1
|
Koning R, van Roon MA, Brouwer MC, van de Beek D. Adjunctive treatments for pneumococcal meningitis: a systematic review of experimental animal models. Brain Commun 2024; 6:fcae131. [PMID: 38707710 PMCID: PMC11069119 DOI: 10.1093/braincomms/fcae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
New treatments are needed to improve the prognosis of pneumococcal meningitis. We performed a systematic review on adjunctive treatments in animal models of pneumococcal meningitis in order to identify treatments with the most potential to progress to clinical trials. Studies testing therapy adjunctive to antibiotics in animal models of pneumococcal meningitis were included. A literature search was performed using Medline, Embase and Scopus for studies published from 1990 up to 17 February 2023. Two investigators screened studies for inclusion and independently extracted data. Treatment effect was assessed on the clinical parameters disease severity, hearing loss and cognitive impairment and the biological parameters inflammation, brain injury and bacterial load. Adjunctive treatments were evaluated by their effect on these outcomes and the quality, number and size of studies that investigated the treatments. Risk of bias was assessed with the SYRCLE risk of bias tool. A total of 58 of 2462 identified studies were included, which used 2703 experimental animals. Disease modelling was performed in rats (29 studies), rabbits (13 studies), mice (12 studies), gerbils (3 studies) or both rats and mice (1 study). Meningitis was induced by injection of Streptococcus pneumoniae into the subarachnoid space. Randomization of experimental groups was performed in 37 of 58 studies (64%) and 12 studies (12%) were investigator-blinded. Overall, 54 treatment regimens using 46 adjunctive drugs were evaluated: most commonly dexamethasone (16 studies), daptomycin (5 studies), complement component 5 (C5; 3 studies) antibody and Mn(III)tetrakis(4-benzoicacid)porphyrin chloride (MnTBAP; 3 studies). The most frequently evaluated outcome parameters were inflammation [32 studies (55%)] and brain injury [32 studies (55%)], followed by disease severity [30 studies (52%)], hearing loss [24 studies (41%)], bacterial load [18 studies (31%)] and cognitive impairment [9 studies (16%)]. Adjunctive therapy that improved clinical outcomes in multiple studies was dexamethasone (6 studies), C5 antibodies (3 studies) and daptomycin (3 studies). HMGB1 inhibitors, matrix metalloproteinase inhibitors, neurotrophins, antioxidants and paquinimod also improved clinical parameters but only in single or small studies. Evaluating the treatment effect of adjunctive therapy was complicated by study heterogeneity regarding the animal models used and outcomes reported. In conclusion, 24 of 54 treatment regimens (44%) tested improved clinically relevant outcomes in experimental pneumococcal meningitis but few were tested in multiple well-designed studies. The most promising new adjunctive treatments are with C5 antibodies or daptomycin, suggesting that these drugs could be tested in clinical trials.
Collapse
Affiliation(s)
- Rutger Koning
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Marian A van Roon
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| |
Collapse
|
2
|
Tauber SC, Nau R. Treatment of septic encephalopathy and encephalitis - a critical appraisal. Expert Rev Neurother 2023; 23:1069-1080. [PMID: 38019041 DOI: 10.1080/14737175.2023.2288652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION The central nervous system is frequently involved during severe sepsis. Patients either develop septic encephalopathy characterized by delirium and coma or focal neurological signs as a consequence of septic-embolic or septic-metastatic encephalitis. AREAS COVERED In this review, a summary of currently available literature on established and some promising experimental treatment options for septic encephalopathy and encephalitis is provided, with a focus on the clinical utility of published studies. EXPERT OPINION Treatment relies on proper identification of the causative pathogen and rapidly initiated adequate empirical or (after identification of the pathogen) tailored antibiotic therapy, fluid and electrolyte management. In the presence of brain abscess(es) or mycotic aneurysm(s), surgery or interventional neuroradiology must be considered. Pharmacological approaches to prevent delirium of different etiology include the use of dexmedetomidine and (with limitations) of melatonin and its derivatives. In the absence of a specific pharmacological treatment, non-pharmacological bundles of interventions (e.g. promotion of sleep, cognitive stimulation, early mobilization and adequate therapy of pain) are of proven efficacy to prevent delirium of different etiology including sepsis. Experimental promising therapies include the use of non-bacteriolytic antibiotics and the reduction of the toxic effects of microglial activation.
Collapse
Affiliation(s)
- Simone C Tauber
- Department of Neurology, RWTH University Hospital Aachen, Aachen, Germany
| | - Roland Nau
- Department of Neuropathology, University Medicine Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| |
Collapse
|
3
|
Maldiney T, Bonnot D, Anzala N, Albac S, Labrousse D, Varon E, Amoureux L, Chapuis A, Bador J, Neuwirth C, Croisier D, Chavanet P. In vitro antimicrobial activity of daptomycin alone and in adjunction with either amoxicillin, cefotaxime or rifampicin against the main pathogens responsible for bacterial meningitis in adults. J Glob Antimicrob Resist 2021; 25:193-198. [PMID: 33774218 DOI: 10.1016/j.jgar.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES As daptomycin adjunction is currently under clinical evaluation in the multicentre phase II AddaMAP study to improve the prognosis of pneumococcal meningitis, the present work aimed at evaluating the in vitro antimicrobial activity of daptomycin-based combinations against some of the most frequent species responsible for bacterial meningitis. METHODS Clinically relevant strains of Streptococcus pneumoniae, Listeria monocytogenes, Haemophilus influenzae and Neisseria meningitidis were obtained from National Reference Centers. The antimicrobial activity of amoxicillin, cefotaxime and rifampicin, either alone or in association with daptomycin, was explored through the determination of minimum inhibitory concentration (MIC) and fractional inhibitory concentration index (FICI) as well as time-kill assay (TKA) using the broth microdilution method. RESULTS All species taken together, the adjunction of daptomycin had no deleterious impact on the antimicrobial activity of amoxicillin, cefotaxime or rifampicin in vitro. Regarding Gram-positive bacteria, FICI and TKA analysis confirmed a global improvement of growth inhibition and bactericidal activity due to the adjunction of daptomycin. The synergistic effect prevailed for L. monocytogenes as demonstrated by FICI mainly <0.5 and a dynamic TKA-based synergy rate >50%. In addition, daptomycin-based associations did not modify the activity of β-lactam antibiotics or rifampicin against Gram-negative bacteria, notably N. meningitidis. CONCLUSION These results bring comforting evidence towards the clinical potential of daptomycin adjunction in the treatment of bacterial meningitis, which supports the ongoing AddaMAP clinical trial.
