased from 83 mmHg [77, 94] to 72 [62, 80] mmHg, p = 0.009. However, PuO2 was 23.2 mmHg [20.5, 29.0] before and 24.2 mmHg [20.6, 26.3] after the intervention (p = 0.56). The median pre-increase FiO2 was 0.30 [0.21, 0.30] and median post-increase FiO2 was 0.35 [0.30, 0.40], p = 0.008. PaO2 levels increased from 64 mmHg [58, 72 mmHg] to 71 mmHg [70, 100], p = 0.04. However, PuO2 was 25.0 mmHg [IQR: 20.7, 26.8] before and 24.3 mmHg [IQR: 20.7, 26.3] after the intervention (p = 0.65). A mixed linear regression model showed a weak correlation between the variation in PaO2 and the variation in PuO2 values. In 9 Merino ewes, when comparing oxygen tension levels between FiO2 of 0.21 and 0.40, medullary values did not differ (25.1 ± 13.4 mmHg vs. 27.9 ± 15.4 mmHg, respectively, p = 0.6766) and this was similar to urinary oxygen values (27.1 ± 6.17 mmHg vs. 29.7 ± 4.41 mmHg, respectively, p = 0.3192). CONCLUSIONS Changes in FiO2 and PaO2 within the context of usual care did not affect PuO2. Our findings were supported by experimental data and suggest that PuO2 can be used as biomarker of medullary oxygenation irrespective of FiO2.
Collapse
Affiliation(s)
- Eduardo A. Osawa
- Imed Group Research Department, Sao Paulo, Brazil ,grid.477346.5Intensive Care Unit, Hospital Sao Camilo, Unidade Pompeia, Sao Paulo, Brazil ,grid.414094.c0000 0001 0162 7225Department of Intensive Care, Austin Hospital, Melbourne, VIC 3084 Australia
| | - Salvatore L. Cutuli
- grid.414603.4Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fumitaka Yanase
- grid.414094.c0000 0001 0162 7225Department of Intensive Care, Austin Hospital, Melbourne, VIC 3084 Australia ,grid.1002.30000 0004 1936 7857Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Naoya Iguchi
- grid.414094.c0000 0001 0162 7225Department of Intensive Care, Austin Hospital, Melbourne, VIC 3084 Australia ,grid.136593.b0000 0004 0373 3971Department of Anaesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan ,grid.418025.a0000 0004 0606 5526Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC Australia
| | - Laurent Bitker
- grid.413306.30000 0004 4685 6736Service de Médecine Intensive – Réanimation, Hôpital de La Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Alexandre T. Maciel
- Imed Group Research Department, Sao Paulo, Brazil ,grid.477346.5Intensive Care Unit, Hospital Sao Camilo, Unidade Pompeia, Sao Paulo, Brazil
| | - Yugeesh R. Lankadeva
- grid.418025.a0000 0004 0606 5526Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC Australia
| | - Clive N. May
- grid.418025.a0000 0004 0606 5526Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC Australia
| | - Roger G. Evans
- grid.418025.a0000 0004 0606 5526Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Glenn M. Eastwood
- grid.414094.c0000 0001 0162 7225Department of Intensive Care, Austin Hospital, Melbourne, VIC 3084 Australia ,grid.1002.30000 0004 1936 7857Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Rinaldo Bellomo
- grid.414094.c0000 0001 0162 7225Department of Intensive Care, Austin Hospital, Melbourne, VIC 3084 Australia ,grid.1002.30000 0004 1936 7857Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia ,grid.1008.90000 0001 2179 088XDepartment of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
19
|
Wang X, Chen L, Su T. Evaluating renal microcirculation in patients with acute kidney injury by contrast-enhanced ultrasonography: a protocol for an observational cohort study. BMC Nephrol 2022; 23:392. [PMID: 36482379 PMCID: PMC9733337 DOI: 10.1186/s12882-022-03021-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) in critically ill patients has poor renal outcome with high mortality. Changes in intra-renal microcirculation and tissue oxygenation are currently considered essential pathophysiological mechanisms to the development and progression of AKI. This study aims to investigate the characteristics of contrast-enhanced ultrasonography (CEUS) derived parameters in biopsy-proven AKI patients, and examine the predictive value of these markers for renal outcome. METHODS AND DESIGN This prospective observational study will enroll AKI patients who are diagnosed and staging following KDIGO (Kidney Disease: Improving Global Outcomes) criteria. All patients undergo a kidney biopsy and pathological tubulointerstitial nephropathy is confirmed. The CEUS examination will be performed at 0, 4 and 12 weeks after biopsy to monitor renal microcirculation. The percentage decrease of serum creatinine, 4-week and 12-week eGFR (estimated glomerular filtration rate) will also be reviewed as renal prognosis. The relationship of CEUS parameters with clinical and pathological markers will be analyzed. We perform a lassologit procedure to select potential affecting variables, including clinical, laboratory indexes and CEUS markers, to be included in the logistic regression model, and examine their predictive performance to AKI outcomes. DISCUSSION If we are able to show that CEUS derived parameters contribute to diagnosis and prognosis of AKI, the quality of life of patients will be improved while healthcare costs will be reduced. TRIAL REGISTRATION This study is retrospectively registered on the Chinese Medical Research Registration information System( https://61.49.19.26/login ) on December 31, 2021: MR-11-22-003,503. This study has been approved by the Ethics and Scientific Research Department of Peking University First Hospital.
Collapse
Affiliation(s)
- Xiangyu Wang
- grid.411472.50000 0004 1764 1621Department of Ultrasound, Peking University First Hospital, Beijing, China
| | - Luzeng Chen
- grid.411472.50000 0004 1764 1621Department of Ultrasound, Peking University First Hospital, Beijing, China
| | - Tao Su
- grid.411472.50000 0004 1764 1621Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China ,grid.11135.370000 0001 2256 9319Institute of Nephrology, Peking University, No 8, Xishiku Street, Xicheng District, Beijing, 100034 China
| |
Collapse
|
20
|
Corona A, Cattaneo D, Latronico N. Antibiotic Therapy in the Critically Ill with Acute Renal Failure and Renal Replacement Therapy: A Narrative Review. Antibiotics (Basel) 2022; 11:1769. [PMID: 36551426 PMCID: PMC9774462 DOI: 10.3390/antibiotics11121769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The outcome for critically ill patients is burdened by a double mortality rate and a longer hospital stay in the case of sepsis or septic shock. The adequate use of antibiotics may impact on the outcome since they may affect the pharmacokinetics (Pk) and pharmacodynamics (Pd) of antibiotics in such patients. Acute renal failure (ARF) occurs in about 50% of septic patients, and the consequent need for continuous renal replacement therapy (CRRT) makes the renal elimination rate of most antibiotics highly variable. Antibiotics doses should be reduced in patients experiencing ARF, in accordance with the glomerular filtration rate (GFR), whereas posology should be increased in the case of CRRT. Since different settings of CRRT may be used, identifying a standard dosage of antibiotics is very difficult, because there is a risk of both oversimplification and failing the therapeutic efficacy. Indeed, it has been seen that, in over 25% of cases, the antibiotic therapy does not reach the necessary concentration target mainly due to lack of the proper minimal inhibitory concentration (MIC) achievement. The aim of this narrative review is to clarify whether shared algorithms exist, allowing them to inform the daily practice in the proper antibiotics posology for critically ill patients undergoing CRRT.
