1
|
Huo Y, Feng X, Niu M, Wang L, Xie Y, Wang L, Ha J, Cheng X, Gao Z, Sun Y. Therapeutic time windows of compounds against NMDA receptors signaling pathways for ischemic stroke. J Neurosci Res 2021; 99:3204-3221. [PMID: 34676594 DOI: 10.1002/jnr.24937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
Much evidence has proved that excitotoxicity induced by excessive release of glutamate contributes largely to damage caused by ischemia. In view of the key role played by NMDA receptors in mediating excitotoxicity, compounds against NMDA receptors signaling pathways have become the most promising type of anti-stroke candidate compounds. However, the limited therapeutic time window for neuroprotection is a key factor preventing NMDA receptor-related compounds from showing efficacy in all clinical trials for ischemic stroke. In this perspective, the determination of therapeutic time windows of these kinds of compounds is useful in ensuring a therapeutic effect and accelerating clinical application. This mini-review discussed the therapeutic time windows of compounds against NMDA receptors signaling pathways, described related influence factors and the status of clinical studies. The purpose of this review is to look for compounds with wide therapeutic time windows and better clinical application prospect.
Collapse
Affiliation(s)
- Yuexiang Huo
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xue Feng
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Menghan Niu
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Le Wang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China.,Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, China
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, CA, USA
| | - Jing Ha
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiaokun Cheng
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| |
Collapse
|
2
|
Knopp R, Jastaniah A, Dubrovskyi O, Gaisina I, Tai L, Thatcher GRJ. Extending the Calpain-Cathepsin Hypothesis to the Neurovasculature: Protection of Brain Endothelial Cells and Mice from Neurotrauma. ACS Pharmacol Transl Sci 2021; 4:372-385. [PMID: 33615187 PMCID: PMC7887848 DOI: 10.1021/acsptsci.0c00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The calpain-cathepsin hypothesis posits a key role for elevated calpain-1 and cathepsin-B activity in the neurodegeneration underlying neurotrauma and multiple disorders including Alzheimer's disease (AD). AD clinical trials were recently halted on alicapistat, a selective calpain-1 inhibitor, because of insufficient exposure of neurons to the drug. In contrast to neuroprotection, the ability of calpain-1 and cathepsin-B inhibitors to protect the blood-brain barrier (BBB), is understudied. Since cerebrovascular dysfunction underlies vascular dementia, is caused by ischemic stroke, and is emerging as an early feature in the progression of AD, we studied protection of brain endothelial cells (BECs) by selective and nonselective calpain-1 and cathepsin-B inhibitors. We show these inhibitors protect both neurons and murine BECs from ischemia-reperfusion injury. Cultures of primary BECs from ALDH2 -/- mice that manifest enhanced oxidative stress were sensitive to ischemia, leading to reduced cell viability and loss of tight junction proteins; this damage was rescued by calpain-1 and cathepsin-B inhibitors. In ALDH2 -/- mice 24 h after mild traumatic brain injury (mTBI), BBB damage was reflected by significantly increased fluorescein extravasation and perturbation of tight junction proteins, eNOS, MMP-9, and GFAP. Both calpain and cathepsin-B inhibitors alleviated BBB dysfunction caused by mTBI. No clear advantage was shown by selective versus nonselective calpain inhibitors in these studies. The lack of recognition of the ability of calpain inhibitors to protect the BBB may have led to the premature abandonment of this therapeutic approach in AD clinical trials and requires further mechanistic studies of cerebrovascular protection by calpain-1 inhibitors.
Collapse
Affiliation(s)
- Rachel
C. Knopp
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Ammar Jastaniah
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Oleksii Dubrovskyi
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Irina Gaisina
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
- UICentre
(Drug Discovery @ UIC), University of Illinois
at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Leon Tai
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Ono Y, Saido TC, Sorimachi H. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 2016; 15:854-876. [PMID: 27833121 DOI: 10.1038/nrd.2016.212] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calpains are a family of proteases that were scientifically recognized earlier than proteasomes and caspases, but remain enigmatic. However, they are known to participate in a multitude of physiological and pathological processes, performing 'limited proteolysis' whereby they do not destroy but rather modulate the functions of their substrates. Calpains are therefore referred to as 'modulator proteases'. Multidisciplinary research on calpains has begun to elucidate their involvement in pathophysiological mechanisms. Therapeutic strategies targeting malfunctions of calpains have been developed, driven primarily by improvements in the specificity and bioavailability of calpain inhibitors. Here, we review the calpain superfamily and calpain-related disorders, and discuss emerging calpain-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
4
|
Low dose of l-glutamic acid attenuated the neurological dysfunctions and excitotoxicity in bilateral common carotid artery occluded mice. Behav Pharmacol 2016; 27:615-22. [DOI: 10.1097/fbp.0000000000000256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
6
|
Kantserova NP, Lysenko LA, Ushakova NV, Krylov VV, Nemova NN. [Modulation of Ca(2+)-Dependent Proteiolysis under the Action of Weak Low-Frequency Magnetic Fields]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016; 41:725-30. [PMID: 27125027 DOI: 10.1134/s1068162015060060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The study aimed to determine the molecular targets of magnetic fields in living objects. Time-dependent effects of weak low-frequency magnetic field tuned to the parametric resonance for calcium ions were studied on model organisms (fish, whelk). The dynamics of Ca(2+)-dependent proteinase activity under the exposure to magnetic fields with given parameters was determined and minimal time of exposure in order to achieve inactivation of these proteinases was find out as well. As hyperactivation of Ca(2+)-dependent proteinases is a basis of degenerative pathology development the therapeutic potential of weak low-frequency magnetic fields enabling to modulate Ca(2+)-dependent proteinase activity is supported.