Collapse
Affiliation(s)
- Thomas Maldiney
- Infectious Diseases Department, University Hospital of Dijon, 14 rue Paul Gaffarel, 21000, Dijon, France
| | - Dorian Bonnot
- Vivexia, Résidence Richelieu, 10 Boulevard Carnot, 21000, Dijon, France
| | - Nelson Anzala
- Vivexia, Résidence Richelieu, 10 Boulevard Carnot, 21000, Dijon, France
| | - Sandrine Albac
- Vivexia, Résidence Richelieu, 10 Boulevard Carnot, 21000, Dijon, France
| | | | - Emmanuelle Varon
- National Centre for Pneumococci, Centre Hospitalier Intercommunal Créteil, 40 avenue de Verdun, 94000, Créteil, France
| | - Lucie Amoureux
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France; UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, 2 Place Saint-Jacques, Besançon, France
| | - Angélique Chapuis
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France; UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, 2 Place Saint-Jacques, Besançon, France
| | - Julien Bador
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France; UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, 2 Place Saint-Jacques, Besançon, France
| | - Catherine Neuwirth
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France; UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, 2 Place Saint-Jacques, Besançon, France
| | - Delphine Croisier
- Vivexia, Résidence Richelieu, 10 Boulevard Carnot, 21000, Dijon, France
| | - Pascal Chavanet
- Infectious Diseases Department, University Hospital of Dijon, 14 rue Paul Gaffarel, 21000, Dijon, France; Vivexia, Résidence Richelieu, 10 Boulevard Carnot, 21000, Dijon, France.
| |
Collapse
|
4
|
Svendsen MB, Ring Kofoed I, Nielsen H, Schønheyder HC, Bodilsen J. Neurological sequelae remain frequent after bacterial meningitis in children. Acta Paediatr 2020; 109:361-367. [PMID: 31325195 DOI: 10.1111/apa.14942] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 12/28/2022]
Abstract
AIM To examine the incidence, clinical presentation and risk factors for neurological sequelae following childhood community-acquired bacterial meningitis (CABM). METHODS We included all children aged 1 month to 15 years old with CABM in North Denmark Region, 1998-2016. Using medical records, we registered baseline demographics, signs and symptoms at admission, laboratory investigations, and outcome assessed by the Glasgow Outcome Scale (GOS). A GOS score of 1-4 was considered an unfavourable outcome. We used modified Poisson regression to examine predefined risk factors for neurological sequelae among survivors. RESULTS We identified 88 cases of CABM in 86 patients (45 female) with a median age of 1.4 years (interquartile range 0.7-4.6). Neisseria meningitidis was the most common pathogen (48/88). Neurological sequelae occurred in 23 (27%) as hearing deficits in 13 (15%), cognitive impairment in 10 (12%) and motor or sensory nerve deficits in 8 (9%). Unfavourable outcome was observed in 16 (18%) patients and three (3%) patients died. Abnormalities on cranial imaging remained the only independent risk factor for developing neurological sequelae in adjusted analysis. CONCLUSION Neurological sequelae following CABM in children remain frequent and abnormal cranial imaging may be an independent risk factor.
Collapse
Affiliation(s)
- Morten B. Svendsen
- Department of Infectious Diseases Aalborg University Hospital Aalborg Denmark
| | - Inge Ring Kofoed
- Department of Paediatrics Aalborg University Hospital Aalborg Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases Aalborg University Hospital Aalborg Denmark
- Department of Clinical Medicine Aalborg University Aalborg Denmark
| | - Henrik Carl Schønheyder
- Department of Clinical Medicine Aalborg University Aalborg Denmark
- Department of Clinical Microbiology Aalborg University Hospital Aalborg Denmark
| | - Jacob Bodilsen
- Department of Infectious Diseases Aalborg University Hospital Aalborg Denmark
| |
Collapse
|
5
|
Kietzman C, Tuomanen E. Acute Bacterial Meningitis: Challenges to Better Antibiotic Therapy. ACS Infect Dis 2019; 5:1987-1995. [PMID: 31268283 DOI: 10.1021/acsinfecdis.9b00122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial meningitis is a medical emergency requiring highly bactericidal antibiotics to achieve cure. Many challenges exist to achieving optimal patient outcome. First, antibiotics must pass the blood brain barrier. Once in the subarachnoid space, achieving bactericidal therapy involves circumventing antibiotic resistance and, more commonly, antibiotic tolerance arising from the slow growth of bacteria in the nutrient poor cerebrospinal fluid. Finally, bactericidal therapy is most often bacteriolytic, and debris from lysis is highly inflammatory. Controlling damage from lytic products may require adjunctive therapy to prevent neuronal death. These challenges are an extreme example of the different requirements for treating infections in different body sites.
