1
|
Reuning U, D'Amore VM, Hodivala-Dilke K, Marinelli L, Kessler H. Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: Consequences for medical applications. Bioorg Chem 2025; 156:108193. [PMID: 39842299 DOI: 10.1016/j.bioorg.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Integrins are well-characterized receptors involved in cell adhesion and signaling. With six approved drugs, they are recognized as valuable therapeutic targets. Here, we explore potential activation mechanisms that may clarify the agonist versus antagonist behavior of integrin ligands. The reorganization of the transmembrane domain (TMD) in the integrin receptor, forming homooligomers within focal adhesions, could be key to the understanding of the agonistic properties of integrin ligands at substoichiometric concentrations. This has significant implications for medical applications. While we focus on the RGD peptide-recognizing integrin subfamily, we propose that these mechanistic insights may also apply to other integrin subtypes. For application of integrin ligands in medicine it is essential to consider this mechanism and its consequences for affinity and bioavailability.
Collapse
Affiliation(s)
- Ute Reuning
- TUM University Hospital, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Department of Gynecology and Obstetrics, Clinical Research Unit, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Vincenzo Maria D'Amore
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Luciana Marinelli
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Technical University Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany.
| |
Collapse
|
2
|
Wang Y, Weng L, Wu X, Du B. The role of programmed cell death in organ dysfunction induced by opportunistic pathogens. Crit Care 2025; 29:43. [PMID: 39856779 PMCID: PMC11761187 DOI: 10.1186/s13054-025-05278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Sepsis is a life-threatening condition resulting from pathogen infection and characterized by organ dysfunction. Programmed cell death (PCD) during sepsis has been associated with the development of multiple organ dysfunction syndrome (MODS), impacting various physiological systems including respiratory, cardiovascular, renal, neurological, hematological, hepatic, and intestinal systems. It is well-established that pathogen infections lead to immune dysregulation, which subsequently contributes to MODS in sepsis. However, recent evidence suggests that sepsis-related opportunistic pathogens can directly induce organ failure by promoting PCD in parenchymal cells of each affected organ. This study provides an overview of PCD in damaged organ and the induction of PCD in host parenchymal cells by opportunistic pathogens, proposing innovative strategies for preventing organ failure in sepsis.
Collapse
Affiliation(s)
- Yangyanqiu Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Weng
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xunyao Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical and Science Investigation Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Bin Du
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical and Science Investigation Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Liu YS, Chen WL, Zeng YW, Li ZH, Zheng HL, Pan N, Zhao LY, Wang S, Chen SH, Jiang MH, Jin CC, Mi YC, Cai ZH, Fang XZ, Liu YJ, Liu L, Wang GL. Isaridin E Protects against Sepsis by Inhibiting Von Willebrand Factor-Induced Endothelial Hyperpermeability and Platelet-Endothelium Interaction. Mar Drugs 2024; 22:283. [PMID: 38921594 PMCID: PMC11204489 DOI: 10.3390/md22060283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Endothelial hyperpermeability is pivotal in sepsis-associated multi-organ dysfunction. Increased von Willebrand factor (vWF) plasma levels, stemming from activated platelets and endothelium injury during sepsis, can bind to integrin αvβ3, exacerbating endothelial permeability. Hence, targeting this pathway presents a potential therapeutic avenue for sepsis. Recently, we identified isaridin E (ISE), a marine-derived fungal cyclohexadepsipeptide, as a promising antiplatelet and antithrombotic agent with a low bleeding risk. ISE's influence on septic mortality and sepsis-induced lung injury in a mouse model of sepsis, induced by caecal ligation and puncture, is investigated in this study. ISE dose-dependently improved survival rates, mitigating lung injury, thrombocytopenia, pulmonary endothelial permeability, and vascular inflammation in the mouse model. ISE markedly curtailed vWF release from activated platelets in septic mice by suppressing vesicle-associated membrane protein 8 and soluble N-ethylmaleide-sensitive factor attachment protein 23 overexpression. Moreover, ISE inhibited healthy human platelet adhesion to cultured lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), thereby significantly decreasing vWF secretion and endothelial hyperpermeability. Using cilengitide, a selective integrin αvβ3 inhibitor, it was found that ISE can improve endothelial hyperpermeability by inhibiting vWF binding to αvβ3. Activation of the integrin αvβ3-FAK/Src pathway likely underlies vWF-induced endothelial dysfunction in sepsis. In conclusion, ISE protects against sepsis by inhibiting endothelial hyperpermeability and platelet-endothelium interactions.
Collapse
Affiliation(s)
- Yao-Sheng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Wen-Liang Chen
- Scientific Research Center, the Medical Interdisciplinary Science Research Center of Western Guangdong, College of Women and Children, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China;
| | - Yu-Wei Zeng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Zhi-Hong Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Hao-Lin Zheng
- Division of Biosciences, University College London, London WC1E 6BT, UK;
| | - Ni Pan
- Department of Pharmacy, The Second Clinical College, Guangzhou Medical University, Guangzhou 510261, China;
| | - Li-Yan Zhao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Shu Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Sen-Hua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.-H.C.); (M.-H.J.)