Collapse
|
7
|
Machado VM, Morte MI, Carreira BP, Azevedo MM, Takano J, Iwata N, Saido TC, Asmussen H, Horwitz AR, Carvalho CM, Araújo IM. Involvement of calpains in adult neurogenesis: implications for stroke. Front Cell Neurosci 2015; 9:22. [PMID: 25698931 PMCID: PMC4316774 DOI: 10.3389/fncel.2015.00022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/13/2015] [Indexed: 11/13/2022] Open
Abstract
Calpains are ubiquitous proteases involved in cell proliferation, adhesion and motility. In the brain, calpains have been associated with neuronal damage in both acute and neurodegenerative disorders, but their physiological function in the nervous system remains elusive. During brain ischemia, there is a large increase in the levels of intracellular calcium, leading to the activation of calpains. Inhibition of these proteases has been shown to reduce neuronal death in a variety of stroke models. On the other hand, after stroke, neural stem cells (NSC) increase their proliferation and newly formed neuroblasts migrate towards the site of injury. However, the process of forming new neurons after injury is not efficient and finding ways to improve it may help with recovery after lesion. Understanding the role of calpains in the process of neurogenesis may therefore open a new window for the treatment of stroke. We investigated the involvement of calpains in NSC proliferation and neuroblast migration in two highly neurogenic regions in the mouse brain, the dentate gyrus (DG) and the subventricular zone (SVZ). We used mice that lack calpastatin, the endogenous calpain inhibitor, and calpains were also modulated directly, using calpeptin, a pharmacological calpain inhibitor. Calpastatin deletion impaired both NSC proliferation and neuroblast migration. Calpain inhibition increased NSC proliferation, migration speed and migration distance in cells from the SVZ. Overall, our work suggests that calpains are important for neurogenesis and encourages further research on their neurogenic role. Prospective therapies targeting calpain activity may improve the formation of new neurons following stroke, in addition to affording neuroprotection.
Collapse
Affiliation(s)
- Vanessa M Machado
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve Faro, Portugal ; IBB-Institute for Biotechnology and Bioengineering, Center for Molecular and Structural Biomedicine, University of Algarve Faro, Portugal ; Center for Biomedical Research, CBMR, University of Algarve Faro, Portugal ; Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Maria I Morte
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Bruno P Carreira
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Maria M Azevedo
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Jiro Takano
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute Wako-shi, Saitama, Japan
| | - Nobuhisa Iwata
- Graduate School of Biomedical Sciences, Nagasaki University Nagasaki, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute Wako-shi, Saitama, Japan
| | - Hannelore Asmussen
- Department of Cell Biology, University of Virginia School of Medicine Charlottesville, VA, USA
| | - Alan R Horwitz
- Department of Cell Biology, University of Virginia School of Medicine Charlottesville, VA, USA
| | - Caetana M Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Inês M Araújo
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve Faro, Portugal ; IBB-Institute for Biotechnology and Bioengineering, Center for Molecular and Structural Biomedicine, University of Algarve Faro, Portugal ; Center for Biomedical Research, CBMR, University of Algarve Faro, Portugal ; Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| |
Collapse
|
8
|
Bralic M, Stemberga V, Stifter S. Introduction of calpain inhibitors in traumatic brain injury: a novel approach? Med Hypotheses 2012; 79:358-60. [PMID: 22726623 DOI: 10.1016/j.mehy.2012.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability throughout the world. In recent years, researchers focused on the pathological significance of calcium accumulation in the brain after TBI. Neuronal calcium homeostasis disturbances may result in the activation of calpain a ubiquitous calcium-sensitive protease. The calpain family has a well-established causal role in neuronal cell death following acute brain injury: their activation has been observed to progressively increase after either contusive or diffuse brain trauma in animals, suggesting calpain to be a mediator of early neuronal damage. We hypothesize that pretreatment with the calpain inhibitors in population at objective risk (military soldiers' pre combat) in appropriate dose would open therapeutic time window expected to prevent and reduce extensive brain damage by providing optimal TBI neuroprotection. Additional therapeutic strategy for TBI, based on calpain modulating actions such as pretreatment with calpain inhibitors has been proposed. Since calpain overexpression has been well established in acute neuronal injury and further subsequent neurodegeneration, from a clinical viewpoint, we speculate that if this hypothesis proves correct pretreatment inhibitors introduction may become a therapeutic option for different brain pathologies to be approached and treated with.