Collapse
Affiliation(s)
- Alberto Corona
- Accident & Emergency and Anaesthesia and Intensive Care Medicine Department, Esine and Edolo Hospitals, ASST Valcamonica, 25040 Brescia, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, 20157 Milan, Italy
| | - Nicola Latronico
- University Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25100 Brescia, Italy
| |
Collapse
|
21
|
Kynurenine Pathway-An Underestimated Factor Modulating Innate Immunity in Sepsis-Induced Acute Kidney Injury? Cells 2022; 11:cells11162604. [PMID: 36010680 PMCID: PMC9406744 DOI: 10.3390/cells11162604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, and it accounts for about half of the cases of acute kidney injury (AKI). Although sepsis is the most frequent cause of AKI in critically ill patients, its pathophysiological mechanisms are not well understood. Sepsis has the ability to modulate the function of cells belonging to the innate immune system. Increased activity of indoleamine 2,3-dioxygenase 1 (IDO1) and production of kynurenines are the major metabolic pathways utilized by innate immunity cells to maintain immunological tolerance. The activation of the kynurenine pathway (KP) plays a dual role in sepsis—in the early stage, the induction of IDO1 elicits strong proinflammatory effects that may lead to tissue damage and septic shock. Afterwards, depletion of tryptophan and production of kynurenines contribute to the development of immunosuppression that may cause the inability to overpower opportunistic infections. The presented review provides available data on the various interdependencies between elements of innate immunity and sepsis-induced AKI (SAKI) with particular emphasis on the immunomodulatory significance of KP in the above processes. We believe that KP activation may be one of the crucial, though underestimated, components of a deregulated host response to infection during SAKI.
Collapse
|
22
|
So BYF, Yap DYH, Chan TM. Circular RNAs in Acute Kidney Injury: Roles in Pathophysiology and Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23158509. [PMID: 35955644 PMCID: PMC9369393 DOI: 10.3390/ijms23158509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition, results in patient morbidity and mortality, and incurs considerable health care costs. Sepsis, ischaemia-reperfusion injury (IRI) and drug nephrotoxicity are the leading causes. Mounting evidence suggests that perturbations in circular RNAs (circRNAs) are observed in AKI of various aetiologies, and have pathogenic significance. Aberrant circRNA expressions can cause altered intracellular signalling, exaggerated oxidative stress, increased cellular apoptosis, excess inflammation, and tissue injury in AKI due to sepsis or IRI. While circRNAs are dysregulated in drug-induced AKI, their roles in pathogenesis are less well-characterised. CircRNAs also show potential for clinical application in diagnosis, prognostication, monitoring, and treatment. Prospective observational studies are needed to investigate the role of circRNAs in the clinical management of AKI, with special focus on the safety of therapeutic interventions targeting circRNAs and the avoidance of untoward off-target effects.
Collapse
|
23
|
|
24
|
The role of nitric oxide in sepsis-associated kidney injury. Biosci Rep 2022; 42:231441. [PMID: 35722824 PMCID: PMC9274646 DOI: 10.1042/bsr20220093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis is one of the leading causes of acute kidney injury (AKI), and several mechanisms including microcirculatory alterations, oxidative stress, and endothelial cell dysfunction are involved. Nitric oxide (NO) is one of the common elements to all these mechanisms. Although all three nitric oxide synthase (NOS) isoforms are constitutively expressed within the kidneys, they contribute in different ways to nitrergic signaling. While the endothelial (eNOS) and neuronal (nNOS) isoforms are likely to be the main sources of NO under basal conditions and participate in the regulation of renal hemodynamics, the inducible isoform (iNOS) is dramatically increased in conditions such as sepsis. The overexpression of iNOS in the renal cortex causes a shunting of blood to this region, with consequent medullary ischemia in sepsis. Differences in the vascular reactivity among different vascular beds may also help to explain renal failure in this condition. While most of the vessels present vasoplegia and do not respond to vasoconstrictors, renal microcirculation behaves differently from nonrenal vascular beds, displaying similar constrictor responses in control and septic conditions. The selective inhibition of iNOS, without affecting other isoforms, has been described as the ideal scenario. However, iNOS is also constitutively expressed in the kidneys and the NO produced by this isoform is important for immune defense. In this sense, instead of a direct iNOS inhibition, targeting the NO effectors such as guanylate cyclase, potassium channels, peroxynitrite, and S-nitrosothiols, may be a more interesting approach in sepsis-AKI and further investigation is warranted.
Collapse
|
25
|
Li Z, Ludwig N, Thomas K, Mersmann S, Lehmann M, Vestweber D, Pittet JF, Gomez H, Kellum JA, Rossaint J, Zarbock A. The Pathogenesis of Ischemia-Reperfusion Induced Acute Kidney Injury Depends on Renal Neutrophil Recruitment Whereas Sepsis-Induced AKI Does Not. Front Immunol 2022; 13:843782. [PMID: 35529856 PMCID: PMC9069608 DOI: 10.3389/fimmu.2022.843782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) may be induced by different causes, including renal ischemia-reperfusion injury and sepsis, which represent the most common reasons for AKI in hospitalized patients. AKI is defined by reduced urine production and/or increased plasma creatinine. However, this definition does not address the molecular mechanisms of different AKI entities, and uncertainties remain regarding distinct pathophysiological events causing kidney injury in the first place. In particular, sepsis-induced AKI is considered not to be associated with leukocyte infiltration into the kidney, but a direct investigation of this process is missing to this date. In this study, we used two murine AKI models induced by either renal ischemia-reperfusion injury (IRI) or cecal ligation and puncture (CLP) to investigate the contribution of neutrophils to tissue injury and kidney function. By using VEC-Y731F mice, in which neutrophil recruitment is impaired, we analyzed the specific contribution of neutrophil recruitment to the pathogenesis of IRI- and CLP-induced AKI. We observed that the degree of renal injury evaluated by plasma creatinine, urinary biomarkers and histological analyses, following IRI-induction was dependent on neutrophil migration into the kidney, whereas the pathogenesis of CLP-induced AKI was independent of neutrophil recruitment. Furthermore, plasma transfer experiments suggest that the pathogenesis of CLP-induced AKI relies on circulating inflammatory mediators. These results extend our knowledge of the AKI pathogenesis and may help in the development of prophylactic and therapeutic treatments for AKI patients.
Collapse
Affiliation(s)
- Zhenhan Li
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Katharina Thomas
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sina Mersmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Martin Lehmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hernando Gomez
- The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - John A. Kellum
- The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
- *Correspondence: Alexander Zarbock,
| |
Collapse
|
26
|
Li T, Ji X, Liu J, Guo X, Pang R, Zhuang H, Dong L, Duan M, Li A. Ulinastatin Improves Renal Microcirculation by Protecting Endothelial Cells and Inhibiting Autophagy in a Septic Rat Model. Kidney Blood Press Res 2022; 47:256-269. [PMID: 35016182 DOI: 10.1159/000521648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Increased permeability of the renal capillaries is a common consequence of sepsis-associated acute kidney injury. Vascular endothelial (VE)-cadherin is a strictly endothelial-specific adhesion molecule that can control the permeability of the blood vessel wall. Additionally, autophagy plays an important role in maintaining cell stability. Ulinastatin, a urinary trypsin inhibitor, attenuates the systemic inflammatory response and visceral vasopermeability. However, it is uncertain whether ulinastatin can improve renal microcirculation by acting on the endothelial adhesion junction. METHODS We observed the effect of ulinastatin in a septic rat model using contrast-enhanced ultrasonography (CEUS) to evaluate the perfusion of the renal cortex and medulla. Male adult Sprague Dawley rats were subjected to cecal ligation and puncture and divided into the sham, sepsis, and ulinastatin groups. Ulinastatin (50,000 U/kg) was injected into the tail vein immediately after the operation. The CEUS was performed to evaluate the renal microcirculation perfusion at 3, 6, 12, and 24 h after the operation. Histological staining was used to evaluate kidney injury scores. Western blot was used to quantify the expression of VE-cadherin, LC3II, and inflammatory factors (interleukin-1β, interleukin-6, and tumor necrosis factor-α) in kidney tissue, and enzyme-linked immunosorbent assay detected serum inflammatory factors and kidney function and early kidney injury biomarker levels. RESULTS Compared with the sham group, ulinastatin reduced the inflammatory response, inhibited autophagy, maintained the expression of VE-cadherin, and meliorated cortical and medullary perfusion. CONCLUSION Ulinastatin effectively protects the adhesion junction and helps ameliorate the perfusion of kidney capillaries during sepsis by the inhibition of autophagy and the expression of inflammatory factors.