Collapse
Affiliation(s)
- Colin Kietzman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Elaine Tuomanen
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| |
Collapse
|
6
|
Singhi S, Angurana SK. Principles of Management of Central Nervous System Infections. Indian J Pediatr 2019; 86:52-59. [PMID: 29333566 DOI: 10.1007/s12098-017-2583-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 12/15/2017] [Indexed: 12/30/2022]
Abstract
CNS infections in children are medical emergency and are associated with high mortality and morbidity. For diagnosis, a high index of suspicion is required. Clinical assessment should be supplemented by laboratory investigations including CSF Gram stain and cultures, blood culture, PCR on CSF, serological tests, and imaging. Commonly associated life threatening complications include coma, seizure, raised intracranial pressure (ICP), focal deficits, shock, respiratory failure, and fluid and electrolyte abnormalities. Immediate management should first address control of airway, breathing and circulation; protocolized management of raised ICP and status epilepticus; maintaining adequate intravascular volume; and close monitoring for early detection of complications. Appropriate antimicrobial agents should be administered promptly according to the suspected pathogen. Clinical evaluation, laboratory workup, specific antimicrobial therapy, supportive treatment, and management of associated complications should go hand in hand in a protocolized way for better outcome.
Collapse
Affiliation(s)
- Sunit Singhi
- Division of Pediatrics, Medanta- The Medicity, Sector 38, Gurugram, Haryana, 122001, India.
| | - Suresh Kumar Angurana
- Department of Pediatrics, Government Medical College and Hospital, Sector 32, Chandigarh, India
| |
Collapse
|
7
|
Ali AE, Mahdy HM, Elsherbiny DM, Azab SS. Rifampicin ameliorates lithium-pilocarpine-induced seizures, consequent hippocampal damage and memory deficit in rats: Impact on oxidative, inflammatory and apoptotic machineries. Biochem Pharmacol 2018; 156:431-443. [PMID: 30195730 DOI: 10.1016/j.bcp.2018.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/05/2018] [Indexed: 01/28/2023]
Abstract
Epilepsy is one of the serious neurological sequelae of bacterial meningitis. Rifampicin, the well-known broad spectrum antibiotic, is clinically used for chemoprophylaxis of meningitis. Besides its antibiotic effects, rifampicin has been proven to be an effective neuroprotective candidate in various experimental models of neurological diseases. In addition, rifampicin was found to have promising antioxidant, anti-inflammatory and anti-apoptotic effects. Herein, we investigated the anticonvulsant effect of rifampicin at experimental meningitis dose (20 mg/kg, i.p.) using lithium-pilocarpine model of status epilepticus (SE) in rats. Additionally, we studied the effect of rifampicin on seizure induced histopathological, neurochemical and behavioral abnormalities. Our study showed that rifampicin pretreatment attenuated seizure activity and the resulting hippocampal insults marked by hematoxylin and eosin. Markers of oxidative stress, neuroinflammation and apoptosis were evaluated, in the hippocampus, 24 h after SE induction. We found that rifampicin pretreatment suppressed oxidative stress as indicated by normalized malondialdehyde and glutathione levels. Rifampicin pretreatment attenuated SE-induced neuroinflammation and decreased the hippocampal expression of interleukin-1β, tumor necrosis factor-α, nuclear factor kappa-B, and cyclooxygenase-2. Moreover, rifampicin mitigated SE-induced neuronal apoptosis as indicated by fewer positive cytochrome c immunostained cells and lower caspase-3 activity in the hippocampus. Furthermore, Morris water maze testing at 7 days after SE induction showed that rifampicin pretreatment can improve cognitive dysfunction. Therefore, rifampicin, currently used in the management of meningitis, has a potential additional advantage of ameliorating its epileptic sequelae.
Collapse
Affiliation(s)
- Alaa E Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba M Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa M Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
8
|
Masouris I, Klein M, Dyckhoff S, Angele B, Pfister HW, Koedel U. Inhibition of DAMP signaling as an effective adjunctive treatment strategy in pneumococcal meningitis. J Neuroinflammation 2017; 14:214. [PMID: 29096648 PMCID: PMC5669003 DOI: 10.1186/s12974-017-0989-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pneumococcal meningitis remains a potentially lethal and debilitating disease, mainly due to brain damage from sustained inflammation. The release of danger-associated molecular patterns (DAMPs), like myeloid-related protein 14 (MRP14) and high mobility group box 1 protein (HMGB1), plays a major role in persistence of inflammation. In this study, we evaluated if paquinimod, an MRP14-inhibitor, and an anti-HMGB1 antibody can improve clinical outcome as adjunctive therapeutics in pneumococcal meningitis. METHODS We tested the adjuvant administration of paquinimod and the anti-HMGB1 antibody in our pneumococcal meningitis mouse model assessing clinical (clinical score, open-field-test, temperature) and pathophysiological parameters (intracranial pressure, white blood cell count in CSF, bleeding area) as well as bacterial titers in blood and brain 24 h after administration and 48 h after infection. Furthermore, we explored the interactions of these two agents with dexamethasone, the standard adjuvant treatment in pneumococcal meningitis (PM), and daptomycin, a non-bacteriolytic antibiotic preventing pathogen-associated molecular pattern (PAMP) release. RESULTS Adjunctive inhibition of MRP14 or HMGB1 reduced mortality in mice with PM. This effect was lost when the two anti-DAMP agents were given simultaneously, possibly due to excessive immunosuppression. Combining anti-PAMP (daptomycin) and anti-DAMP treatments did not produce synergistic results; instead, the anti-DAMP treatment alone was sufficient and superior. The combination of anti-HMGB1 with dexamethasone did not diminish the effect of the former. CONCLUSIONS DAMP inhibition possesses good potential as an adjuvant treatment approach in PM, as it improves clinical outcome and can be given together with the standard adjuvant dexamethasone without drug effect loss in experimental PM.