Collapse
Affiliation(s)
- Marina Bralic
- Department of Neurology, Clinical Hospital Centre Rijeka, Cambierieva 17 Rijeka, Croatia.
| | | | | |
Collapse
|
9
|
Abstract
After an acute ischemia/reperfusion of the rat retina, the activation of cytotoxic proteases, including calpain, results in necrosis and apoptosis of retinal ganglion cells resulting in their degeneration. Using a systemically administered calpain inhibitor that crosses the blood-retinal barrier would provide for novel systemic intervention that protects the retina from acute injury and loss of function. Herein, we study a novel calpain peptide inhibitor, cysteic-leucyl-argininal (CYLA), in an in-vivo rat model of retinal ischemia to determine functional protection using electroretinography. The CYLA prodrug was administered intraperitoneally before and/or after ischemia-reperfusion at concentrations of 20-40 mg/kg. We found that administering 20 mg/kg of CYLA only after ischemia provides significant preservation of retinal function.
Collapse
|
10
|
Ischemia-induced calpain activation causes eukaryotic (translation) initiation factor 4G1 (eIF4GI) degradation, protein synthesis inhibition, and neuronal death. Proc Natl Acad Sci U S A 2011; 108:18102-7. [PMID: 22006312 DOI: 10.1073/pnas.1112635108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Persistent protein synthesis inhibition (PSI) is a robust predictor of eventual neuronal death following cerebral ischemia. We thus tested the hypothesis that persistent PSI inhibition and neuronal death are causally linked. Neuronal viability strongly correlated with both protein synthesis and levels of eukaryotic (translation) initiation factor 4G1 (eIF4G1). We determined that in vitro ischemia activated calpain, which degraded eIF4G1. Overexpression of the calpain inhibitor calpastatin or eIF4G1 resulted in increased protein synthesis and increased neuronal viability compared with controls. The neuroprotective effect of eIF4G1 overexpression was due to restoration of cap-dependent protein synthesis, as well as protein synthesis-independent mechanisms, as inhibition of protein synthesis with cycloheximide did not completely prevent the protective effect of eIF4G1 overexpression. In contrast, shRNA-mediated silencing of eIF4G1 exacerbated ischemia-induced neuronal injury, suggesting eIF4G1 is necessary for maintenance of neuronal viability. Finally, calpain inhibition following global ischemia in vivo blocked decreases in eIF4G1, facilitated protein synthesis, and increased neuronal viability in ischemia-vulnerable hippocampal CA1 neurons. Collectively, these data demonstrate that calpain-mediated degradation of a translation initiation factor, eIF4G1, is a cause of both persistent PSI and neuronal death.
Collapse
|
11
|
Donkor IO. Calpain inhibitors: a survey of compounds reported in the patent and scientific literature. Expert Opin Ther Pat 2011; 21:601-36. [DOI: 10.1517/13543776.2011.568480] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Bevers MB, Ingleton LP, Che D, Cole JT, Li L, Da T, Kopil CM, Cohen AS, Neumar RW. RNAi targeting micro-calpain increases neuron survival and preserves hippocampal function after global brain ischemia. Exp Neurol 2010; 224:170-7. [PMID: 20298691 PMCID: PMC2885584 DOI: 10.1016/j.expneurol.2010.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 12/24/2009] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
The calpain family of cysteine proteases has a well-established causal role in neuronal cell death following acute brain injury. However, the relative contribution of calpain isoforms has not been determined in in vivo models. Identification of the calpain isoform responsible for neuronal injury is particularly important given the differential role of calpain isoforms in normal physiology. This study evaluates the role of m-calpain and micro-calpain in an in vivo model of global brain ischemia. Adeno-associated viral vectors expressing short hairpin RNAs targeting the catalytic subunits of micro- or m-calpain were used to knockdown expression of the targeted isoforms in adult rat hippocampal CA1 pyramidal neurons. Knockdown of micro-calpain, but not m-calpain, prevented calpain activity 72 h after 6-min transient forebrain ischemia, increased long-term survival and protected hippocampal electrophysiological function. These findings represent the first in vivo evidence that reducing expression of an individual calpain isoform can decrease post-ischemic neuronal death and preserve hippocampal function.
Collapse
Affiliation(s)
- Matthew B Bevers
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania School of Medicine, Ground Ravdin, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|