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Ming-Hua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.-H.C.); (M.-H.J.)
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Chen-Chen Jin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Yu-Chen Mi
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Zhao-Hui Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Xin-Zhe Fang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Yong-Jun Liu
- Guangdong Provincial Clinical Research Center of Critical Care Medicine, Guangzhou 510080, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.-H.C.); (M.-H.J.)
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| |
Collapse
|
4
|
Dash SP, Gupta S, Sarangi PP. Monocytes and macrophages: Origin, homing, differentiation, and functionality during inflammation. Heliyon 2024; 10:e29686. [PMID: 38681642 PMCID: PMC11046129 DOI: 10.1016/j.heliyon.2024.e29686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Monocytes and macrophages are essential components of innate immune system and have versatile roles in homeostasis and immunity. These phenotypically distinguishable mononuclear phagocytes play distinct roles in different stages, contributing to the pathophysiology in various forms making them a potentially attractive therapeutic target in inflammatory conditions. Several pieces of evidence have supported the role of different cell surface receptors expressed on these cells and their downstream signaling molecules in initiating and perpetuating the inflammatory response. In this review, we discuss the current understanding of the monocyte and macrophage biology in inflammation, highlighting the role of chemoattractants, inflammasomes, and integrins in the function of monocytes and macrophages during events of inflammation. This review also covers the recent therapeutic interventions targeting these mononuclear phagocytes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P. Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
5
|
Song X, Qian H, Yu Y. Nanoparticles Mediated the Diagnosis and Therapy of Glioblastoma: Bypass or Cross the Blood-Brain Barrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302613. [PMID: 37415556 DOI: 10.1002/smll.202302613] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Glioblastoma is one of the most aggressive central nervous system malignancies with high morbidity and mortality. Current clinical approaches, including surgical resection, radiotherapy, and chemotherapy, are limited by the difficulty of targeting brain lesions accurately, leading to disease recurrence and fatal outcomes. The lack of effective treatments has prompted researchers to continuously explore novel therapeutic strategies. In recent years, nanomedicine has made remarkable progress and expanded its application in brain drug delivery, providing a new treatment for brain tumors. Against this background, this article reviews the application and progress of nanomedicine delivery systems in brain tumors. In this paper, the mechanism of nanomaterials crossing the blood-brain barrier is summarized. Furthermore, the specific application of nanotechnology in glioblastoma is discussed in depth.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Radiology, Anhui Provincial Institute of Translational Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, P. R. China
- Research Center of Clinical Medical Imaging, Hefei, 230022, China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230011, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, 230011, China
| | - Yongqiang Yu
- Department of Radiology, Anhui Provincial Institute of Translational Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, P. R. China
- Research Center of Clinical Medical Imaging, Hefei, 230022, China
| |
Collapse
|
6
|
Wang M, Feng J, Zhou D, Wang J. Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: a new predictive and therapeutic paradigm for sepsis. Eur J Med Res 2023; 28:339. [PMID: 37700349 PMCID: PMC10498524 DOI: 10.1186/s40001-023-01301-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Lipopolysaccharide, a highly potent endotoxin responsible for severe sepsis, is the major constituent of the outer membrane of gram-negative bacteria. Endothelial cells participate in both innate and adaptive immune responses as the first cell types to detect lipopolysaccharide or other foreign debris in the bloodstream. Endothelial cells are able to recognize the presence of LPS and recruit specific adaptor proteins to the membrane domains of TLR4, thereby initiating an intracellular signaling cascade. However, lipopolysaccharide binding to endothelial cells induces endothelial activation and even damage, manifested by the expression of proinflammatory cytokines and adhesion molecules that lead to sepsis. MAIN FINDINGS LPS is involved in both local and systemic inflammation, activating both innate and adaptive immunity. Translocation of lipopolysaccharide into the circulation causes endotoxemia. Endothelial dysfunction, including exaggerated inflammation, coagulopathy and vascular leakage, may play a central role in the dysregulated host response and pathogenesis of sepsis. By discussing the many strategies used to treat sepsis, this review attempts to provide an overview of how lipopolysaccharide induces the ever more complex syndrome of sepsis and the potential for the development of novel sepsis therapeutics. CONCLUSIONS To reduce patient morbidity and mortality, preservation of endothelial function would be central to the management of sepsis.
