1
|
Baer B, Lin J, Schaaf KR, Ware LB, Shaver CM, Bastarache JA. Matrix metalloproteinase-7 is dispensable in a mouse model of sepsis-induced acute lung injury. PLoS One 2025; 20:e0321349. [PMID: 40341670 PMCID: PMC12061409 DOI: 10.1371/journal.pone.0321349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/05/2025] [Indexed: 05/10/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening form of acute lung injury whose pathogenesis is characterized by excessive lung inflammation and alveolar-capillary barrier permeability. Matrix metalloproteinase 7 (MMP7) can regulate leukocyte recruitment and the production of pro-inflammatory cytokines, but whether it plays a role in acute lung injury (ALI) is an unanswered question. We hypothesized that global loss of MMP7 would attenuate sepsis-induced ALI and systemic inflammation. To test this, male and female MMP7 knockout (MMP7KO) mice and wild-type (WT) littermates were exposed to a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced through intraperitoneal injection of cecal slurry (CS; 1.6mg/g) or 5% dextrose (control) followed by exposure to hyperoxia (HO; FiO2=0.95) or room air (control, FiO2=0.21). At 24-hours post-CS+HO, we measured weight loss, illness severity, and body temperature. The mice were then sacrificed, and samples from the lungs, kidneys, spleen, blood, peritoneal wash, and bronchoalveolar lavage (BAL) fluid were collected for analysis. Bacterial burden was assessed in the peritoneum, lung, and spleen. Lung inflammation was assessed by BAL inflammatory cell recruitment and pro-inflammatory cytokine concentrations as well as lung tissue mRNA expression of pro-inflammatory cytokines. Alveolar-capillary barrier disruption was quantified by BAL total protein, BAL immunoglobulin M, and lung wet-to-dry weight ratios. Histologic evidence of lung injury was evaluated using a histological scoring system. Systemic inflammation was measured through plasma pro-inflammatory cytokines and peritoneal inflammatory cells. Kidney function, inflammation, and injury were assessed through plasma urea nitrogen concentrations, as well as tissue levels of pro-inflammatory cytokines, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule 1 (KIM-1). Relative mRNA expression of MMP-7, MMP-9, and MMP-2 was also quantified in both lung and kidney tissue through qPCR. At 24-hours post-CS+HO all mice developed ALI. Septic mice also had increased systemic inflammation, kidney inflammation, kidney injury, and kidney dysfunction compared to controls. Loss of MMP7 did not affect markers of inflammation, organ injury, or organ dysfunction. Interestingly, septic male mice exhibited more severe illness, systemic and lung inflammation, lung injury, and lung expression of matrix metalloproteinases, while septic female mice exhibited more kidney inflammation, kidney injury, and kidney expression of matrix metalloproteinases. In conclusion, MMP7 is not essential for the development or resolution of sepsis-induced ALI in this model and likely plays a limited role in the condition.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kaitlyn R. Schaaf
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Julie A. Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
2
|
Weng D, Shi W, Hu Y, Chen Y, Wei S, Li A, Guo S. Unveiling shared diagnostic biomarkers and molecular mechanisms between T2DM and sepsis: Insights from bioinformatics to experimental assays. FASEB J 2024; 38:e70104. [PMID: 39382024 DOI: 10.1096/fj.202401872r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Septic patients with T2DM were prone to prolonged recovery and unfavorable prognoses. Thus, this study aimed to pinpoint potential genes related to sepsis with T2DM and develop a predictive model for the disease. The candidate genes were screened using protein-protein interaction networks (PPI) and machine learning algorithms. The nomogram and receiver operating characteristic curve were developed to assess the diagnostic efficiency of the biomarkers. The relationship between sepsis and immune cells was analyzed using the CIBERSORT algorithm. The biomarkers were validated by qPCR and western blotting in basic experiments, and differences in organ damage in mice were studied. Three genes (MMP8, CD177, and S100A12) were identified using PPI and machine learning algorithms, demonstrating strong predictive capabilities. These biomarkers presented significant differences in gene expression patterns between diseased and healthy conditions. Additionally, the expression levels of biomarkers in mouse models and blood samples were consistent with the findings of the bioinformatics analysis. The study elucidated the common molecular mechanisms associated with the pathogenesis of T2DM and sepsis and developed a gene signature-based prediction model for sepsis. These findings provide new targets for the diagnosis and intervention of sepsis complicated with T2DM.