Collapse
Affiliation(s)
- Tian Li
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, China
| | - Xiaojun Ji
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Jingfeng Liu
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xinjie Guo
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Ran Pang
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Haizhou Zhuang
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Lei Dong
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Meili Duan
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Ang Li
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, China
| |
Collapse
|
27
|
Manrique-Caballero CL, Kellum JA, Gómez H, De Franco F, Giacchè N, Pellicciari R. Innovations and Emerging Therapies to Combat Renal Cell Damage: NAD + As a Drug Target. Antioxid Redox Signal 2021; 35:1449-1466. [PMID: 33499758 PMCID: PMC8905249 DOI: 10.1089/ars.2020.8066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/29/2022]
Abstract
Significance: Acute kidney injury (AKI) is a common and life-threatening complication in hospitalized and critically ill patients. It is defined by an abrupt deterioration in renal function, clinically manifested by increased serum creatinine levels, decreased urine output, or both. To execute all its functions, namely excretion of waste products, fluid/electrolyte balance, and hormone synthesis, the kidney requires incredible amounts of energy in the form of adenosine triphosphate. Recent Advances: Adequate mitochondrial functioning and nicotinamide adenine dinucleotide (NAD+) homeostasis are essential to meet these high energetic demands. NAD+ is a ubiquitous essential coenzyme to many cellular functions. NAD+ as an electron acceptor mediates metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis, serves as a cosubstrate of aging molecules (i.e., sirtuins), participates in DNA repair mechanisms, and mediates mitochondrial biogenesis. Critical Issues: In many forms of AKI and chronic kidney disease, renal function deterioration has been associated with mitochondrial dysfunction and NAD+ depletion. Based on this, therapies aiming to restore mitochondrial function and increase NAD+ availability have gained special attention in the last two decades. Future Directions: Experimental and clinical studies have shown that by restoring mitochondrial homeostasis and increasing renal tubulo-epithelial cells, NAD+ availability, AKI incidence, and chronic long-term complications are significantly decreased. This review covers some general epidemiological and pathophysiological concepts; describes the role of mitochondrial homeostasis and NAD+ metabolism; and analyzes the underlying rationale and role of NAD+ aiming therapies as promising preventive and therapeutic strategies for AKI. Antioxid. Redox Signal. 35, 1449-1466.
Collapse
Affiliation(s)
- Carlos L. Manrique-Caballero
- Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John A. Kellum
- Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hernando Gómez
- Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
28
|
Okazaki N, Lankadeva YR, Peiris RM, Birchall IE, May CN. Rapid and persistent decrease in brain tissue oxygenation in ovine gram-negative sepsis. Am J Physiol Regul Integr Comp Physiol 2021; 321:R990-R996. [PMID: 34786976 DOI: 10.1152/ajpregu.00184.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The changes in brain perfusion and oxygenation in critical illness, which are thought to contribute to brain dysfunction, are unclear due to the lack of methods to measure these variables. We have developed a technique to chronically measure cerebral tissue perfusion and oxygen tension in unanesthetized sheep. Using this technique, we have determined the changes in cerebral perfusion and Po2 during the development of ovine sepsis. In adult Merino ewes, fiber-optic probes were implanted in the brain, renal cortex, and renal medulla to measure tissue perfusion, oxygen tension (Po2), and temperature, and flow probes were implanted on the pulmonary and renal arteries. Conscious sheep were infused with live Escherichia coli for 24 h, which induced hyperdynamic sepsis; mean arterial pressure decreased (from 85.2 ± 5.6 to 71.5 ± 8.7 mmHg), while cardiac output (from 4.12 ± 0.70 to 6.15 ± 1.26 L/min) and total peripheral conductance (from 48.9 ± 8.5 to 86.8 ± 11.5 mL/min/mmHg) increased (n = 8, all P < 0.001) and arterial Po2 decreased (from 104 ± 8 to 83 ± 10 mmHg; P < 0.01). Cerebral perfusion tended to decrease acutely, although this did not reach significance, but there was a significant and sustained decrease in cerebral tissue Po2 (from 32.2 ± 10.1 to 18.8 ± 11.7 mmHg) after 3 h and to 22.8 ± 5.2 mmHg after 24 h of sepsis (P < 0.02). Sepsis induced large reductions in both renal medullary perfusion and Po2 but had no effect in the renal cortex. In ovine sepsis, there is an early decrease in cerebral Po2 that is maintained for 24 h despite minimal changes in cerebral perfusion. Cerebral hypoxia may be one of the factors causing sepsis-induced malaise and lethargy.
Collapse
Affiliation(s)
- Nobuki Okazaki
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Anesthesiology and Resuscitology, Okayama University, Okayama, Japan
| | - Yugeesh R Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel M Peiris
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Ian E Birchall
- Neuropathology Laboratory, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Clive N May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Gladytz T, Millward JM, Cantow K, Hummel L, Zhao K, Flemming B, Periquito JS, Pohlmann A, Waiczies S, Seeliger E, Niendorf T. Reliable kidney size determination by magnetic resonance imaging in pathophysiological settings. Acta Physiol (Oxf) 2021; 233:e13701. [PMID: 34089569 DOI: 10.1111/apha.13701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/05/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022]
Abstract
AIM Kidney diseases constitute a major health challenge, which requires noninvasive imaging to complement conventional approaches to diagnosis and monitoring. Several renal pathologies are associated with changes in kidney size, offering an opportunity for magnetic resonance imaging (MRI) biomarkers of disease. This work uses dynamic MRI and an automated bean-shaped model (ABSM) for longitudinal quantification of pathophysiologically relevant changes in kidney size. METHODS A geometry-based ABSM was developed for kidney size measurements in rats using parametric MRI (T2 , T2 * mapping). The ABSM approach was applied to longitudinal renal size quantification using occlusion of the (a) suprarenal aorta or (b) the renal vein, (c) increase in renal pelvis and intratubular pressure and (d) injection of an X-ray contrast medium into the thoracic aorta to induce pathophysiologically relevant changes in kidney size. RESULTS The ABSM yielded renal size measurements with accuracy and precision equivalent to the manual segmentation, with >70-fold time savings. The automated method could detect a ~7% reduction (aortic occlusion) and a ~5%, a ~2% and a ~6% increase in kidney size (venous occlusion, pelvis and intratubular pressure increase and injection of X-ray contrast medium, respectively). These measurements were not affected by reduced image quality following administration of ferumoxytol. CONCLUSION Dynamic MRI in conjunction with renal segmentation using an ABSM supports longitudinal quantification of changes in kidney size in pathophysiologically relevant experimental setups mimicking realistic clinical scenarios. This can potentially be instrumental for developing MRI-based diagnostic tools for various kidney disorders and for gaining new insight into mechanisms of renal pathophysiology.
Collapse
Affiliation(s)
- Thomas Gladytz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kathleen Cantow
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Luis Hummel
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Kaixuan Zhao
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Bert Flemming
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Joāo S Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Erdmann Seeliger
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
30
|
Kidney Microcirculation as a Target for Innovative Therapies in AKI. J Clin Med 2021; 10:jcm10184041. [PMID: 34575154 PMCID: PMC8471583 DOI: 10.3390/jcm10184041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is a serious multifactorial conditions accompanied by the loss of function and damage. The renal microcirculation plays a crucial role in maintaining the kidney’s functional and structural integrity for oxygen and nutrient supply and waste product removal. However, alterations in microcirculation and oxygenation due to renal perfusion defects, hypoxia, renal tubular, and endothelial damage can result in AKI and the loss of renal function regardless of systemic hemodynamic changes. The unique structural organization of the renal microvasculature and the presence of autoregulation make it difficult to understand the mechanisms and the occurrence of AKI following disorders such as septic, hemorrhagic, or cardiogenic shock; ischemia/reperfusion; chronic heart failure; cardiorenal syndrome; and hemodilution. In this review, we describe the organization of microcirculation, autoregulation, and pathophysiological alterations leading to AKI. We then suggest innovative therapies focused on the protection of the renal microcirculation and oxygenation to prevent AKI.