Collapse
Affiliation(s)
- Min Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| | - Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Ren E, Xiao H, Li J, Yu H, Liu B, Wang G, Sun X, Duan M, Hang C, Zhang G, Wu C, Li F, Zhang H, Zhang Y, Guo W, Qi W, Yin Q, Zhao Y, Xie M, Li C. CLINICAL CHARACTERISTICS AND PREDICTORS OF MORTALITY DIFFER BETWEEN PULMONARY AND ABDOMINAL SEPSIS. Shock 2023; 60:42-50. [PMID: 37267265 DOI: 10.1097/shk.0000000000002151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
ABSTRACT Background: Pulmonary sepsis and abdominal sepsis have pathophysiologically distinct phenotypes. This study aimed to compare their clinical characteristics and predictors of mortality. Methods: In this multicenter retrospective trial, 1,359 adult patients who fulfilled the Sepsis-3 criteria were enrolled and classified into the pulmonary sepsis or abdominal sepsis groups. Plasma presepsin was measured, and the scores of Acute Physiology and Chronic Health Evaluation (APACHE) II, Mortality in Emergency Department Sepsis (MEDS), and Simplified Acute Physiology Score (SAPS) II were calculated at enrollment. Data on 28-day mortality were collected for all patients. Results: Compared with patients with abdominal sepsis (n = 464), patients with pulmonary sepsis (n = 895) had higher 28-day mortality rate, illness severity scores, incidence of shock and acute kidney injury, and hospitalization costs. Lactate level and APACHE II and MEDS scores were independently associated with 28-day mortality in both sepsis types. Independent predictors of 28-day mortality included Pa o2 /F io2 ratio (hazard ratio [HR], 0.998; P < 0.001) and acute kidney injury (HR, 1.312; P = 0.039) in pulmonary sepsis, and SAPS II (HR, 1.037; P = 0.017) in abdominal sepsis. A model that combined APACHE II score, lactate, and MEDS score or SAPS II score had the best area under the receiver operating characteristic curve in predicting mortality in patients with pulmonary sepsis or abdominal sepsis, respectively. Interaction term analysis confirmed the association between 28-day mortality and lactate, APACHE II score, MEDS score, SAPS II score, and shock according to the sepsis subgroups. The mortality of patients with pulmonary sepsis was higher than that of patients with abdominal sepsis among patients without shock (32.9% vs. 8.8%; P < 0.001) but not among patients with shock (63.7 vs. 48.4%; P = 0.118). Conclusions: Patients with pulmonary sepsis had higher 28-day mortality than patients with abdominal sepsis. The study identified sepsis subgroup-specific mortality predictors. Shock had a larger effect on mortality in patients with abdominal sepsis than in those with pulmonary sepsis.
Collapse
Affiliation(s)
- Enfeng Ren
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongli Xiao
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiebin Li
- Department of Emergency Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Han Yu
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bo Liu
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Guoxing Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuelian Sun
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chenchen Hang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Guoqiang Zhang
- Department of Emergency Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing, China
| | - Caijun Wu
- Department of Emergency Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengjie Li
- Department of Emergency Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Haiyan Zhang
- Department of Emergency Medicine, The Hospital of Shunyi District Beijing, China Medical University, Beijing, China
| | - Yun Zhang
- Department of Emergency Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Guo
- Department of Emergency Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenjie Qi
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qin Yin
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yunzhou Zhao
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Miaorong Xie
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunsheng Li
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Gatica S, Fuentes B, Rivera-Asín E, Ramírez-Céspedes P, Sepúlveda-Alfaro J, Catalán EA, Bueno SM, Kalergis AM, Simon F, Riedel CA, Melo-Gonzalez F. Novel evidence on sepsis-inducing pathogens: from laboratory to bedside. Front Microbiol 2023; 14:1198200. [PMID: 37426029 PMCID: PMC10327444 DOI: 10.3389/fmicb.2023.1198200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Sepsis is a life-threatening condition and a significant cause of preventable morbidity and mortality globally. Among the leading causative agents of sepsis are bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pyogenes, along with fungal pathogens of the Candida species. Here, we focus on evidence from human studies but also include in vitro and in vivo cellular and molecular evidence, exploring how bacterial and fungal pathogens are associated with bloodstream infection and sepsis. This review presents a narrative update on pathogen epidemiology, virulence factors, host factors of susceptibility, mechanisms of immunomodulation, current therapies, antibiotic resistance, and opportunities for diagnosis, prognosis, and therapeutics, through the perspective of bloodstream infection and sepsis. A list of curated novel host and pathogen factors, diagnostic and prognostic markers, and potential therapeutical targets to tackle sepsis from the research laboratory is presented. Further, we discuss the complex nature of sepsis depending on the sepsis-inducing pathogen and host susceptibility, the more common strains associated with severe pathology and how these aspects may impact in the management of the clinical presentation of sepsis.
Collapse
Affiliation(s)
- Sebastian Gatica
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Brandon Fuentes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Elizabeth Rivera-Asín
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Paula Ramírez-Céspedes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Javiera Sepúlveda-Alfaro
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo A. Catalán
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A. Riedel
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
9
|
Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. Int J Mol Sci 2022; 23:ijms23062995. [PMID: 35328419 PMCID: PMC8951934 DOI: 10.3390/ijms23062995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care—but also medical prophylactic and therapeutic care in general—to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.