Collapse
Affiliation(s)
- Danlei Weng
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wei Shi
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yue Hu
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ying Chen
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuxing Wei
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Andong Li
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Maiorov I, Bagrov K, Efraim R, Ankri Eliyahu G, Livneh A, Landesberg A. MMP-8 causes leftward shift in end-diastolic pressure-volume relationship and may explain the development of diastolic dysfunction in septic cardiomyopathy. Am J Physiol Heart Circ Physiol 2024; 327:H1098-H1111. [PMID: 39178029 DOI: 10.1152/ajpheart.00240.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Septic cardiomyopathy (SCM) with diastolic dysfunction carries a poor prognosis, and the mechanisms underlying the development of diastolic dysfunction remain unclear. Matrix metalloproteinase-8 (MMP-8) is released from neutrophils and degrades collagen I. MMP-8 levels correlate with SCM severity. We scrutinized, for the first time, the direct impact of MMP-8 on cardiac systolic and diastolic functions. Isolated rat hearts were perfused with Krebs-Henseleit solution in a Langendorff setup with computer-controlled filling pressures of both ventricles in an isovolumetric regime. The end-diastolic pressure (EDP) varied periodically between 3 and 20 mmHg. After baseline recordings, MMP-8 (100 µg/mL) was added to the perfusion. Short-axis views of both ventricles were continuously acquired by echocardiography. MMP-8 perfusion resulted in a progressive decline in peak systolic pressures (Psys) in both ventricles, but without significant changes in their end-systolic pressure-area relationships (ESPARs). Counterintuitively, conspicuous leftward shifts of the end-diastolic pressure-area relationships (EDPARs) were observed in both ventricles. The left ventricle (LV) end-diastolic area (EDA) decreased by 32.8 ± 5.7% (P = 0.008) at an EDP of 10.5 ± 0.4 mmHg, when LV Psys dropped by 20%. The decline of Psys was primarily due to the decrease in EDA, and restoring the baseline EDA by increasing EDP recovered 81.33 ± 5.87% of the pressure drop. Collagen I generates tensile (eccentric) stress, and its degradation by MMP-8 causes end-diastolic pressure-volume relationship (EDPVR) leftward shift, resulting in diastolic and systolic dysfunctions. The diastolic dysfunction explains the clinically observed fluid unresponsiveness, whereas the decrease in end-diastolic volume (EDV) diminishes the systolic functions. MMP-8 can explain the development of SCM with diastolic dysfunction.NEW & NOTEWORTHY MMP-8, released from activated neutrophils and macrophages, is markedly elevated in sepsis, correlating with sepsis severity and mortality. MMP-8 targets collagen I of the cardiac ECM and induces diastolic dysfunction with fluid unresponsiveness, associated with decreased EDV, reduced sarcomere length, and diminished systolic function. Unlike other MMPs that predominantly cleave collagen-III and contribute to cardiac dilatation, thereby increasing sarcomere length, MMP-8 leads to a leftward shift in the EDPVR, resulting in diastolic and systolic dysfunctions.