Collapse
|
31
|
Ow CPC, Trask-Marino A, Betrie AH, Evans RG, May CN, Lankadeva YR. Targeting Oxidative Stress in Septic Acute Kidney Injury: From Theory to Practice. J Clin Med 2021; 10:jcm10173798. [PMID: 34501245 PMCID: PMC8432047 DOI: 10.3390/jcm10173798] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
Sepsis is the leading cause of acute kidney injury (AKI) and leads to increased morbidity and mortality in intensive care units. Current treatments for septic AKI are largely supportive and are not targeted towards its pathophysiology. Sepsis is commonly characterized by systemic inflammation and increased production of reactive oxygen species (ROS), particularly superoxide. Concomitantly released nitric oxide (NO) then reacts with superoxide, leading to the formation of reactive nitrogen species (RNS), predominantly peroxynitrite. Sepsis-induced ROS and RNS can reduce the bioavailability of NO, mediating renal microcirculatory abnormalities, localized tissue hypoxia and mitochondrial dysfunction, thereby initiating a propagating cycle of cellular injury culminating in AKI. In this review, we discuss the various sources of ROS during sepsis and their pathophysiological interactions with the immune system, microcirculation and mitochondria that can lead to the development of AKI. We also discuss the therapeutic utility of N-acetylcysteine and potential reasons for its efficacy in animal models of sepsis, and its inefficacy in ameliorating oxidative stress-induced organ dysfunction in human sepsis. Finally, we review the pre-clinical studies examining the antioxidant and pleiotropic actions of vitamin C that may be of benefit for mitigating septic AKI, including future implications for clinical sepsis.
Collapse
Affiliation(s)
- Connie P. C. Ow
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka 564-8565, Japan
| | - Anton Trask-Marino
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
| | - Ashenafi H. Betrie
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Roger G. Evans
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | - Clive N. May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Yugeesh R. Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC 3052, Australia
- Correspondence: ; Tel.: +61-3-8344-0417; Fax: +61-3-9035-3107
| |
Collapse
|
32
|
Ruegg G, Luethi N, Cioccari L. The Role of Dexmedetomidine for the Prevention of Acute Kidney Injury in Critical Care. EMJ NEPHROLOGY 2021:97-106. [DOI: 10.33590/emjnephrol/21-00087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Acute kidney injury (AKI) occurs in up to 50% of patients admitted to the intensive care unit and is associated with increased mortality. Currently, there is no effective pharmacotherapy for prevention or treatment of AKI. In animal models of sepsis and ischaemia-reperfusion, α2-agonists like dexmedetomidine (DEX) exhibit anti-inflammatory properties and experimental data indicate a potential protective effect of DEX on renal function. However, clinical trials have yielded inconsistent results in critically ill patients. This review discusses the pathophysiological mechanisms involved in AKI, the renal effects of DEX in various intensive care unit-related conditions, and summarises the available literature addressing the use of DEX for the prevention of AKI.
Collapse
Affiliation(s)
- Gion Ruegg
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nora Luethi
- Department of Emergency Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Prahran, Australia
| | - Luca Cioccari
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Prahran, Australia
| |
Collapse
|
33
|
Kato T, Kawasaki Y, Koyama K. Intermittent Urine Oxygen Tension Monitoring for Predicting Acute Kidney Injury After Cardiovascular Surgery: A Preliminary Prospective Observational Study. Cureus 2021; 13:e16135. [PMID: 34262826 PMCID: PMC8260214 DOI: 10.7759/cureus.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Novel biomarkers of acute kidney injury (AKI) are being developed and commercialized. However, none are universally available. The aim of this preliminary prospective observational study was to explore the effectiveness of intermittent urine oxygen tension (PuO2) monitoring without special equipment (using a blood gas analyzer) for predicting AKI after elective cardiovascular surgery requiring cardiopulmonary bypass (CPB). Methods Fifty patients who underwent elective cardiovascular surgery requiring CPB were enrolled in the study with written informed consent. Urine samples were intermittently collected from a urethral catheter at four points: T1, immediately after induction of general anesthesia in the operating room; T2, immediately after intensive care unit (ICU) admission; T3, six hours after ICU admission; and T4, 12 hours after ICU admission. PuO2 was measured with a blood gas analyzer. The Kidney Disease Improving Global Outcomes classification was used for the diagnosis of AKI, then patients were followed up until postoperative day 7. By generating the receiver operating characteristic curves, the cut-off value of PuO2 and area under the curve (AUC) for predicting the onset of AKI was calculated. The odds ratio (OR) and 95% confidence interval (CI) of each time point were calculated using logistic regression analysis or exact logistic regression method. P < 0.05 was considered significant. Results Twelve patients were diagnosed with AKI (24% morbidity). The cut-off values of PuO2 for predicting onset of AKI at the four time points were T1, PuO2 ≥ 132.4 mmHg (OR 3.1, 95% CI 0.78-12.0, p = 0.11, AUC 0.57); T2, PuO2 ≥ 153.3 mmHg (OR 5.8, 95% CI 1.08-31.4, p = 0.04, AUC 0.51); T3, PuO2 ≥ 130.1 mmHg (OR 0.19, 95% CI 0.05-0.75, p = 0.018, AUC 0.68); T4, PuO2 ≥ 88.6 mmHg (OR 0.07, 95% CI 0-0.486, p = 0.011, AUC 0.64). Conclusion Intermittent PuO2 values at six and 12 hours after ICU admission may be predictors of AKI, although the AUCs to predict AKI were low (0.68 and 0.64). AKI prediction by PuO2 was not possible immediately after induction of general anesthesia (not statistically significant) and immediately after ICU admission (AUC was very low). Further studies are required to confirm the validity of intermittent PuO2 monitoring.
Collapse
Affiliation(s)
- Takao Kato
- Department of Anesthesiology, Saitama Medical Center, Saitama Medical University, Kawagoe, JPN
| | - Yohei Kawasaki
- Department of Anesthesiology, Saitama Medical Center, Saitama Medical University, Kawagoe, JPN
| | - Kaoru Koyama
- Department of Anesthesiology, Saitama Medical Center, Saitama Medical University, Kawagoe, JPN
| |
Collapse
|
34
|
Franzén S, Näslund E, Wang H, Frithiof R. Prevention of hemorrhage-induced renal vasoconstriction and hypoxia by angiotensin II type 1 receptor antagonism in pigs. Am J Physiol Regul Integr Comp Physiol 2021; 321:R12-R20. [PMID: 34009032 DOI: 10.1152/ajpregu.00073.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Angiotensin II (ANG II) is a potent vasoconstrictor and may reduce renal blood flow (RBF), causing renal hypoxia. Hypotensive hemorrhage elevates plasma ANG II levels and is associated with increased risk of acute kidney injury. We hypothesized that ANG II antagonism prevents renal vasoconstriction and hypoxia caused by hemorrhage. Pigs were anaesthetized, surgically prepared, and randomized to intravenous losartan (1.5 mg·kg-1·h-1, n = 8) or an equal volume of intravenous Ringer acetate (vehicle-treated, n = 8). Hemorrhage was induced by continuous aspiration of blood to reach and sustain mean arterial pressure of <50 mmHg for 30 min. Plasma ANG II levels, hemodynamics and oxygenation were assessed 60 min prehemorrhage, 30-min after the start of hemorrhage, and 60 min posthemorrhage. Erythropoietin mRNA was analyzed in cortical and medullary tissue sampled at the end of the experiment. Hypotensive hemorrhage increased plasma ANG II levels and decreased RBF and oxygen delivery in both groups. Losartan-treated animals recovered in RBF and oxygen delivery, whereas vehicle-treated animals had persistently reduced RBF and oxygen delivery. In accordance, renal vascular resistance increased over time post hemorrhage in vehicle-treated animals but was unchanged in losartan-treated animals. Renal oxygen extraction rate and cortical erythropoietin mRNA levels increased in the vehicle group but not in the losartan group. In conclusion, ANG II antagonism alleviates prolonged renal vasoconstriction and renal hypoxia in a large animal model of hypotensive hemorrhage.