Collapse
|
10
|
Wang C, Zheng J, Wang J, Zou L, Zhang Y. Cox-LASSO Analysis for Hospital Mortality in Patients With Sepsis Received Continuous Renal Replacement Therapy: A MIMIC-III Database Study. Front Med (Lausanne) 2022; 8:778536. [PMID: 35223879 PMCID: PMC8866187 DOI: 10.3389/fmed.2021.778536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/31/2021] [Indexed: 12/14/2022] Open
Abstract
Background Sepsis remains the leading cause of mortality in-hospital in the intensive care unit (ICU). Continuous renal replacement therapy (CRRT) is recommended as an adjuvant therapy for hemodynamics management in patients with sepsis. The aim of this study was to develop an adaptive least absolute shrinkage and selection operator (LASSO) for the Cox regression model to predict the hospital mortality in patients with Sepsis-3.0 undergoing CRRT using Medical Information Martin Intensive Care (MIMIC)-III v1.4. Methods Patients who met the Sepsis-3.0 definition were identified using the MIMIC-III v1.4. Among them, patients who received CRRT during ICU hospitalization were included in this study. According to the survival status, patients were split into death or survival group. Adaptive LASSO for the Cox regression model was constructed by STATA software. At last, nomogram and Kaplan-Meier curves were drawn to validate the model. Results A total of 181 patients who met Sepsis 3.0 criteria received CRRT were included in the study, in which, there were 31 deaths and 150 survivals during hospitalization, respectively. The overall in-hospital mortality was 17.1%. According to the results of multivariate Cox-LASSO regression analysis, use of vasopressor, international normalized ratio (INR) ≥1.5, and quick sequential organ failure assessment (qSOFA) score were associated with hospital mortality in patients with sepsis who underwent CRRT, but lactate level, mechanical ventilation (MV) support, PaO2/FiO2, platelet count, and indicators of acute kidney injury (AKI), such as blood urea nitrogen (BUN) and creatinine, were not independently associated with hospital mortality after adjusted by qSOFA. The risk nomogram and Kaplan-Meier curves verified that the use of vasopressor and INR ≥1.5 possess significant predictive value. Conclusions Using the Cox-LASSO regression model, use of vasopressor, INR ≥1.5, and qSOFA score are found to be associated with hospital mortality in patients with Sepsis-3.0 who received CRRT. This finding may assist clinicians in tailoring precise management and therapy for these patients who underwent CRRT.
Collapse
Affiliation(s)
- Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianli Zheng
- Institute of Medical Information Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jinxia Wang
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Zou
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Cordes S, Mokhtari Z, Bartosova M, Mertlitz S, Riesner K, Shi Y, Mengwasser J, Kalupa M, McGeary A, Schleifenbaum J, Schrezenmeier J, Bullinger L, Diaz-Ricart M, Palomo M, Carrreras E, Beutel G, Schmitt CP, Beilhack A, Penack O. Endothelial damage and dysfunction in acute graft-versus-host disease. Haematologica 2021; 106:2147-2160. [PMID: 32675225 PMCID: PMC8327719 DOI: 10.3324/haematol.2020.253716] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Clinical studies suggested that endothelial dysfunction and damage could be involved in the development and severity of acute graft-versus-host disease (aGVHD). Accordingly, we found increased percentage of apoptotic Casp3+ blood vessels in duodenal and colonic mucosa biopsies of patients with severe aGVHD. In murine experimental aGVHD, we detected severe microstructural endothelial damage and reduced endothelial pericyte coverage accompanied by reduced expression of endothelial tight junction proteins leading to increased endothelial leakage in aGVHD target organs. During intestinal aGVHD, colonic vasculature structurally changed, reflected by increased vessel branching and vessel diameter. Because recent data demonstrated an association of endothelium-related factors and steroid refractory aGVHD (SR-aGVHD), we analyzed human biopsies and murine tissues from SR-aGVHD. We found extensive tissue damage but low levels of alloreactive T cell infiltration in target organs, providing the rationale for T-cell independent SR-aGVHD treatment strategies. Consequently, we tested the endothelium-protective PDE5 inhibitor sildenafil, which reduced apoptosis and improved metabolic activity of endothelial cells in vitro. Accordingly, sildenafil treatment improved survival and reduced target organ damage during experimental SR-aGVHD. Our results demonstrate extensive damage, structural changes, and dysfunction of the vasculature during aGVHD. Therapeutic intervention by endothelium-protecting agents is an attractive approach for SR-aGVHD complementing current anti-inflammatory treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Shi
- Charité Universitätsmedizin Berlin
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nader D, Fletcher N, Curley GF, Kerrigan SW. SARS-CoV-2 uses major endothelial integrin αvβ3 to cause vascular dysregulation in-vitro during COVID-19. PLoS One 2021; 16:e0253347. [PMID: 34161337 PMCID: PMC8221465 DOI: 10.1371/journal.pone.0253347] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
The unprecedented global COVID-19 pandemic has prompted a desperate international effort to accelerate the development of anti-viral candidates. For unknown reasons, COVID-19 infections are associated with adverse cardiovascular complications, implicating that vascular endothelial cells are essential in viral propagation. The etiological pathogen, SARS-CoV-2, has a higher reproductive number and infection rate than its predecessors, indicating it possesses novel characteristics that infers enhanced transmissibility. A unique K403R spike protein substitution encodes an Arg-Gly-Asp (RGD) motif, introducing a potential role for RGD-binding host integrins. Integrin αVβ3 is widely expressed across the host, particularly in the endothelium, which acts as the final barrier before microbial entry into the bloodstream. This mutagenesis creates an additional binding site, which may be sufficient to increase SARS-CoV-2 pathogenicity. Here, we investigate how SARS-CoV-2 passes from the epithelium to endothelium, the effects of αVβ3 antagonist, Cilengitide, on viral adhesion, vasculature permeability and leakage, and also report on a simulated interaction between the viral and host protein in-silico.