Collapse
Affiliation(s)
- Ilias Masouris
- Department of Neurology, University Hospital, LMU Munich, 81377, Munich, Germany. .,Department of Neurology, Klinikum Grosshadern of the Ludwig Maximilians University, Marchioninistraße 15, 81377, Munich, Germany.
| | - Matthias Klein
- Department of Neurology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Susanne Dyckhoff
- Department of Neurology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Barbara Angele
- Department of Neurology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - H W Pfister
- Department of Neurology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Uwe Koedel
- Department of Neurology, University Hospital, LMU Munich, 81377, Munich, Germany
| |
Collapse
|
9
|
Role of Rifampin in Reducing Inflammation and Neuronal Damage in Childhood Bacterial Meningitis: A Pilot Randomized Controlled Trial. Pediatr Infect Dis J 2017; 36:556-559. [PMID: 28027282 DOI: 10.1097/inf.0000000000001513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Treatment of acute bacterial meningitis in children with bactericidal antibiotics causes cell wall lysis and a surge in inflammatory cascade, which in turn contributes to neuronal damage and morbidity. Pretreatment with a nonbacteriolytic antibiotic, such as rifampin, has been shown to attenuate the inflammatory response in experimental models of bacterial meningitis. In a pilot study, in children with bacterial meningitis, we have studied markers of inflammatory response and neuronal damage in 2 groups of children with bacterial meningitis; one group received rifampin pretreatment with ceftriaxone and the other group received ceftriaxone alone. PATIENTS AND METHODS Forty children with bacterial meningitis, who were 3 months to 12 years of age, were randomly assigned to receive either a single dose rifampin (20 mg/kg) 30 minutes before ceftriaxone or ceftriaxone alone was given. The primary outcome variables were cerebrospinal fluid (CSF) concentrations of tumor necrosis factor alpha (TNFα), S100B and neuron-specific enolase on day 1 and day 5, and secondary outcome variables were the values of TNFα and interleukin 6 in serum on day 1 and day 5; hearing and neurologic sequelae at 3 months after recovery from the illness. RESULTS Children in rifampin pretreatment group had significantly lower CSF TNFα concentrations [median (interquartile range [IQR]): 15.5 (7.2-22.0) vs. 53.0 (9.0-87.5) pg/mL, P = 0.019] and S100B [median (IQR): 145.0 (54.7-450.0) vs. 447.5 (221.0-804.6) pg/mL, P = 0.033] on day 1 and S100B [median (IQR): 109.7 (64.0-287.0) vs. 322 (106.7-578.0) pg/mL, P = 0.048] and neuron-specific enolase [median (IQR): 8.6 (5-14.75) vs. 18.2 (7.0-28.75) ng/mL, P = 0.035] on day 5 when compared with ceftriaxone alone group. The rifampin-treated group also had reduced morbidity and neurologic sequelae; however, these were not statistically significant. CONCLUSIONS Pretreatment with single dose rifampin 30 minutes before ceftriaxone administration reduced the CSF concentrations of markers of inflammation and neuronal damage in children with bacterial meningitis.
Collapse
|
10
|
Rifampin use in acute community-acquired meningitis in intensive care units: the French retrospective cohort ACAM-ICU study. Crit Care 2015; 19:303. [PMID: 26306393 PMCID: PMC4549935 DOI: 10.1186/s13054-015-1021-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/04/2015] [Indexed: 11/29/2022] Open
Abstract
Introduction Bacterial meningitis among critically ill adult patients remains associated with both high mortality and frequent, persistent disability. Vancomycin was added to treatment with a third-generation cephalosporin as recommended by French national guidelines. Because animal model studies had suggested interest in the use of rifampin for treatment of bacterial meningitis, and after the introduction of early corticosteroid therapy (in 2002), there was a trend toward increasing rifampin use for intensive care unit (ICU) patients. The aim of this article is to report on this practice. Methods Five ICUs participated in the study. Baseline characteristics and treatment data were retrospectively collected from charts of patients admitted with a diagnosis of acute bacterial meningitis during a 5-year period (2004–2008). The ICU mortality was the main outcome measure; Glasgow Outcome Scale and 3-month mortality were also assessed. Results One hundred fifty-seven patients were included. Streptococcus pneumoniae and Neisseria meningitidis were the most prevalent causative microorganisms. The ICU mortality rate was 15 %. High doses of a cephalosporin were the most prevalent initial antimicrobial treatment. The delay between admission and administration of the first antibiotic dose was correlated with ICU mortality. Rifampin was used with a cephalosporin for 32 patients (ranging from 8 % of the cohort for 2004 to 30 % in 2008). Administration of rifampin within the first 24 h of hospitalization could be associated with a lower ICU survival. Statistical association between such an early rifampin treatment and ICU mortality reached significance only for patients with pneumococcal meningitis (p=0.031) in univariate analysis, but not in the logistic model. Conclusions We report on the role of rifampin use for patients with community-acquired meningitis, and the results of this study suggest that this practice may be associated with lower mortality in the ICU. Nevertheless, the only independent predictors of ICU mortality were organ failure and pneumococcal infection. Further studies are required to confirm these results and to explain how rifampin use would reduce mortality. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-1021-7) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Nau R, Djukic M, Spreer A, Ribes S, Eiffert H. Bacterial meningitis: an update of new treatment options. Expert Rev Anti Infect Ther 2015; 13:1401-23. [DOI: 10.1586/14787210.2015.1077700] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Liechti FD, Grandgirard D, Leib SL. Bacterial meningitis: insights into pathogenesis and evaluation of new treatment options: a perspective from experimental studies. Future Microbiol 2015; 10:1195-213. [PMID: 26119836 DOI: 10.2217/fmb.15.43] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial meningitis is associated with high mortality and morbidity rates. Bacterial components induce an overshooting inflammatory reaction, eventually leading to brain damage. Pathological correlates of neurofunctional deficits include cortical necrosis, damage of the inner ear and hippocampal apoptosis. The hippocampal dentate gyrus is important for memory acquisition and harbors a neuronal stem cell niche, thus being potentially well equipped for regeneration. Adjuvant therapies aimed at decreasing the inflammatory reaction, for example, dexamethasone, and those protecting the brain from injury have been evaluated in animal models of the disease. They include nonbacteriolytic antibiotics (e.g., daptomycin), metalloproteinase inhibitors and modulators of the immunological response, for example, granulocyte colony-stimulating factor. Increasing research interest has recently been focused on interventions aimed at supporting regenerative processes.