Collapse
Affiliation(s)
- Stephanie Franzén
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Erik Näslund
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden.,Centre for Research and Development, Uppsala University/Region Gävleborg, Gavle, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Infections and Defenses, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
May CN, Bellomo R, Lankadeva YR. Therapeutic potential of megadose vitamin C to reverse organ dysfunction in sepsis and COVID-19. Br J Pharmacol 2021; 178:3864-3868. [PMID: 34061355 PMCID: PMC8239596 DOI: 10.1111/bph.15579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Sepsis induced by bacteria or viruses can result in multiorgan dysfunction, which is a major cause of death in intensive care units. Current treatments are only supportive, and there are no treatments that reverse the pathophysiological effects of sepsis. Vitamin C has antioxidant, anti‐inflammatory, anticoagulant and immune modulatory actions, so it is a rational treatment for sepsis. Here, we summarise data that support the use of megadose vitamin C as a treatment for sepsis and COVID‐19. Megadose intravenous sodium ascorbate (150 g per 40 kg over 7 h) dramatically improved the clinical state and cardiovascular, pulmonary, hepatic and renal function and decreased body temperature, in a clinically relevant ovine model of Gram‐negative bacteria‐induced sepsis. In a critically ill COVID‐19 patient, intravenous sodium ascorbate (60 g) restored arterial pressure, improved renal function and increased arterial blood oxygen levels. These findings suggest that megadose vitamin C should be trialled as a treatment for sepsis and COVID‐19.
Collapse
Affiliation(s)
- Clive N May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Critical Care, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia.,Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Yugeesh R Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Critical Care, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Beneficial Effects of Vasopressin Compared With Norepinephrine on Renal Perfusion, Oxygenation, and Function in Experimental Septic Acute Kidney Injury. Crit Care Med 2021; 48:e951-e958. [PMID: 32931198 DOI: 10.1097/ccm.0000000000004511] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To compare the effects of restoring mean arterial pressure with vasopressin or norepinephrine on systemic hemodynamics, renal blood flow, intrarenal perfusion and oxygenation, and renal function in ovine septic acute kidney injury. DESIGN Interventional Study. SETTING Research Institute. SUBJECTS Adult Merino ewes. INTERVENTIONS Flow probes were implanted on the pulmonary and renal arteries (and the mesenteric artery in sheep that received vasopressin). Fiber-optic probes were implanted in the renal cortex and medulla to measure tissue perfusion and oxygen tension (PO2). Conscious sheep were administered Escherichia coli to induce septic acute kidney injury. Vasopressin (0.03 IU/min [0.03-0.05 IU/min]; n = 7) or norepinephrine (0.60 μg/kg/min [0.30-0.70 μg/kg/min]; n = 7) was infused IV and titrated to restore baseline mean arterial pressure during 24-30 hours of sepsis. MEASUREMENTS AND MAIN RESULTS Ovine septic acute kidney injury was characterized by reduced mean arterial pressure (-16% ± 2%) and creatinine clearance (-65% ± 9%) and increased renal blood flow (+34% ± 7%) but reduced renal medullary perfusion (-44% ± 7%) and PO2 (-47% ± 10%). Vasopressin infusion did not significantly affect renal medullary perfusion or PO2 and induced a sustained (6 hr) ~2.5-fold increase in creatinine clearance. Vasopressin reduced sepsis-induced mesenteric hyperemia (+61 ± 13 to +9% ± 6%). Norepinephrine transiently (2 hr) improved creatinine clearance (by ~3.5-fold) but worsened renal medullary ischemia (to -64% ± 7%) and hypoxia (to -71% ± 6%). CONCLUSIONS In ovine septic acute kidney injury, restoration of mean arterial pressure with vasopressin induced a more sustained improvement in renal function than norepinephrine, without exacerbating renal medullary ischemia and hypoxia or reducing mesenteric blood flow below baseline values.
Collapse
|
37
|
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a common and life-threatening complication in hospitalized and critically ill patients. It is characterized by rapid deterioration of renal function associated with sepsis. The pathophysiology of S-AKI remains incompletely understood, so most therapies remain reactive and nonspecific. Possible pathogenic mechanisms to explain S-AKI include microcirculatory dysfunction, a dysregulated inflammatory response, and cellular metabolic reprogramming. In addition, several biomarkers have been developed in an attempt to improve diagnostic sensitivity and specificity of S-AKI. This article discusses the current understanding of S-AKI, recent advances in pathophysiology and biomarker development, and current preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Carlos L Manrique-Caballero
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, 3347 Forbes Avenue, Suite 220, Room 207, Pittsburgh, PA 15213, USA; Department of Critical Care Medicine, The CRISMA (Clinical Research, Investigation and Systems Modeling of Acute Illness) Center, University of Pittsburgh School of Medicine, 3347 Forbes Avenue, Suite 220, Room 207, Pittsburgh, PA 15213, USA
| | - Gaspar Del Rio-Pertuz
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, 3347 Forbes Avenue, Suite 220, Room 207, Pittsburgh, PA 15213, USA; Department of Critical Care Medicine, The CRISMA (Clinical Research, Investigation and Systems Modeling of Acute Illness) Center, University of Pittsburgh School of Medicine, 3347 Forbes Avenue, Suite 220, Room 207, Pittsburgh, PA 15213, USA; Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Hernando Gomez
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, 3347 Forbes Avenue, Suite 220, Room 207, Pittsburgh, PA 15213, USA; Department of Critical Care Medicine, The CRISMA (Clinical Research, Investigation and Systems Modeling of Acute Illness) Center, University of Pittsburgh School of Medicine, 3347 Forbes Avenue, Suite 220, Room 207, Pittsburgh, PA 15213, USA.
| |
Collapse
|
38
|
Chen WY, Cai LH, Zhang ZH, Tao LL, Wen YC, Li ZB, Li L, Ling Y, Li JW, Xing R, Liu XY, Lin ZD, Deng ZT, Wang SH, Lin QH, Zhou DR, He ZJ, Xiong XM. The timing of continuous renal replacement therapy initiation in sepsis-associated acute kidney injury in the intensive care unit: the CRTSAKI Study (Continuous RRT Timing in Sepsis-associated AKI in ICU): study protocol for a multicentre, randomised controlled trial. BMJ Open 2021; 11:e040718. [PMID: 33608398 PMCID: PMC7896624 DOI: 10.1136/bmjopen-2020-040718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is one of the most common organ dysfunction in sepsis, and increases the risk of unfavourable outcomes. Renal replacement therapy (RRT) is the predominant treatment for sepsis-associated AKI (SAKI). However, to date, no prospective randomised study has adequately addressed whether initiating RRT earlier will attenuate renal injury and improve the outcome of sepsis. The objective of the trial is to compare the early strategy with delayed strategy on the outcomes in patients with SAKI in the intensive care unit (ICU). METHODS AND ANALYSIS This is a large-scale, multicentre, randomised controlled trial about SAKI. In total, 460 patients with sepsis and evidence of AKI stage 2 of Kidney Disease Improving Global Outcomes (KDIGO) will be recruited and equally randomised into the early group and the delay group in a ratio of 1:1. In the early group, continuous RRT (CRRT) will be started immediately after randomisation. In the delay group, CRRT will initiated if at least one of the following criteria was met: stage 3 of KDIGO, severe hyperkalaemia, pulmonary oedema, blood urea nitrogen level higher than 112 mg/dL after randomisation. The primary outcome is overall survival in a 90-day follow-up period (90-day all-cause mortality). Other end points include 28-day, 60-day and 1-year mortality, recovery rate of renal function by day 28 and day 90, ICU and hospital length of stay, the numbers of CRRT-free days, mechanical ventilation-free days and vasopressor-free days, the rate of complications potentially related to CRRT, CRRT-related cost, and concentrations of inflammatory mediators in serum. ETHICS AND DISSEMINATION The trial has been approved by the Clinical Research and Application Institutional Review Board of the Second Affiliated Hospital of Guangzhou Medical University (2017-31-ks-01). Participants will be screened and enrolled from patients in the ICU with SAKI by clinicians, with no public advertisement for recruitment. Results will be disseminated in research journals and through conference presentations. TRIAL REGISTRATION NCT03175328.