Collapse
Affiliation(s)
- Ida Maiorov
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Konstantin Bagrov
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Roy Efraim
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Galit Ankri Eliyahu
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Amit Livneh
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Amir Landesberg
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| |
Collapse
|
4
|
Lu ZQ, Zhang C, Zhao LJ, Dong W, Lv L, Lu Y, Chen XY, Zhang J, Liu XY, Xiao Z, Chen LW, Yao YM, Zhao GJ. Matrix metalloproteinase-8 regulates dendritic cell tolerance in late polymicrobial sepsis via the nuclear factor kappa-B p65/β-catenin pathway. BURNS & TRAUMA 2024; 12:tkad025. [PMID: 38425412 PMCID: PMC10903637 DOI: 10.1093/burnst/tkad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/24/2023] [Indexed: 03/02/2024]
Abstract
Background Tolerogenic dendritic cells (DCs) are associated with poor prognosis of sepsis. Matrix metalloproteinases (MMPs) have been shown to have immunomodulatory effects. However, whether MMPs are involved in the functional reprogramming of DCs is unknown. The study aims to investigate the role of MMPs in sepsis-induced DCs tolerance and the potential mechanisms. Methods A murine model of late sepsis was induced by cecal ligation and puncture (CLP). The expression levels of members of the MMP family were detected in sepsis-induced tolerogenic DCs by using microarray assessment. The potential roles and mechanisms underlying MMP8 in the differentiation, maturation and functional reprogramming of DCs during late sepsis were assessed both in vitro and in vivo. Results DCs from late septic mice expressed higher levels of MMP8, MMP9, MMP14, MMP19, MMP25 and MMP27, and MMP8 levels were the highest. MMP8 deficiency significantly alleviated sepsis-induced immune tolerance of DCs both in vivo and in vitro. Adoptive transfer of MMP8 knockdown post-septic bone marrow-derived DCs protected mice against sepsis-associated lethality and organ dysfunction, inhibited regulatory T-cell expansion and enhanced Th1 response. Furthermore, the effect of MMP8 on DC tolerance was found to be associated with the nuclear factor kappa-B p65/β-catenin pathway. Conclusions Increased MMP8 levels in septic DCs might serve as a negative feedback loop, thereby suppressing the proinflammatory response and inducing DC tolerance.
Collapse
Affiliation(s)
- Zhong-qiu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Chen Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Lin-jun Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical of the Chinese PLA General Hospital, Fucheng Road, Haidian District, Beijing 100048, China
| | - Wei Dong
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Liang Lv
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Yang Lu
- Department of Emergency Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Huansha Road,Shangcheng District, Hangzhou 310006, China
| | - Xiao-Yan Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Jie Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Xin-yong Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Zhong Xiao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Long-wang Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Yong-ming Yao
- Department of Rheumatology, Wenzhou People's Hospital, Gu'an road, Ouhai district, Wenzhou 325000, China
| | - Guang-ju Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| |
Collapse
|
5
|
Dong J, Wang S, Hu Z, Gong L. Extracellular proteins as potential biomarkers in Sepsis-related cerebral injury. Front Immunol 2023; 14:1128476. [PMID: 37901226 PMCID: PMC10611492 DOI: 10.3389/fimmu.2023.1128476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/13/2023] [Indexed: 10/31/2023] Open
Abstract
Background Sepsis can cause brain damage known as septic encephalopathy (SAE), which is linked to higher mortality and poorer outcomes. Objective clinical markers for SAE diagnosis and prognosis are lacking. This study aimed to identify biomarkers of SAE by investigating genes and extracellular proteins involved in sepsis-induced brain injury. Methods Extracellular protein differentially expressed genes (EP-DEGs) from sepsis patients' brain tissue (GSE135838) were obtained from Gene Expression Omnibus (GEO) and evaluated by protein annotation database. The function and pathways of EP-DEGs were examined using GO and KEGG. Protein-protein interaction (PPI) networks were built and crucial EP-DEGs were screened using STRING, Cytoscape, MCODE, and Cytohubba. The diagnostic and prognostic accuracy of key EP-DEGs was assessed in 31 sepsis patients' blood samples and a rat cecal ligation and puncture (CLP)-induced sepsis model. Cognitive and spatial memory impairment was evaluated 7-11 days post-CLP using behavioral tests. Blood and cerebrospinal fluid from 26 rats (SHAM n=14, CLP n=12) were collected 6 days after CLP to analyze key EP-DEGs. Results Thirty-one EP-DEGs from DEGs were examined. Bone marrow leukocytes, neutrophil movement, leukocyte migration, and reactions to molecules with bacterial origin were all enhanced in EP-DEGs. In comparison to the sham-operated