Collapse
Affiliation(s)
- Danielle Nader
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Nicola Fletcher
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gerard F. Curley
- Department of Anaesthesia and Critical Care Medicine, RCSI University of Medicine and Health Sciences, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Steven W. Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- * E-mail:
| |
Collapse
|
13
|
Nader D, Yousef F, Kavanagh N, Ryan BK, Kerrigan SW. Targeting Internalized Staphylococcus aureus Using Vancomycin-Loaded Nanoparticles to Treat Recurrent Bloodstream Infections. Antibiotics (Basel) 2021; 10:antibiotics10050581. [PMID: 34068975 PMCID: PMC8156000 DOI: 10.3390/antibiotics10050581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 12/29/2022] Open
Abstract
The bacterial pathogen Staphylococcus aureus is a leading cause of bloodstream infections, where patients often suffer from relapse despite antibiotic therapy. Traditional anti-staphylococcal drugs display reduced effectivity against internalised bacteria, but nanoparticles conjugated with antibiotics can overcome these challenges. In the present study, we aimed to characterise the internalisation and re-emergence of S. aureus from human endothelial cells and construct a new formulation of nanoparticles that target intracellular bacteria. Using an in vitro infection model, we demonstrated that S. aureus invades and persists within endothelial cells, mediated through bacterial extracellular surface adhesion, Fibronectin-binding protein A/B. After internalising, S. aureus localises to vacuoles as determined by transmission electron microscopy. Viable S. aureus emerges from endothelial cells after 48 h, supporting the notion that intracellular persistence contributes to infection relapses during bloodstream infections. Poly lactic-co-glycolic acid nanoparticles were formulated using a water-in-oil double emulsion method, which loaded 10% vancomycin HCl with 82.85% ± 12 encapsulation efficiency. These non-toxic nanoparticles were successfully taken up by cells and demonstrated a biphasic controlled release of 91 ± 4% vancomycin. They significantly reduced S. aureus intracellular growth within infected endothelial cells, which suggests future potential applications for targeting internalised bacteria and reducing mortality associated with bacteraemia.
Collapse
Affiliation(s)
- Danielle Nader
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
- Correspondence: (D.N.); (S.W.K.); Tel.: +353-1-402-2104 (S.W.K.)
| | - Fajer Yousef
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
| | - Nicola Kavanagh
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
| | - Benedict K. Ryan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Steven W. Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
- Correspondence: (D.N.); (S.W.K.); Tel.: +353-1-402-2104 (S.W.K.)
| |
Collapse
|
14
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
15
|
Peng F, Liang C, Chang W, Sun Q, Xie J, Qiu H, Yang Y. Prognostic Significance of Plasma Hepatocyte Growth Factor in Sepsis. J Intensive Care Med 2021; 37:352-358. [PMID: 33611982 DOI: 10.1177/0885066621993423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND To assess any correlation of plasma hepatocyte growth factor (HGF) levels with relevant endothelial cell injury parameters and determine the prognostic value in septic patients. METHODS A prospective, observational study was conducted in patients with sepsis admitted to the Department of Critical Care Medicine at the Zhongda Hospital from November 2017 to March 2018. Plasma HGF levels were measured by enzyme-linked immunosorbent assay in the first 24 h after admission (day 1) and on day 3. The primary endpoint was defined as all-cause 28-day mortality. Furthermore, we analyzed the correlation of HGF with relevant endothelial cell injury markers. RESULTS Eighty-six patients admitted with sepsis were included. HGF levels of nonsurvivors were elevated compared to those of survivors on day 1 (1940.62 ± 74.66 pg/mL vs. 1635.61 ± 47.49 pg/mL; P = 0.002) and day 3 (1824.82 ± 137.52 pg/mL vs. 1309.77 ± 83.49 pg/mL; P = 0.001) and showed a strong correlation with von Willebrand factor (r = 0.45, P < 0.0001), lactate (r = 0.35, P = 0.0011), pulmonary vascular permeability index (r = 0.38, P = 0.0241), first 24 h fluid administration (r = 0.38, P < 0.0001), and sequential organ failure assessment score (r = 0.40, P = 0.0001). Plasma HGF levels were able to prognostically discriminate between survivors and nonsurvivors on day 1 (AUC: 0.72, 95%CI: 0.60-0.84) and day 3 (AUC: 0.77, 95%CI: 0.63-0.91). CONCLUSIONS HGF levels are associated with sepsis and correlated with established markers of endothelial cell injury. Elevated HGF levels in sepsis patients are an efficient indicator of poor prognosis. TRIAL REGISTRATION The study was registered in Clinical Trial (Registration Number: NCT02883231).