Collapse
Affiliation(s)
- Wei-Yan Chen
- Intensive Care Unit, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li-Hua Cai
- Critical Care Medicine, Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Zhen-Hui Zhang
- Intensive Care Unit, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li-Li Tao
- Intensive Care Unit, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi-Chao Wen
- Intensive Care Unit, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi-Bo Li
- Intensive Care Unit, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Li
- Critical Care Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Yun Ling
- Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Jian-Wei Li
- Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Rui Xing
- Intensive Care Unit, Guangdong No.2 Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Xue-Yan Liu
- Intensive Care Unit, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhuan-di Lin
- Intensive Care Unit, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Zhe-Tong Deng
- Critical Care Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Shou-Hong Wang
- Critical Care Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Qin-Han Lin
- Critical Care Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Dun-Rong Zhou
- Intensive Care Unit, People's Hospital of Yangjiang, Yangjiang, Guangdong, China
| | - Zhi-Jie He
- Critical Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xu-Ming Xiong
- Intensive Care Unit, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Lankadeva YR, Shehabi Y, Deane AM, Plummer MP, Bellomo R, May CN. Emerging benefits and drawbacks of α 2 -adrenoceptor agonists in the management of sepsis and critical illness. Br J Pharmacol 2021; 178:1407-1425. [PMID: 33450087 DOI: 10.1111/bph.15363] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Agonists of α2 -adrenoceptors are increasingly being used for the provision of comfort, sedation and the management of delirium in critically ill patients, with and without sepsis. In this context, increased sympathetic and inflammatory activity are common pathophysiological features linked to multi-organ dysfunction, particularly in patients with sepsis or those undergoing cardiac surgery requiring cardiopulmonary bypass. Experimental and clinical studies support the notion that the α2 -adrenoceptor agonists, dexmedetomidine and clonidine, mitigate sympathetic and inflammatory overactivity in sepsis and cardiac surgery requiring cardiopulmonary bypass. These effects can protect vital organs, including the cardiovascular system, kidneys, heart and brain. We review the pharmacodynamic mechanisms by which α2 -adrenoceptor agonists might mitigate multi-organ dysfunction arising from pathophysiological conditions associated with excessive inflammatory and adrenergic stress in experimental studies. We also outline recent clinical trials that have examined the use of dexmedetomidine in critically ill patients with and without sepsis and in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Yugeesh R Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Centre for Integrated Critical Care, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Yahya Shehabi
- Department of Intensive Care Medicine, Monash Health, School of Clinical Sciences, Monash University, Melbourne, Prince of Wales Clinical School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Adam M Deane
- Centre for Integrated Critical Care, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Department of Intensive Care Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Mark P Plummer
- Centre for Integrated Critical Care, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Department of Intensive Care Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Clive N May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Centre for Integrated Critical Care, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Lankadeva YR, Peiris RM, Okazaki N, Birchall IE, Trask-Marino A, Dornom A, Vale TAM, Evans RG, Yanase F, Bellomo R, May CN. Reversal of the Pathophysiological Responses to Gram-Negative Sepsis by Megadose Vitamin C. Crit Care Med 2021; 49:e179-e190. [PMID: 33239507 PMCID: PMC7803449 DOI: 10.1097/ccm.0000000000004770] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Oxidative stress appears to initiate organ failure in sepsis, justifying treatment with antioxidants such as vitamin C at megadoses. We have therefore investigated the safety and efficacy of megadose sodium ascorbate in sepsis. DESIGN Interventional study. SETTING Research Institute. SUBJECTS Adult Merino ewes. INTERVENTIONS Sheep were instrumented with pulmonary and renal artery flow-probes, and laser-Doppler and oxygen-sensing probes in the kidney. Conscious sheep received an infusion of live Escherichia coli for 31 hours. At 23.5 hours of sepsis, sheep received fluid resuscitation (30 mL/kg, Hartmann solution) and were randomized to IV sodium ascorbate (0.5 g/kg over 0.5 hr + 0.5 g/kg/hr for 6.5 hr; n = 5) or vehicle (n = 5). Norepinephrine was titrated to restore mean arterial pressure to baseline values (~80 mm Hg). MEASUREMENTS AND MAIN RESULTS Sepsis-induced fever (41.4 ± 0.2°C; mean ± se), tachycardia (141 ± 2 beats/min), and a marked deterioration in clinical condition in all cases. Mean arterial pressure (86 ± 1 to 67 ± 2 mm Hg), arterial Po2 (102.1 ± 3.3 to 80.5 ± 3.4 mm Hg), and renal medullary tissue Po2 (41 ± 5 to 24 ± 2 mm Hg) decreased, and plasma creatinine doubled (71 ± 2 to 144 ± 15 µmol/L) (all p < 0.01). Direct observation indicated that in all animals, sodium ascorbate dramatically improved the clinical state, from malaise and lethargy to a responsive, alert state within 3 hours. Body temperature (39.3 ± 0.3°C), heart rate (99.7 ± 3 beats/min), and plasma creatinine (32.6 ± 5.8 µmol/L) all decreased. Arterial (96.5 ± 2.5 mm Hg) and renal medullary Po2 (48 ± 5 mm Hg) increased. The norepinephrine dose was decreased, to zero in four of five sheep, whereas mean arterial pressure increased (to 83 ± 2 mm Hg). We confirmed these physiologic findings in a coronavirus disease 2019 patient with shock by compassionate use of 60 g of sodium ascorbate over 7 hours. CONCLUSIONS IV megadose sodium ascorbate reversed the pathophysiological and behavioral responses to Gram-negative sepsis without adverse side effects. Clinical studies are required to determine if such a dose has similar benefits in septic patients.
Collapse
Affiliation(s)
- Yugeesh R Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, VIC, Australia
| | - Rachel M Peiris
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Nobuki Okazaki
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
- Department of Anesthesiology and Resuscitology, Okayama University, Okayama, Japan
| | - Ian E Birchall
- Neuropathology Laboratory, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Anton Trask-Marino
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Anthony Dornom
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Tom A M Vale
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Roger G Evans
- Department of Physiology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, VIC, Australia
| | - Fumitaka Yanase
- School of Medicine, University of Melbourne, VIC, Australia
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, VIC, Australia
- School of Medicine, University of Melbourne, VIC, Australia
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Clive N May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, VIC, Australia
| |
Collapse
|
41
|
Cantow K, Ladwig-Wiegard M, Flemming B, Pohlmann A, Niendorf T, Seeliger E. Monitoring Renal Hemodynamics and Oxygenation by Invasive Probes: Experimental Protocol. Methods Mol Biol 2021; 2216:327-347. [PMID: 33476009 PMCID: PMC9703868 DOI: 10.1007/978-1-0716-0978-1_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe methods to study control of renal hemodynamics and tissue oxygenation by means of invasive probes in anesthetized rats. Step-by-step protocols are provided for two setups, one for experiments in laboratories for integrative physiology and the other for experiments within small-animal magnetic resonance scanners.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by a separate chapter describing the basic concepts of quantitatively assessing renal perfusion and oxygenation with invasive probes.