group, sepsis rats had higher levels of MMP8 and S100A8 proteins in their venous blood (both p<0.05) and cerebrospinal fluid (p=0.0506, p<0.0001, respectively). Four important extracellular proteins, MMP8, CSF3, IL-6, and S100A8, were identified in clinical peripheral blood samples. MMP8 and S100A8 levels in the peripheral blood of sepsis patients were higher in SAE than in non-SAE. In comparison to MMP8, S100A8 had a higher area under the curve (AUC: 0.962, p<0.05) and a higher sensitivity and specificity (80% and 100%, respectively) than MMP8 (AUC: 0.790, p<0.05). High levels of S100A8 strongly correlated with 28-day mortality and the Glasgow Coma Scale (GCS) scores. Conclusion The extracellular proteins MMP8, CSF3, IL-6, and S100A8 may be crucial in the pathophysiology of SAE. S100A8 and MMP8 are possible biomarkers for SAE's onset and progression. This research may help to clarify the pathogenesis of SAE and improve the diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
| | | | - Zhonghua Hu
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Gong
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Fatmi A, Saadi W, Beltrán-García J, García-Giménez JL, Pallardó FV. The Endothelial Glycocalyx and Neonatal Sepsis. Int J Mol Sci 2022; 24:364. [PMID: 36613805 PMCID: PMC9820255 DOI: 10.3390/ijms24010364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Sepsis carries a substantial risk of morbidity and mortality in newborns, especially preterm-born neonates. Endothelial glycocalyx (eGC) is a carbohydrate-rich layer lining the vascular endothelium, with important vascular barrier function and cell adhesion properties, serving also as a mechano-sensor for blood flow. eGC shedding is recognized as a fundamental pathophysiological process generating microvascular dysfunction, which in turn contributes to multiple organ failure and death in sepsis. Although the disruption of eGC and its consequences have been investigated intensively in the adult population, its composition, development, and potential mechanisms of action are still poorly studied during the neonatal period, and more specifically, in neonatal sepsis. Further knowledge on this topic may provide a better understanding of the molecular mechanisms that guide the sepsis pathology during the neonatal period, and would increase the usefulness of endothelial glycocalyx dysfunction as a diagnostic and prognostic biomarker. We reviewed several components of the eGC that help to deeply understand the mechanisms involved in the eGC disruption during the neonatal period. In addition, we evaluated the potential of eGC components as biomarkers and future targets to develop therapeutic strategies for neonatal sepsis.
Collapse
Affiliation(s)
- Ahlam Fatmi
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
| | - Wiam Saadi
- Department of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana 44225, Algeria
| | - Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, CA 92093, USA
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Federico V. Pallardó
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
7
|
Ito H, Ishikawa M, Matsumoto H, Sugihara F, Okuzaki D, Hirata H, Ogura H. Transcriptional differences between coronavirus disease 2019 and bacterial sepsis. Virol J 2022; 19:198. [PMID: 36443881 PMCID: PMC9702864 DOI: 10.1186/s12985-022-01930-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has led to major public health crises worldwide. Several studies have reported the comprehensive mRNA expression analysis of immune-related genes in patients with COVID-19, using blood samples, to understand its pathogenesis; however, the characteristics of RNA expression in COVID-19 and bacterial sepsis have not been compared. The current study aimed to address this gap. METHODS RNA-sequencing and bioinformatics analyses were used to compare the transcriptome expression of whole blood samples from patients with COVID-19 and patients with sepsis who were admitted to the intensive care unit of Osaka University Graduate School of Medicine. RESULTS The COVID-19 and sepsis cohorts showed upregulation of mitochondrial- and neutrophil-related transcripts, respectively. Compared with that in the control cohort, neutrophil-related transcripts were upregulated in both the COVID-19 and sepsis cohorts. In contrast, mitochondrial-related transcripts were upregulated in the COVID-19 cohort and downregulated in the sepsis cohort, compared to those in the control cohort. Moreover, transcript levels of the pro-apoptotic genes BAK1, CYCS, BBC3, CASP7, and CASP8 were upregulated in the COVID-19 cohort, whereas those of anti-apoptotic genes, such as BCL2L11 and BCL2L1, were upregulated in the sepsis cohort. CONCLUSIONS This study clarified the differential expression of transcripts related to neutrophils and mitochondria in sepsis and COVID-19 conditions. Mitochondrial-related transcripts were downregulated in sepsis than in COVID-19 conditions, and our results indicated suboptimal intrinsic apoptotic features in sepsis samples compared with that in COVID-19 samples. This study is expected to contribute to the development of specific treatments for COVID-19.