Collapse
Affiliation(s)
- Fabian D Liechti
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstr. 51, CH-3010 Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstr. 51, CH-3010 Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstr. 51, CH-3010 Bern, Switzerland.,Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Austrasse, CH-3700 Spiez, Switzerland
| |
Collapse
|
13
|
English BK. Limitations of beta-lactam therapy for infections caused by susceptible Gram-positive bacteria. J Infect 2014; 69 Suppl 1:S5-9. [PMID: 25124369 DOI: 10.1016/j.jinf.2014.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 01/29/2023]
Abstract
Penicillin and related beta-lactam agents have been the most widely used and most important antimicrobials in medical history, and remain the recommended therapy for many infectious diseases 85 years after the discovery of penicillin by Alexander Fleming. Yet the efficacy of these agents has been undermined by two factors - the emergence of clinically significant resistance to the antimicrobial activity of these agents, and clinical situations in which these drugs may be suboptimal (even though the bacterial pathogens are not "resistant" to the drugs). Observations in experimental infection models in animals (group A streptococcal myositis, pneumococcal meningitis and pneumonia, group B streptococcal sepsis) and in some cases clinical studies suggest that monotherapy with beta-lactam antibiotics may be inferior to treatment with other types of antibiotics, alone or in combination with beta-lactams - even in situations where the bacterial pathogens remain fully "susceptible" to beta-lactams in vitro.
Collapse
Affiliation(s)
- B Keith English
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 1355 Bogue St., B240, East Lansing, MI 48824, USA.
| |
Collapse
|
14
|
Nau R, Ribes S, Djukic M, Eiffert H. Strategies to increase the activity of microglia as efficient protectors of the brain against infections. Front Cell Neurosci 2014; 8:138. [PMID: 24904283 PMCID: PMC4033068 DOI: 10.3389/fncel.2014.00138] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/30/2014] [Indexed: 12/24/2022] Open
Abstract
In healthy individuals, infections of the central nervous system (CNS) are comparatively rare. Based on the ability of microglial cells to phagocytose and kill pathogens and on clinical findings in immunocompromised patients with CNS infections, we hypothesize that an intact microglial function is crucial to protect the brain from infections. Phagocytosis of pathogens by microglial cells can be stimulated by agonists of receptors of the innate immune system. Enhancing this pathway to increase the resistance of the brain to infections entails the risk of inducing collateral damage to the nervous tissue. The diversity of microglial cells opens avenue to selectively stimulate sub-populations responsible for the defence against pathogens without stimulating sub-populations which are responsible for collateral damage to the nervous tissue. Palmitoylethanolamide (PEA), an endogenous lipid, increased phagocytosis of bacteria by microglial cells in vitro without a measurable proinflammatory effect. It was tested clinically apparently without severe side effects. Glatiramer acetate increased phagocytosis of latex beads by microglia and monocytes, and dimethyl fumarate enhanced elimination of human immunodeficiency virus from infected macrophages without inducing a release of proinflammatory compounds. Therefore, the discovery of compounds which stimulate the elimination of pathogens without collateral damage of neuronal structures appears an achievable goal. PEA and, with limitations, glatiramer acetate and dimethyl fumarate appear promising candidates.
Collapse
Affiliation(s)
- Roland Nau
- Department of Neuropathology, University Medical Centre Göttingen Göttingen, Germany ; Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende Göttingen, Germany
| | - Sandra Ribes
- Department of Neuropathology, University Medical Centre Göttingen Göttingen, Germany
| | - Marija Djukic
- Department of Neuropathology, University Medical Centre Göttingen Göttingen, Germany ; Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende Göttingen, Germany
| | - Helmut Eiffert
- Department of Clinical Microbiology, University Medical Centre Göttingen Göttingen, Germany
| |
Collapse
|
15
|
Nau R, Djukic M, Spreer A, Eiffert H. Bacterial meningitis: new therapeutic approaches. Expert Rev Anti Infect Ther 2013; 11:1079-95. [PMID: 24073921 DOI: 10.1586/14787210.2013.839381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacterial meningitis remains a disease with high mortality and long-term morbidity. Outcome critically depends on the rapid initiation of effective antibiotic therapy. Since a further increase of the incidence of pathogens resistant to antibacterials can be expected both in community-acquired and nosocomial bacterial meningitis, the choice of an optimum initial empirical antibiotic regimen will gain significance. In this context, the use of antibiotics which are bactericidal but do not lyse bacteria, may emerge as a therapeutic option. Conversely, the role of corticosteroids, which decrease the entry of hydrophilic antibacterials into the cerebrospinal fluid, as adjunctive therapy will probably decline as a consequence of the increasing antibiotic resistance of bacteria causing meningitis. Consequent vaccination of all children at present is the most efficient manner to reduce disease burden.
Collapse
Affiliation(s)
- Roland Nau
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, An der Lutter 24, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
16
|
Stock ML, Fiedler KJ, Acharya S, Lange JK, Mlynarczyk GSA, Anderson SJ, McCormack GR, Kanuri SH, Kondru NC, Brewer MT, Carlson SA. Antibiotics acting as neuroprotectants via mechanisms independent of their anti-infective activities. Neuropharmacology 2013; 73:174-82. [PMID: 23748053 DOI: 10.1016/j.neuropharm.2013.04.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/23/2013] [Accepted: 04/26/2013] [Indexed: 12/29/2022]
Abstract
This review considers available evidence that some antibiotics have ancillary neuroprotective effects. Notably, β-lactam antibiotics are believed to increase the expression of glutamate transporter GLT1, potentially relieving the neurological excitotoxicity that characterizes disorders like amyotrophic lateral sclerosis. Minocycline has shown promise in reducing the severity of a number of neurological diseases, including multiple sclerosis, most likely by reducing apoptosis and the expression of inflammatory mediators in the brain. Rapamycin inhibits the activity of a serine/threonine protein kinase that has a role in the pathogenesis of numerous neurologic diseases. Herein we examine the unique neuroprotective aspects of these drugs originally developed as anti-infective agents.