Collapse
Affiliation(s)
- Kathleen Cantow
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Mechthild Ladwig-Wiegard
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Free University Berlin, Berlin, Germany
| | - Bert Flemming
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- Siemens Healthcare, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Erdmann Seeliger
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité - University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
42
|
Cantow K, Evans RG, Grosenick D, Gladytz T, Niendorf T, Flemming B, Seeliger E. Quantitative Assessment of Renal Perfusion and Oxygenation by Invasive Probes: Basic Concepts. Methods Mol Biol 2021; 2216:89-107. [PMID: 33475996 PMCID: PMC9703258 DOI: 10.1007/978-1-0716-0978-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe basic principles of methodology to quantify renal hemodynamics and tissue oxygenation by means of invasive probes in experimental animals. Advantages and disadvantages of the various methods are discussed in the context of the heterogeneity of renal tissue perfusion and oxygenation.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by a separate chapter describing the experimental procedure and data analysis.
Collapse
Affiliation(s)
- Kathleen Cantow
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Dirk Grosenick
- Physikalisch-Technische Bundesanstalt (German Federal Metrologic Institute), Berlin, Germany
| | - Thomas Gladytz
- Physikalisch-Technische Bundesanstalt (German Federal Metrologic Institute), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Bert Flemming
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Erdmann Seeliger
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
43
|
Abosamak MF, Lippi G, Benoit SW, Henry BM, Shama AAA. Bladder urine oxygen partial pressure monitoring: Could it be a tool for early detection of acute kidney injury? EGYPTIAN JOURNAL OF ANAESTHESIA 2021. [DOI: 10.1080/11101849.2021.1878686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Mohammed Fawzi Abosamak
- Department of Anesthesia and Intensive Care, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Giuseppe Lippi
- Department of Neuroscience, Section of Clinical Biochemistry, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Stefanie W. Benoit
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Brandon Michael Henry
- Cardiac Intensive Care Unit, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | | |
Collapse
|
44
|
Cantow K, Ladwig-Wiegard M, Flemming B, Fekete A, Hosszu A, Seeliger E. Reversible (Patho)Physiologically Relevant Test Interventions: Rationale and Examples. Methods Mol Biol 2021; 2216:57-73. [PMID: 33475994 DOI: 10.1007/978-1-0716-0978-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe test interventions that are used to study the control of renal hemodynamics and oxygenation in experimental animals in the context of kidney-specific control of hemodynamics and oxygenation. The rationale behind the use of the individual tests, the physiological responses of renal hemodynamics and oxygenation, the use in preclinical studies, and the possible application in humans are discussed.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
Collapse
Affiliation(s)
- Kathleen Cantow
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Mechthild Ladwig-Wiegard
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Free University Berlin, Berlin, Germany
| | - Bert Flemming
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Andrea Fekete
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Adam Hosszu
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Erdmann Seeliger
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
45
|
Bitker L, Patel SK, Bittar I, Eastwood GM, Bellomo R, Burrell LM. Reduced urinary levels of angiotensin-converting enzyme 2 activity predict acute kidney injury in critically ill patients. CRIT CARE RESUSC 2020; 22:344-354. [PMID: 38046883 PMCID: PMC10692539 DOI: 10.51893/2020.4.oa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: Angiotensin-converting enzyme 2 activity reflects non-classical renin-angiotensin system upregulation. We assessed the association of urinary angiotensin-converting enzyme 2 (uACE2) activity with acute kidney injury (AKI). Design, setting and participants: A prospective observational study in which we measured uACE2 activity in 105 critically ill patients at risk of AKI. We report AKI stage 2 or 3 at 12 hours of urine collection (AKI12h) and AKI stage 2 or 3 at any time during intensive care unit stay in patients free from any stage of AKI at inclusion (AKIICU). AKI prediction was assessed using area under the receiver-operating characteristics curve (AUROC) and net reclassification indices (NRIs). Main outcome measure: AKI stage 2 or 3 at 12 hours of urine collection. Results: Within 12 hours of inclusion, 32 of 105 patients (30%) had developed AKI12h. Corrected uACE2 activity was significantly higher in patients without AKI12h compared with those with AKI12h (median [interquartile range], 13 [6-24] v 7 [4-10] pmol/min/mL per mmol/L of urine creatinine; P < 0.01). A 10-unit increase in uACE2 was associated with a 28% decrease in AKI12h risk (odds ratio [95% CI], 0.72 [0.46-0.97]). During intensive care unit admission, 39 of 76 patients (51%) developed AKIICU. uACE2 had an AUROC for the prediction of AKI12h of 0.68 (95% CI, 0.57-0.79), and correctly reclassified 28% of patients (positive NRI) to AKI12h. Patients with uACE2 > 8.7 pmol/min/mL per mmol/L of urine creatinine had a significantly lower risk of AKIICU on log-rank analysis (52% v 84%; P < 0.01). Conclusions: Higher uACE2 activity was associated with a decreased risk of AKI stage 2 or 3. Our findings support future evaluations of the role of the non-classical renin-angiotensin system during AKI.
Collapse
Affiliation(s)
- Laurent Bitker
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia
- Université de Lyon, Lyon, France
| | - Sheila K. Patel
- Department of Medicine, Austin Health, Melbourne, VIC, Australia
| | - Intissar Bittar
- Department of Pathology, Austin Health, Melbourne, VIC, Australia
| | - Glenn M. Eastwood
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia
- Centre for Integrated Critical Care, University of Melbourne, Melbourne, VIC, Australia
| | | |
Collapse
|
46
|
Jufar AH, Lankadeva YR, May CN, Cochrane AD, Bellomo R, Evans RG. Renal functional reserve: from physiological phenomenon to clinical biomarker and beyond. Am J Physiol Regul Integr Comp Physiol 2020; 319:R690-R702. [PMID: 33074016 DOI: 10.1152/ajpregu.00237.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glomerular filtration rate (GFR) is acutely increased following a high-protein meal or systemic infusion of amino acids. The mechanisms underlying this renal functional response remain to be fully elucidated. Nevertheless, they appear to culminate in preglomerular vasodilation. Inhibition of the tubuloglomerular feedback signal appears critical. However, nitric oxide, vasodilator prostaglandins, and glucagon also appear important. The increase in GFR during amino acid infusion reveals a "renal reserve," which can be utilized when the physiological demand for single nephron GFR increases. This has led to the concept that in subclinical renal disease, before basal GFR begins to reduce, renal functional reserve can be recruited in a manner that preserves renal function. The extension of this concept is that once a decline in basal GFR can be detected, renal disease is already well progressed. This concept likely applies both in the contexts of chronic kidney disease and acute kidney injury. Critically, its corollary is that deficits in renal functional reserve have the potential to provide early detection of renal dysfunction before basal GFR is reduced. There is growing evidence that the renal response to infusion of amino acids can be used to identify patients at risk of developing either chronic kidney disease or acute kidney injury and as a treatment target for acute kidney injury. However, large multicenter clinical trials are required to test these propositions. A renewed effort to understand the renal physiology underlying the response to amino acid infusion is also warranted.