Collapse
Affiliation(s)
- Fei Peng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Chenglong Liang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Wei Chang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Qin Sun
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Nader D, Curley GF, Kerrigan SW. A new perspective in sepsis treatment: could RGD-dependent integrins be novel targets? Drug Discov Today 2020; 25:2317-2325. [PMID: 33035665 PMCID: PMC7537604 DOI: 10.1016/j.drudis.2020.09.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Sepsis is a life-threatening condition caused by the response of the body to an infection, and has recently been regarded as a global health priority because of the lack of effective treatments available. Vascular endothelial cells have a crucial role in sepsis and are believed to be a major target of pathogens during the early stages of infection. Accumulating evidence suggests that common sepsis pathogens, including bacteria, fungi, and viruses, all contain a critical integrin recognition motif, Arg-Gly-Asp (RGD), in their major cell wall-exposed proteins that might act as ligands to crosslink to vascular endothelial cells, triggering systemic dysregulation resulting in sepsis. In this review, we discuss the potential of anti-integrin therapy in the treatment of sepsis and septic shock.
Collapse
Affiliation(s)
- Danielle Nader
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Steven W Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| |
Collapse
|
17
|
Ariens R, Becattini C, Bender M, Bergmeier W, Castoldi E, Devreese K, Ellis M, Gailani D, Ignjatovic V, James PD, Kerrigan S, Lambert M, Lee LH, Levi M, Maugeri N, Meijers J, Melero-Martin J, Michelson AD, Mingozzi F, Neeves K, Ni H, Olsson AK, Prohászka Z, Ranson M, Riva N, Senis Y, van Ommen CH, Vaughan DE, Weisel J. Illustrated State-of-the-Art Capsules of the ISTH 2020 Congress. Res Pract Thromb Haemost 2020; 4:680-713. [PMID: 32685876 PMCID: PMC7354406 DOI: 10.1002/rth2.12368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 05/08/2020] [Indexed: 01/19/2023] Open
Abstract
The 2020 Congress of the International Society of Thrombosis and Haemostasis (ISTH) was held virtually July 12-15, 2019, due to the coronavirus disease 2019 pandemic. The congress convenes annually to discuss clinical and basic topics in hemostasis and thrombosis. Each year, the program includes State of Art (SOA) lectures given by prominent scientists. Presenters are asked to create Illustrated Capsules of their talks, which are concise illustrations with minimal explanatory text. Capsules cover major themes of the presentation, and these undergo formal peer review for inclusion in this article. Owing to the shift to a virtual congress this year, organizers reduced the program size. There were 39 SOA lectures virtually presented, and 29 capsules (9 from talks omitted from the virtual congress) were both submitted and successful in peer review, and are included in this article. Topics include the roles of the hemostatic system in inflammation, infection, immunity, and cancer, platelet function and signaling, platelet function disorders, megakaryocyte biology, hemophilia including gene therapy, phenotype tests in hemostasis, von Willebrand factor, anticoagulant factor V, computational driven discovery, endothelium, clinical and basic aspects of thrombotic microangiopathies, fibrinolysis and thrombolysis, antithrombotics in pediatrics, direct oral anticoagulant management, and thrombosis and hemostasis in pregnancy. Capsule authors invite virtual congress attendees to refer to these capsules during the live presentations and participate on Twitter in discussion. Research and Practice in Haemostasis and Thrombosis will release 2 tweets from @RPTHJournal during each presentation, using #IllustratedReview, #CoagCapsule and #ISTH2020. Readers are also welcome to utilize capsules for teaching and ongoing education.