Collapse
Affiliation(s)
- Matthew L Stock
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, 2028 VetMed, Ames, IA 50011, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Steel HC, Theron AJ, Cockeran R, Anderson R, Feldman C. Pathogen- and host-directed anti-inflammatory activities of macrolide antibiotics. Mediators Inflamm 2012; 2012:584262. [PMID: 22778497 PMCID: PMC3388425 DOI: 10.1155/2012/584262] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/02/2012] [Indexed: 12/27/2022] Open
Abstract
Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmful inflammatory responses during acute and chronic bacterial infection. These secondary anti-inflammatory activities of macrolides appear to be particularly effective in attenuating neutrophil-mediated inflammation. This, in turn, may contribute to the usefulness of these agents in the treatment of acute and chronic inflammatory disorders of both microbial and nonmicrobial origin, predominantly of the airways. This paper is focused on the various mechanisms of macrolide-mediated anti-inflammatory activity which target both microbial pathogens and the cells of the innate and adaptive immune systems, with emphasis on their clinical relevance.
Collapse
Affiliation(s)
- Helen C Steel
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, P.O. Box 2034, Pretoria 0001, South Africa.
| | | | | | | | | |
Collapse
|
18
|
Adjunctive daptomycin attenuates brain damage and hearing loss more efficiently than rifampin in infant rat pneumococcal meningitis. Antimicrob Agents Chemother 2012; 56:4289-95. [PMID: 22644021 DOI: 10.1128/aac.00674-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exacerbation of cerebrospinal fluid (CSF) inflammation in response to bacteriolysis by beta-lactam antibiotics contributes to brain damage and neurological sequelae in bacterial meningitis. Daptomycin, a nonlytic antibiotic acting on Gram-positive bacteria, lessens inflammation and brain injury compared to ceftriaxone. With a view to a clinical application for pediatric bacterial meningitis, we investigated the effect of combining daptomycin or rifampin with ceftriaxone in an infant rat pneumococcal meningitis model. Eleven-day-old Wistar rats with pneumococcal meningitis were randomized to treatment starting at 18 h after infection with (i) ceftriaxone (100 mg/kg of body weight, subcutaneously [s.c.], twice a day [b.i.d.]), (ii) daptomycin (10 mg/kg, s.c., daily) followed 15 min later by ceftriaxone, or (iii) rifampin (20 mg/kg, intraperitoneally [i.p.], b.i.d.) followed 15 min later by ceftriaxone. CSF was sampled at 6 and 22 h after the initiation of therapy and was assessed for concentrations of defined chemokines and cytokines. Brain damage was quantified by histomorphometry at 40 h after infection and hearing loss was assessed at 3 weeks after infection. Daptomycin plus ceftriaxone versus ceftriaxone significantly (P < 0.04) lowered CSF concentrations of monocyte chemoattractant protein 1 (MCP-1), MIP-1α, and interleukin 6 (IL-6) at 6 h and MIP-1α, IL-6, and IL-10 at 22 h after initiation of therapy, led to significantly (P < 0.01) less apoptosis, and significantly (P < 0.01) improved hearing capacity. While rifampin plus ceftriaxone versus ceftriaxone also led to lower CSF inflammation (P < 0.02 for IL-6 at 6 h), it had no significant effect on apoptosis and hearing capacity. Adjuvant daptomycin could therefore offer added benefits for the treatment of pediatric pneumococcal meningitis.
Collapse
|
19
|
Woehrl B, Klein M, Grandgirard D, Koedel U, Leib S. Bacterial meningitis: current therapy and possible future treatment options. Expert Rev Anti Infect Ther 2012; 9:1053-65. [PMID: 22029523 DOI: 10.1586/eri.11.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite targeted therapy, case-fatality rates and neurologic sequelae of bacterial meningitis remain unacceptably high. The poor outcome is mainly due to secondary systemic and intracranial complications. These complications seem to be both a consequence of the inflammatory response to the invading pathogen and release of bacterial components by the pathogen itself. Therefore, within the last decades, research has focused on the mechanism underlying immune regulation and the inhibition of bacterial lysis in order to identify new targets for adjuvant therapy. The scope of this article is to give an overview on current treatment strategies of bacterial meningitis, to summarize new insights on the pathophysiology of bacterial meningitis, and to give an outlook on new treatment strategies derived from experimental models.
Collapse
Affiliation(s)
- Bianca Woehrl
- Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | |
Collapse
|
20
|
Gerber J, Redlich S, Ribes S, Tauber SC, Schmidt H, Nau R. Intrathecal Treatment with the Anti-Phosphorylcholine Monoclonal Antibody TEPC-15 Decreases Neuronal Damage in Experimental Pneumococcal Meningitis. Chemotherapy 2012; 58:212-6. [DOI: 10.1159/000337287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 02/16/2012] [Indexed: 11/19/2022]
|
21
|
Clinical Practice Guidelines for the Management of Bacterial Meningitis in Adults in Korea. Infect Chemother 2012. [DOI: 10.3947/ic.2012.44.3.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
Abstract
Pneumococcal meningitis continues to be associated with high rates of mortality and long-term neurological sequelae. The most common route of infection starts by nasopharyngeal colonization by Streptococcus pneumoniae, which must avoid mucosal entrapment and evade the host immune system after local activation. During invasive disease, pneumococcal epithelial adhesion is followed by bloodstream invasion and activation of the complement and coagulation systems. The release of inflammatory mediators facilitates pneumococcal crossing of the blood-brain barrier into the brain, where the bacteria multiply freely and trigger activation of circulating antigen-presenting cells and resident microglial cells. The resulting massive inflammation leads to further neutrophil recruitment and inflammation, resulting in the well-known features of bacterial meningitis, including cerebrospinal fluid pleocytosis, cochlear damage, cerebral edema, hydrocephalus, and cerebrovascular complications. Experimental animal models continue to further our understanding of the pathophysiology of pneumococcal meningitis and provide the platform for the development of new adjuvant treatments and antimicrobial therapy. This review discusses the most recent views on the pathophysiology of pneumococcal meningitis, as well as potential targets for (adjunctive) therapy.