Collapse
Affiliation(s)
- Alemayehu H Jufar
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia.,Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Yugeesh R Lankadeva
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Clive N May
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew D Cochrane
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Health, Heidelberg, Victoria, Australia
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Iguchi N, Kosaka J, Iguchi Y, Evans RG, Bellomo R, May CN, Lankadeva YR. Systemic haemodynamic, renal perfusion and renal oxygenation responses to changes in inspired oxygen fraction during total intravenous or volatile anaesthesia. Br J Anaesth 2020; 125:192-200. [DOI: 10.1016/j.bja.2020.03.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/03/2023] Open
|
48
|
Sadowski J, Bądzyńska B. Altered renal medullary blood flow: A key factor or a parallel event in control of sodium excretion and blood pressure? Clin Exp Pharmacol Physiol 2020; 47:1323-1332. [PMID: 32163610 DOI: 10.1111/1440-1681.13303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 11/29/2022]
Abstract
In the context of the ongoing debate on the mechanism of blood pressure (BP) regulation and pathophysiology of arterial hypertension ("renocentric" vs "neural" concepts), attention is focused on the putative regulatory role of changes in renal medullary blood flow (MBF). Experimental evidence is analysed with regard to the question whether an elevation of BP and renal perfusion pressure (RPP) is likely to increase MBF due to its impaired autoregulation. It is concluded that such increases have been clearly documented only in rats with extracellular fluid volume expansion. A possible translation of this finding to BP regulation in health and hypertension in humans may only be a matter of speculation. Within the "renocentric" theory, the key event leading to restoration of initial BP level is pressure natriuresis. Its relation to elevation of renal interstitial hydrostatic pressure and to the phenomenon of "wash-out" of renal medullary solutes by increasing MBF is discussed. We also assessed the validity of data supporting the putative mechanism of short-term restoration of elevated BP owing to the release of a vasodilator lipid (medullipin) by the medulla. The structure of the proposed medullary lipid is still undefined, and there is no sound evidence on its mediatory role in lowering elevated BP level. In conclusion, MBF change can hardly be regarded as a crucial event in the regulation of BP: it can be involved in the control of sodium excretion and BP only in some circumstances, although its contributory role cannot be excluded.
Collapse
Affiliation(s)
- Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Bożena Bądzyńska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
49
|
Yoon HE, Kim DW, Kim D, Kim Y, Shin SJ, Shin YR. A pilot trial to evaluate the clinical usefulness of contrast-enhanced ultrasound in predicting renal outcomes in patients with acute kidney injury. PLoS One 2020; 15:e0235130. [PMID: 32579595 PMCID: PMC7313752 DOI: 10.1371/journal.pone.0235130] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives Contrast-enhanced ultrasound (CEUS) enables the assessment of real-time renal microcirculation. This study investigated CEUS-driven parameters as hemodynamic predictors for renal outcomes in patients with acute kidney injury (AKI). Methods Forty-eight patients who were diagnosed with AKI were prospectively enrolled and underwent CEUS at the occurrence of AKI. Parameters measured were the wash-in slope (WIS), time to peak intensity, peak intensity (PI), area under the time–intensity curve (AUC), mean transit time (MTT), time for full width at half maximum, and rise time (RT). The predictive performance of the CEUS-driven parameters for Kidney Disease Improving Global Outcomes (KDIGO) AKI stage, initiation of renal replacement therapy (RRT), AKI recovery, and chronic kidney disease (CKD) progression was assessed. Receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic performance of CEUS. Results Cortical RT (Odds ratio [OR] = 1.21) predicted the KDIGO stage 3 AKI. Cortical MTT (OR = 1.07) and RT (OR = 1.20) predicted the initiation of RRT. Cortical WIS (OR = 76.23) and medullary PI (OR = 1.25) predicted AKI recovery. Medullary PI (OR = 0.78) and AUC (OR = 1.00) predicted CKD progression. The areas under the ROC curves showed reasonable performance for predicting the initiation of RRT and AKI recovery. The sensitivity and specificity of the quantitative CEUS parameters were 60–83% and 62–77%, respectively, with an area under the curve of 0.69–0.75. Conclusion CEUS may be a supplemental tool in diagnosing the severity of AKI and predicting renal prognosis in patients with AKI.
Collapse
Affiliation(s)
- Hye Eun Yoon
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Da Won Kim
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Dongryul Kim
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Yaeni Kim
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Seok Joon Shin
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Yu Ri Shin
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
50
|
Titeca-Beauport D, Daubin D, Van Vong L, Belliard G, Bruel C, Alaya S, Chaoui K, Andrieu M, Rouquette-Vincenti I, Godde F, Pascal M, Diouf M, Vinsonneau C, Klouche K, Maizel J. Urine cell cycle arrest biomarkers distinguish poorly between transient and persistent AKI in early septic shock: a prospective, multicenter study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:280. [PMID: 32487237 PMCID: PMC7268340 DOI: 10.1186/s13054-020-02984-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
Background The urine biomarkers tissue inhibitor of metalloproteinases-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7) have been validated for predicting and stratifying AKI. In this study, we analyzed the utility of these biomarkers for distinguishing between transient and persistent AKI in the early phase of septic shock. Methods We performed a prospective, multicenter study in 11 French ICUs. Patients presenting septic shock, with the development of AKI within the first 6 h, were included. Urine [TIMP-2]*[IGFBP7] was determined at inclusion (0 h), 6 h, 12 h, and 24 h. AKI was considered transient if it resolved within 3 days. Discriminative power was evaluated by receiver operating characteristic (ROC) curve analysis. Results We included 184 patients, within a median [IQR] time of 1.0 [0.0–3.0] h after norepinephrine (NE) initiation; 100 (54%) patients presented transient and 84 (46%) presented persistent AKI. Median [IQR] baseline urine [TIMP-2]*[IGFBP7] was higher in the persistent AKI group (2.21 [0.81–4.90] (ng/ml)2/1000) than in the transient AKI group (0.75 [0.20–2.12] (ng/ml)2/1000; p < 0.001). Baseline urine [TIMP-2]*[IGFBP7] was poorly discriminant, with an AUROC [95% CI] of 0.67 [0.59–0.73]. The clinical prediction model combining baseline serum creatinine concentration, baseline urine output, baseline NE dose, and baseline extrarenal SOFA performed well for the prediction of persistent AKI, with an AUROC [95% CI] of 0.81 [0.74–0.86]. The addition of urine [TIMP-2]*[IGFBP7] to this model did not improve the predictive performance. Conclusions Urine [TIMP-2]*[IGFBP7] measurements in the early phase of septic shock discriminate poorly between transient and persistent AKI and do not improve clinical prediction over that achieved with the usual variables. Trial registration NCT02812784
Collapse
Affiliation(s)
- Dimitri Titeca-Beauport
- BoReal Study Group, Medical Intensive Care Unit and EA7517, Amiens University Hospital, F-80054, Amiens, France.
| | - Delphine Daubin
- Department of Intensive Care Medicine, Lapeyronie University Hospital, Montpellier, France
| | - Ly Van Vong
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France
| | - Guillaume Belliard
- Medical-Surgical Intensive Care Unit, Centre Hospitalier de Bretagne Sud, Lorient, France
| | - Cédric Bruel
- Medical and Surgical Intensive Care Unit, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Sami Alaya
- Intensive Care Unit, Centre Hospitalier Général, 13300, Salon-de-Provence, France
| | - Karim Chaoui
- Intensive Care Unit, Jean Rougier Hospital, 335, rue du Président Wilson, 46000, Cahors, France
| | - Maud Andrieu
- Medical and Surgical Intensive Care Unit, Centre Hospitalier de Dax-Côte d'Argent, Dax, France
| | - Isabelle Rouquette-Vincenti
- Department of Anesthesia and Intensive Care, Princess Grace Hospital, Avenue Pasteur, Monaco (Principality), Monaco
| | - Frederic Godde
- Département de Réanimation Polyvalente, Centre Hospitalier Avranches-Granville, Granville, France
| | - Michel Pascal
- Intensive Care Unit, Centre Hospitalier de Mont De Marsan, 40000, Mont-de-Marsan, France
| | - Momar Diouf
- Clinical Research and Innovation Directorate, Amiens University Hospital, Amiens, France
| | | | - Kada Klouche
- Department of Intensive Care Medicine, Lapeyronie University Hospital, Montpellier, France
| | - Julien Maizel
- BoReal Study Group, Medical Intensive Care Unit and EA7517, Amiens University Hospital, F-80054, Amiens, France
| |
Collapse
|