Collapse
Affiliation(s)
- Robert Ariens
- Discovery and Translational Science Department Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds Leeds UK
| | - Cecilia Becattini
- Internal and Cardiovascular Medicine - Stroke Unit University of Perugia Perugia Italy
| | - Markus Bender
- Institute of Experimental Biomedicine - Chair I University Hospital and Rudolf Virchow Center Würzburg Germany
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics UNC Blood Research Center University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Elisabetta Castoldi
- Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Maastricht The Netherlands
| | - Katrien Devreese
- Coagulation Laboratory Department of Laboratory Medicine Ghent University Hospital Ghent University Ghent Belgium
- Coagulation Laboratory Department of Diagnostic Sciences Ghent University Hospital Ghent University Ghent Belgium
| | - Martin Ellis
- Hematology Institute and Blood Bank Meir Medical Center and Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - David Gailani
- Department of Pathology, Microbiology and Immunology Vanderbilt University Medical Center Nashville TN USA
| | - Vera Ignjatovic
- Haematology Research Team Murdoch Children's Research Institute Department of Paediatrics The University of Melbourne Parkville Vic. Australia
| | | | - Steven Kerrigan
- Royal College of Surgeons in Ireland School of Pharmacy and Biomolecular Sciences Irish Centre for Vascular Biology Dublin Ireland
| | - Michele Lambert
- Department of Pediatrics Perelman School of Medicine at the University of Pennsylvania Philadelphia PA USA
| | - Lai Heng Lee
- Department of Haematology Singapore General Hospital SingHealth Singapore City Singapore
| | - Marcel Levi
- University College London Hospitals London UK
| | - Norma Maugeri
- San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milano Italy
| | - Joost Meijers
- Department of Experimental Vascular Medicine Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
- Department of Molecular and Cellular Hemostasis Sanquin Research Amsterdam The Netherlands
| | | | - Alan D Michelson
- Boston Children's Hospital and Harvard Medical School Boston MA USA
| | | | - Keith Neeves
- Department of Chemical and Biological Engineering Colorado School of Mines Golden CO USA
| | - Heyu Ni
- Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital University of Toronto Toronto ON Canada
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
| | - Zoltán Prohászka
- Research Laboratory 3rd Department of Internal Medicine MTA-SE Research Group of Immunology and Hematology Hungarian Academy of Sciences and Semmelweis University Budapest Hungary
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience University of Wollongong Wollongong NSW Australia
| | - Nicoletta Riva
- Department of Pathology Faculty of Medicine and Surgery University of Malta Msida Malta
| | - Yotis Senis
- Directeur de Recherche Etablissement Français du Sang Grand Est Inserm UMR-S1255 Université de Strasbourg Strasbourg France
| | - Cornelia H van Ommen
- Department of Pediatric Hematology Oncology Erasmus MC Sophia Children's Hospital Rotterdam The Netherlands
| | | | - John Weisel
- Department of Cell and Developmental Biology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
18
|
Ren Y, Wang H, Chang Z, Liu Z. Clinical and computed tomography features of extended-spectrum β-lactamase-producing Klebsiella pneumoniae liver abscess. BMC Infect Dis 2020; 20:416. [PMID: 32539687 PMCID: PMC7296744 DOI: 10.1186/s12879-020-05142-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Background Klebsiella pneumoniae (KP) is the primary pathogen associated with pyogenic liver abscesses (PLAs). Moreover, there has been an increase in the proportion of extended-spectrum beta-lactamase (ESBL)-producing KP. However, the clinical and computed tomography (CT) features of liver abscesses caused by ESBL-producing KP have not been separately described. We aimed to compare the clinical and CT features present in patients with ESBL-producing and non-ESBL-producing KP as well as to determine the risk factors for ESBL-producing KP liver abscesses (KPLAs). Methods We performed a retrospective analysis of data obtained from the medical records of patients with a first episode of KPLA admitted to Shengjing Hospital of China Medical University between May 2015 and May 2019. We compared the clinical and CT features between patients with ESBL-producing and non-ESBL-producing KPLA. Results We enrolled 100 patients with KPLA (14 and 86 in the ESBL-producing and non-ESBL-producing groups, respectively). There was no significant between-group difference in the proportion of patients with comorbid diabetes (71.43% vs. 66.2%, p = 0.086). The ESBL-producing KPLA group had a greater proportion of patients with a history of biliary disease (78.57% vs. 26.74%, p < 0.001) and gastrointestinal malignancy (50% vs. 6.98%, p < 0.001). Multivariate regression analysis showed that a history of biliary disease was an independent risk factor for ESBL-producing KPLA. Compared with the non-ESBL-producing KPLA group, the ESBL-producing KPLA group had a significantly higher intensive care unit (ICU) admission rate (28.57% vs. 2.33%, p < 0.001). All ESBL-producing KP isolates were susceptible to carbapenems and amikacin. Only the presence of multiloculation on CT was found to be significantly different between the groups (50% vs. 82.56%, p = 0.012). Conclusions The presence of biliary disease was an independent risk factor for ESBL-producing KPLA. Patients with ESBL-producing KPLA had a higher ICU admission rate, with only half of patients having evidence of multiloculation on CT.