Collapse
Affiliation(s)
- Hiroshi Ito
- grid.136593.b0000 0004 0373 3971Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka University, 2-15 Yamada-Oka, Suita-Shi, Suita-City, Osaka, 565-0871 Japan
| | - Masakazu Ishikawa
- grid.136593.b0000 0004 0373 3971Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita-City, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Hisatake Matsumoto
- grid.136593.b0000 0004 0373 3971Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka University, 2-15 Yamada-Oka, Suita-Shi, Suita-City, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Fuminori Sugihara
- grid.136593.b0000 0004 0373 3971Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Disease, Osaka University, Suita-City, Osaka, Japan
| | - Daisuke Okuzaki
- grid.136593.b0000 0004 0373 3971Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita-City, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita-City, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Haruhiko Hirata
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Hiroshi Ogura
- grid.136593.b0000 0004 0373 3971Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka University, 2-15 Yamada-Oka, Suita-Shi, Suita-City, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Acute Endotoxemia-Induced Respiratory and Intestinal Dysbiosis. Int J Mol Sci 2022; 23:ijms231911602. [PMID: 36232913 PMCID: PMC9569575 DOI: 10.3390/ijms231911602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a severe condition characterized by systemic inflammation, which may lead to multiple organ failure, shock and death. SIRS is common in burn patients, pancreatitis and sepsis. SIRS is often accompanied by intestinal dysbiosis. However, the mechanism, role and details of microbiome alterations during the early phase of acute SIRS are not completely understood. The current study aimed to characterize the dynamic alterations of both the intestinal and respiratory microbiome at two timepoints during the early phase of acute SIRS (4 and 8 h after LPS) and link these to the host response in a mouse model of a LPS-induced lethal SIRS. Acute SIRS had no effect on the microbiome in the large intestine but induced a rapid dysbiosis in the small intestine, which resembled the microbiome alterations commonly observed in SIRS patients. Later in the disease progression, a dysbiosis of the respiratory microbiome was observed, which was associated with the MMP9 expression in the lungs. Although similar bacteria were increased in both the lung and the small intestine, no evidence for a gut-lung translocation was observed. Gut dysbiosis is commonly observed in diseases involving inflammation in the gut. However, whether the inflammatory response associated with SIRS and sepsis can directly cause gut dysbiosis was still unclear. In the current study we provide evidence that a LPS-induced SIRS can directly cause dysbiosis of the small intestinal and respiratory microbiome.