Collapse
|
23
|
Pelkonen T, Roine I, Cruzeiro ML, Pitkäranta A, Kataja M, Peltola H. Slow initial β-lactam infusion and oral paracetamol to treat childhood bacterial meningitis: a randomised, controlled trial. THE LANCET. INFECTIOUS DISEASES 2011; 11:613-21. [DOI: 10.1016/s1473-3099(11)70055-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Koedel U, Klein M, Pfister HW. Modulation of brain injury as a target of adjunctive therapy in bacterial meningitis. Curr Infect Dis Rep 2011; 12:266-73. [PMID: 21308541 DOI: 10.1007/s11908-010-0116-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite effective antimicrobial therapy, mortality and morbidity from bacterial meningitis remain unacceptably high. Meningitis deaths occur as a consequence of intracranial and systemic complications. The neurologic and otologic sequelae reflect structural injury to brain and cochlear tissues. Over the past decade, experimental studies have demonstrated that meningitis-related vascular and cortical injury is largely caused by the massive neutrophilic inflammatory reaction, whereas hippocampal and cochlear injury is driven by both the host response and bacterial toxins. The benefit of adjunctive corticosteroid therapy proves the principle that the key to improve clinical outcome is combining antibiotics with drugs directed against pathophysiologically relevant targets; its limitations in efficacy and applicability highlight the need for novel adjunctive therapies. Promising targets were identified recently through animal studies, and include limiting the release of toxic bacterial products (by using nonbacteriolytic antibiotics) and interfering with the generation of host-derived cytotoxins (by using neutrophil apoptosis-inducing agents).
Collapse
Affiliation(s)
- Uwe Koedel
- Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany,
| | | | | |
Collapse
|
25
|
Factors affecting the development of systemic inflammatory response syndrome in pneumococcal infections. Curr Opin Infect Dis 2011; 24:241-7. [DOI: 10.1097/qco.0b013e3283463e45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Smani Y, Domínguez-Herrera J, Pachón J. Rifampin Protects Human Lung Epithelial Cells Against Cytotoxicity Induced by Clinical Multi and Pandrug-resistant Acinetobacter baumannii. J Infect Dis 2011; 203:1110-9. [DOI: 10.1093/infdis/jiq159] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Genome-wide identification of Streptococcus pneumoniae genes essential for bacterial replication during experimental meningitis. Infect Immun 2010; 79:288-97. [PMID: 21041497 DOI: 10.1128/iai.00631-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meningitis is the most serious of invasive infections caused by the Gram-positive bacterium Streptococcus pneumoniae. Vaccines protect only against a limited number of serotypes, and evolving bacterial resistance to antimicrobials impedes treatment. Further insight into the molecular pathogenesis of invasive pneumococcal disease is required in order to enable the development of new or adjunctive treatments and/or pneumococcal vaccines that are efficient across serotypes. We applied genomic array footprinting (GAF) in the search for S. pneumoniae genes that are essential during experimental meningitis. A total of 6,000 independent TIGR4 marinerT7 transposon mutants distributed over four libraries were injected intracisternally into rabbits, and cerebrospinal fluid (CSF) was collected after 3, 9, and 15 h. Microarray analysis of mutant-specific probes from CSF samples and inocula identified 82 and 11 genes mutants of which had become attenuated or enriched, respectively, during infection. The results point to essential roles for capsular polysaccharides, nutrient uptake, and amino acid biosynthesis in bacterial replication during experimental meningitis. The GAF phenotype of a subset of identified targets was followed up by detailed studies of directed mutants in competitive and noncompetitive infection models of experimental rat meningitis. It appeared that adenylosuccinate synthetase, flavodoxin, and LivJ, the substrate binding protein of a branched-chain amino acid ABC transporter, are relevant as targets for future therapy and prevention of pneumococcal meningitis, since their mutants were attenuated in both models of infection as well as in competitive growth in human cerebrospinal fluid in vitro.
Collapse
|
28
|
Abstract
The clinical outcome of central nervous system infection is determined by the characteristics of the pathogen and the brain's response to the invading bacteria. How infection leads to brain injury remains unresolved. An impediment to progress is the complexity of pathophysiologic processes. Some of the mechanisms involved have been identified in experimental models, providing insights into the molecular basis of brain injury and regeneration, and hinting at targets for therapy. Adjuvant therapies have been proposed. Interventions that protect the brain are evaluated for their potential to preserve neuro-integrative functions in long-term survivors of bacterial meningitis. This article summarizes current studies evaluating pharmacologic interventions in experimental models of bacterial meningitis and discusses how the knowledge gathered could translate into more effective therapies.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review describes the pathophysiology of cellular and axonal injury in bacterial meningitis. RECENT FINDINGS Toll-like receptors have been recognized as important mediators for the initiation of the immune response within the central nervous system. Activation of microglial cells by bacterial products through these receptors increases their ability to phagocytose bacteria, but can also lead to destruction of neurons. The cholesterol-binding hemolysin pneumolysin has a direct toxic effect on neuronal cells. Adjuvant therapy with corticosteroids and glycerol improved the outcome of bacterial meningitis in clinical studies. SUMMARY Brain damage in bacterial meningitis leading to long-term neurologic sequelae and death is caused by several mechanisms. Bacterial invasion and the release of bacterial compounds promote inflammation, invasion of leukocytes and stimulation of microglia. Leukocytes, macrophages and microglia release free radicals, proteases, cytokines and excitatory amino acids, finally leading to energy failure and cell death. Vasculitis, focal ischemia and brain edema subsequent to an increase in cerebrospinal fluid outflow resistance, breakdown of the blood-brain barrier and swelling of necrotic cells cause secondary brain damage.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Currently, dexamethasone is the only adjuvant of proven benefit in bacterial meningitis. Dexamethasone halves the risk of poor outcome, but only in selected patient groups. New therapies based upon an understanding of the pathophysiology are needed. This article summarizes our knowledge on the pathophysiology of bacterial meningitis with special emphasis on pneumococcal meningitis, the experimentally best characterized subtype. RECENT FINDINGS Experimental studies made clear that the harmful inflammatory reaction is initiated by the interaction of bacterial products with host pattern recognition receptors (PRRs) such as Toll-like receptors. PRR signalling leads to MyD88-dependent production of proinflammatory cytokines of the interleukin-1 family. Secretion of interleukin-1 family cytokines forms a positive feedback loop that boosts MyD88-dependent production of proinflammatory mediators. As a consequence, great numbers of neutrophils are recruited to the subarachnoid space. Activated neutrophils release many potentially cytotoxic agents including oxidants and matrix metalloproteinases that can cause collateral damage to brain tissue. Additionally to the inflammatory response, direct bacterial cytotoxicity has been identified as a contributor to tissue damage. SUMMARY Promising pathophysiologically targeted approaches for adjunctive therapy of acute bacterial meningitis include limiting the release of toxic bacterial products (e.g. nonbacteriolytic antibiotics) and interfering in the generation of host-derived cytotoxins.