Collapse
Affiliation(s)
- Yue Ren
- Department of Radiology, Shengjing Hospital of China Medical University, NO. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Hairui Wang
- Department of Radiology, Shengjing Hospital of China Medical University, NO. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, NO. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, NO. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| |
Collapse
|
19
|
Assessment of a pro-healing stent in an animal model of early neoatherosclerosis. Sci Rep 2020; 10:8227. [PMID: 32427835 PMCID: PMC7237429 DOI: 10.1038/s41598-020-64940-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/23/2020] [Indexed: 12/01/2022] Open
Abstract
Background: Neoatherosclerosis represents an accelerated manifestation of atherosclerosis in nascent neointima after stenting, associated with adverse events. We investigated whether improved reendothelialization using RGD-coated stents results in diminished vascular permeability and reduced foam cell formation compared to standard DES in atherosclerotic rabbits. Methods and Results: Neointimal foam cell formation was induced in rabbits (n = 7). Enhanced endothelial integrity in RGD-coated stents resulted in decreased vascular permeability relative to DES, which was further confirmed by SEM and TEM. Cell culture experiments examined the effect of everolimus on endothelial integrity. Increasing concentrations of everolimus resulted in a dose-dependent decrease of endothelial cell junctions and foam cell transformation of monocytes, confirming the relevance of endothelial integrity in preventing permeability of LDL. Conclusion: Incomplete endothelial integrity was confirmed as a key factor of neointimal foam cell formation following stent implantation. Pro-healing stent coatings may facilitate reendothelialization and reduce the risk of neoatherosclerosis.
Collapse
|
20
|
Martin-Loeches I, Timsit JF, Leone M, de Waele J, Sartelli M, Kerrigan S, Azevedo LCP, Einav S. Clinical controversies in abdominal sepsis. Insights for critical care settings. J Crit Care 2019; 53:53-58. [DOI: 10.1016/j.jcrc.2019.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
|
21
|
Kerrigan SW, Devine T, Fitzpatrick G, Thachil J, Cox D. Early Host Interactions That Drive the Dysregulated Response in Sepsis. Front Immunol 2019; 10:1748. [PMID: 31447831 PMCID: PMC6691039 DOI: 10.3389/fimmu.2019.01748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/10/2019] [Indexed: 01/18/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. While many individual cells and systems in the body are involved in driving the excessive and sometimes sustained host response, pathogen engagement with endothelial cells and platelets early in sepsis progression, are believed to be key. Significant progress has been made in establishing key molecular interactions between platelets and pathogens and endothelial cells and pathogens. This review will explore the growing number of compensatory connections between bacteria and viruses with platelets and endothelial cells and how a better understanding of these interactions are informing the field of potential novel ways to treat the dysregulated host response during sepsis.
Collapse
Affiliation(s)
- Steven W Kerrigan
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tatyana Devine
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Glenn Fitzpatrick
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jecko Thachil
- Department of Haematology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Dermot Cox
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
22
|
Abstract
This paper discusses the physiological and technological concepts that might form the future of critical care medicine. Initially, we discuss the need for a personalized approach and introduce the concept of personalized physiological medicine (PPM), including (1) assessment of frailty and physiological reserve, (2) continuous assessment of organ function, (3) assessment of the microcirculation and parenchymal cells, and (4) integration of organ and cell function for continuous therapeutic feedback control. To understand the cellular basis of organ failure, we discuss the processes that lead to cell death, including necrosis, necroptosis, autophagy, mitophagy, and cellular senescence. In vivo technology is used to monitor these processes. To this end, we discuss new materials for developing in vivo biosensors and drug delivery systems. Such in vivo biosensors will define the diagnostic platform of the future ICU in vivo interacting with theragnostic drugs. In addition to pharmacological therapeutic options, placement and control of artificial organs to support or replace failing organs will be central in the ICU in vivo of the future. Remote monitoring and control of these biosensors and artificial organs will be made using adaptive physiological mathematical modeling of the critically ill patient. The current state of these developments is discussed.
Collapse
Affiliation(s)
- Can Ince
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Marini JJ, DeBacker D, Gattinoni L, Ince C, Martin-Loeches I, Singer P, Singer M, Westphal M, Vincent JL. Thinking forward: promising but unproven ideas for future intensive care. Crit Care 2019; 23:197. [PMID: 31200781 PMCID: PMC6570630 DOI: 10.1186/s13054-019-2462-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Progress toward determining the true worth of ongoing practices or value of recent innovations can be glacially slow when we insist on following the conventional stepwise scientific pathway. Moreover, a widely accepted but flawed conceptual paradigm often proves difficult to challenge, modify or reject. Yet, most experienced clinicians, educators and clinical scientists privately entertain untested ideas about how care could or should be improved, even if the supporting evidence base is currently thin or non-existent. This symposium encouraged experts to share such intriguing but unproven concepts, each based upon what the speaker considered a logical but unproven rationale. Such free interchange invited dialog that pointed toward new or neglected lines of research needed to improve care of the critically ill. In this summary of those presentations, a brief background outlines the rationale for each novel and deliberately provocative unconfirmed idea endorsed by the presenter.
Collapse
Affiliation(s)
- John J. Marini
- Regions Hospital, University of Minnesota, MS11203B, 640 Jackson Street, Minneapolis/St.Paul, MN 55101 USA
| | | | | | - Can Ince
- Erasmus University Medical Center, Rotterdam, Netherlands
| | | | | | - Mervyn Singer
- University College London Medical School, London, UK
| | | | | |
Collapse
|