Collapse
|
9
|
Lab-Attenuated Rabies Virus Facilitates Opening of the Blood-Brain Barrier by Inducing Matrix Metallopeptidase 8. J Virol 2022; 96:e0105022. [PMID: 36005758 PMCID: PMC9472762 DOI: 10.1128/jvi.01050-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with laboratory-attenuated rabies virus (RABV), but not wild-type (wt) RABV, can enhance the permeability of the blood-brain barrier (BBB), which is considered a key determinant for RABV pathogenicity. A previous study showed that the enhancement of BBB permeability is directly due not to RABV infection but to virus-induced inflammatory molecules. In this study, the effect of the matrix metallopeptidase (MMP) family on the permeability of the BBB during RABV infection was evaluated. We found that the expression level of MMP8 was upregulated in mice infected with lab-attenuated RABV but not with wt RABV. Lab-attenuated RABV rather than wt RABV activates inflammatory signaling pathways mediated by the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Activated NF-κB (p65) and AP-1 (c-Fos) bind to the MMP8 promoter, resulting in upregulation of its transcription. Analysis of mouse brains infected with the recombinant RABV expressing MMP8 indicated that MMP8 enhanced BBB permeability, leading to infiltration of inflammatory cells into the central nervous system (CNS). In brain-derived endothelial cells, treatment with MMP8 recombinant protein caused the degradation of tight junction (TJ) proteins, and the application of an MMP8 inhibitor inhibited the degradation of TJ proteins after RABV infection. Furthermore, an in vivo experiment using an MMP8 inhibitor during RABV infection demonstrated that BBB opening was diminished. In summary, our data suggest that the infection of lab-attenuated RABV enhances the BBB opening by upregulating MMP8. IMPORTANCE The ability to change BBB permeability was associated with the pathogenicity of RABV. BBB permeability was enhanced by infection with lab-attenuated RABV instead of wt RABV, allowing immune cells to infiltrate into the CNS. We found that MMP8 plays an important role in enhancing BBB permeability by degradation of TJ proteins during RABV infection. Using an MMP8 selective inhibitor restores the reduction of TJ proteins. We reveal that MMP8 is upregulated via the MAPK and NF-κB inflammatory pathways, activated by lab-attenuated RABV infection but not wt RABV. Our findings suggest that MMP8 has a critical role in modulating the opening of the BBB during RABV infection, which provides fresh insight into developing effective therapeutics for rabies and infection with other neurotropic viruses.
Collapse
|
10
|
The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. Int J Mol Sci 2022; 23:ijms231810546. [PMID: 36142454 PMCID: PMC9500641 DOI: 10.3390/ijms231810546] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in extracellular matrix remodeling through the degradation of extracellular matrix components and are also involved in the inflammatory response by regulating the pro-inflammatory cytokines TNF-α and IL-1β. Dysregulation in the inflammatory response and changes in the extracellular matrix by MMPs are related to the development of various diseases including lung and cardiovascular diseases. Therefore, numerous studies have been conducted to understand the role of MMPs in disease pathogenesis. MMPs are involved in the pathogenesis of infectious diseases through a dysregulation of the activity and expression of MMPs. In this review, we discuss the role of MMPs in infectious diseases and inflammatory responses. Furthermore, we present the potential of MMPs as therapeutic targets in infectious diseases.