Collapse
|
31
|
Brouwer MC, Tunkel AR, van de Beek D. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev 2010; 23:467-92. [PMID: 20610819 PMCID: PMC2901656 DOI: 10.1128/cmr.00070-09] [Citation(s) in RCA: 535] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epidemiology of bacterial meningitis has changed as a result of the widespread use of conjugate vaccines and preventive antimicrobial treatment of pregnant women. Given the significant morbidity and mortality associated with bacterial meningitis, accurate information is necessary regarding the important etiological agents and populations at risk to ascertain public health measures and ensure appropriate management. In this review, we describe the changing epidemiology of bacterial meningitis in the United States and throughout the world by reviewing the global changes in etiological agents followed by specific microorganism data on the impact of the development and widespread use of conjugate vaccines. We provide recommendations for empirical antimicrobial and adjunctive treatments for clinical subgroups and review available laboratory methods in making the etiological diagnosis of bacterial meningitis. Finally, we summarize risk factors, clinical features, and microbiological diagnostics for the specific bacteria causing this disease.
Collapse
Affiliation(s)
- Matthijs C. Brouwer
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands, Department of Medicine, Monmouth Medical Center, Long Branch, New Jersey
| | - Allan R. Tunkel
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands, Department of Medicine, Monmouth Medical Center, Long Branch, New Jersey
| | - Diederik van de Beek
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands, Department of Medicine, Monmouth Medical Center, Long Branch, New Jersey
| |
Collapse
|
32
|
Anderson R, Tintinger G, Cockeran R, Potjo M, Feldman C. Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System. Pharmaceuticals (Basel) 2010; 3:1694-1710. [PMID: 27713324 PMCID: PMC4034004 DOI: 10.3390/ph3051694] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/26/2010] [Accepted: 05/24/2010] [Indexed: 11/30/2022] Open
Abstract
In general antibiotics interact cooperatively with host defences, weakening and decreasing the virulence of microbial pathogens, thereby increasing vulnerability to phagocytosis and eradication by the intrinsic antimicrobial systems of the host. Antibiotics, however, also interact with host defences by several other mechanisms, some harmful, others beneficial. Harmful activities include exacerbation of potentially damaging inflammatory responses, a property of cell-wall targeted agents, which promotes the release of pro-inflammatory microbial cytotoxins and cell-wall components. On the other hand, inhibitors of bacterial protein synthesis, especially macrolides, possess beneficial anti-inflammatory/cytoprotective activities, which result from interference with the production of microbial virulence factors/cytotoxins. In addition to these pathogen-directed, anti-inflammatory activities, some classes of antimicrobial agent possess secondary anti-inflammatory properties, unrelated to their conventional antimicrobial activities, which target cells of the innate immune system, particularly neutrophils. This is a relatively uncommon, potentially beneficial property of antibiotics, which has been described for macrolides, imidazole anti-mycotics, fluoroquinolones, and tetracyclines. Although of largely unproven significance in the clinical setting, increasing awareness of the pro-inflammatory and anti-inflammatory properties of antibiotics may contribute to a more discerning and effective use of these agents.
Collapse
Affiliation(s)
- Ronald Anderson
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | - Gregory Tintinger
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
- Division of Pulmonology, Department of Internal Medicine, Steve Biko Pretoria Academic Hospital and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Riana Cockeran
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | - Moliehi Potjo
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
33
|
Attenuation of cerebrospinal fluid inflammation by the nonbacteriolytic antibiotic daptomycin versus that by ceftriaxone in experimental pneumococcal meningitis. Antimicrob Agents Chemother 2010; 54:1323-6. [PMID: 20065062 DOI: 10.1128/aac.00812-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic-induced bacteriolysis exacerbates inflammation and brain damage in bacterial meningitis. Here the quality and temporal kinetics of cerebrospinal fluid (CSF) inflammation were assessed in an infant rat pneumococcal meningitis model for the nonbacteriolytic antibiotic daptomycin versus ceftriaxone. Daptomycin led to lower CSF concentrations of interleukin 1beta (IL-1beta), IL-10, IL-18, monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1 alpha (MIP-1alpha) (P < 0.05). In experimental pneumococcal meningitis, daptomycin treatment resulted in more rapid bacterial killing, lower CSF inflammation, and less brain damage than ceftriaxone treatment.
Collapse
|
34
|
Affiliation(s)
- Ram Yogev
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Children's Memorial Hospital, Chicago, Illinois 60614, USA.
| | | |
Collapse
|
35
|
Killing bacteria softly in the cerebrospinal fluid may be advantageous in bacterial meningitis*. Crit Care Med 2009; 37:2317-8. [DOI: 10.1097/ccm.0b013e3181a9f752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|