Collapse
|
11
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
12
|
Fang X, Duan SF, Hu ZY, Wang JJ, Qiu L, Wang F, Chen XL. Inhibition of Matrix Metalloproteinase-8 Protects Against Sepsis Serum Mediated Leukocyte Adhesion. Front Med (Lausanne) 2022; 9:814890. [PMID: 35145983 PMCID: PMC8821815 DOI: 10.3389/fmed.2022.814890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Leukocyte adhesion to vascular and matrix Metalloproteinase-8 (MMP8) expression is increased in sepsis and associated with poor prognosis in sepsis patients. This study aimed to investigate the role of MMP8 in sepsis serum mediated leukocyte adhesion. METHODS Bioinformatics analysis of GSE64457 and GSE65682 was performed to evaluate the role of MMP8 in the progression of sepsis. Expression of MMP8 in blood samples from patients with sepsis was detected by qRT-PCR and ELISA. Human umbilical vein endothelial cells (HUVECs) were treated with sepsis serum, control serum, and MMP8 inhibitor. Expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) were detected by qRT-PCR and ELISA, respectively. The protein expression of total p38, phosphorylated-p38, ERK1/2, and p-ERK1/2 was detected by Western blotting. Peripheral blood mononuclear cells (PBMCs) and polymorphonuclear neutrophils (PMNs) were incubated with the treated HUVECs to calculate leukocyte adhesion. RESULTS Four hundred and twenty-nine differentially expressed genes (DEGs) and seven hub genes between sepsis patients and healthy controls were identified. GO function analysis of DEGs and hub genes indicated that the DEGs and hub genes were mainly enriched in neutrophil activation. MMP8 was selected as a key gene with an unfavorable prognosis in sepsis patients. The mRNA and protein expression of MMP8 in blood from sepsis patients were significantly higher than controls. Leukocyte adhesion and mRNA and protein expression of VCAM-1 and ICAM-1 were significantly increased in the sepsis serum group compared to that in the control group, as was the protein expression of p-p38 and p-ERK1/2. However, the MMP8 inhibitor suppressed the leukocyte adhesion promoted by sepsis serum by decreasing the expression of VCAM-1, ICAM-1, p-p38, and p-ERK1/2. CONCLUSION Our study indicated that MMP8 acts as a key gene in the development of sepsis, and sepsis serum promotes leukocyte adhesion to HUVECs via MMP8, which suggest that MMP8 might be a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Miranda M, Nadel S. Impact of Inherited Genetic Variants on Critically Ill Septic Children. Pathogens 2022; 11:pathogens11010096. [PMID: 35056044 PMCID: PMC8781648 DOI: 10.3390/pathogens11010096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis remains an important source of morbidity and mortality in children, despite the development of standardized care. In the last decades, there has been an increased interest in genetic and genomic approaches to early recognition and development of treatments to manipulate the host inflammatory response. This review will present a summary of the normal host response to infection and progression to sepsis, followed by highlighting studies with a focus on gene association studies, epigenetics, and genome-wide expression profiling. The susceptibility (or outcome) of sepsis in children has been associated with several polymorphisms of genes broadly involved in inflammation, immunity, and coagulation. More recently, gene expression profiling has been focused on identifying novel biomarkers, pathways and therapeutic targets, and gene expression-based subclassification. Knowledge of a patient’s individual genotype may, in the not-too-remote future, be used to guide tailored treatment for sepsis. However, at present, the impact of genomics remains far from the bedside of critically ill children.
Collapse
Affiliation(s)
- Mariana Miranda
- Paediatric Unit, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Correspondence:
| | - Simon Nadel
- St. Mary’s Hospital, Imperial College Healthcare NHS Trust, and Imperial College, London W2 1NY, UK;
| |
Collapse
|
14
|
Yao Y, Zhao J, Hu J, Song H, Wang S, Ying W. Identification of potential biomarkers and immune infiltration in pediatric sepsis via multiple-microarray analysis. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221144392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immune adjustment has become a sepsis occurring in the development of an important mechanism that cannot be ignored. This article from the perspective of immune infiltration of pediatric sepsis screening markers, and promote the understanding of disease mechanisms. Bioinformatics integrated six data sets of pediatric sepsis by using the surrogate variable analysis package and then analyzed differentially expressed genes (DEGs), immune infiltration and weighted gene co-expression network analysis of characteristics (WGCNA) of immune infiltration between pediatric sepsis and the control. Common genes of WGCNA and DEGs were used to functional annotation, pathway enrichment analysis and protein-protein interaction network. Support vector machine (SVM), least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were used to confirm the key genes for the diagnosis of pediatric sepsis. Receiver operating characteristic (ROC) curve, C index, principal component analysis (PCA) and GiViTi calibration band were used to evaluate the diagnostic performance of key genes. Decision curve analysis (DCA) was used to evaluate the clinical application value of key genes. Lastly, the correlation between key genes and immune cells was analyze. NK cells Resting and NK cell activated in pediatric sepsis during immune infiltration were significantly lower than those in the control group, while M1 Macrophages were higher than those in the control group. ROC, C-index, PCA, GiViTi calibration band and DCA indicated that MCEMP1, CD177, MMP8 and OLFM4 had high diagnostic performance for pediatric sepsis. There is a negative correlation between 4 key genes and NK cells resting, NK cells activated. Except for MCEMP1, the other 3 genes were positively correlated with M1 Macrophages. This study revealed differences in immune responses in pediatric sepsis and identified four key genes as potential biomarkers. Pediatric sepsis in pathology maybe understood better by learning about how it develops.
Collapse
Affiliation(s)
- Yinhui Yao
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Jingyi Zhao
- Department of Functional Center, Chengde Medical University, Chengde, China
| | - Junhui Hu
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hong Song
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Sizhu Wang
- Office of Drug and Medical Device Clinical Trial Institution, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Wang Ying
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
15
|
Jones TK, Reilly JP, Anderson BJ, Miano TA, Dunn TG, Weisman AR, Agyekum R, Feng R, Ittner CA, Shashaty MG, Meyer NJ. Elevated Plasma Levels of Matrix Metalloproteinase-3 and Tissue-Inhibitor of Matrix Metalloproteinases-1 Associate With Organ Dysfunction and Mortality in Sepsis. Shock 2022; 57:41-47. [PMID: 34265829 PMCID: PMC8663538 DOI: 10.1097/shk.0000000000001833] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Matrix Metalloproteinases (MMP) respond to tissue damage during sepsis. Higher plasma concentrations of MMPs and the tissue-inhibitor of matrix metalloproteinases (TIMP) have been reported in sepsis compared with healthy controls. The objective of this study was to examine if plasma levels of MMP-3, MMP-9, and TIMP-1 associate with mortality and organ dysfunction during sepsis. METHODS We conducted a prospective cohort study of critically ill patients with sepsis adjudicated per Sepsis-3 criteria at a tertiary academic medical center. We measured plasma concentrations of MMP-3, MMP-9, and TIMP-1 on intensive care unit admission. We phenotyped the subjects for shock, acute respiratory distress syndrome (ARDS), acute kidney injury (AKI), and mortality at 30 days. We used logistic regression to test the associations between the MMPs and TIMP-1 with shock, ARDS, AKI, and mortality. RESULTS Higher plasma TIMP-1 levels were associated with shock (odds ratio [OR] 1.51 per log increase [95% CI 1.25, 1.83]), ARDS (OR 1.24 [95% CI 1.05, 1.46]), AKI (OR 1.18 [95% CI 1.01, 1.38]), and mortality (OR 1.20 [95% CI 1.05, 1.46]. Higher plasma MMP-3 concentrations were associated with shock (OR 1.40 [95% CI 1.12, 1.75]) and mortality (OR 1.24 [95% CI 1.03, 1.48]) whereas MMP-9 levels were not associated with outcomes. Higher plasma TIMP-1 to MMP-3 ratios were associated with shock (OR 1.41 [95% CI 1.15, 1.72], P = 0.02). CONCLUSION Elevated plasma concentrations of TIMP-1 associate with organ dysfunction and mortality in sepsis. Higher plasma levels of MMP-3 associate with shock and mortality. Plasma MMP and TIMP-1 may warrant further investigation as emerging sepsis theragnostic biomarkers.
Collapse
Affiliation(s)
- Tiffanie K. Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John P. Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian J. Anderson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Todd A. Miano
- Division of Epidemiology, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas G. Dunn
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ariel R. Weisman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Roseline Agyekum
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rui Feng
- Division of Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caroline A.G. Ittner
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael G.S. Shashaty
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Itagaki K, Riça I, Konecna B, Kim HI, Park J, Kaczmarek E, Hauser CJ. Role of Mitochondria-Derived Danger Signals Released After Injury in Systemic Inflammation and Sepsis. Antioxid Redox Signal 2021; 35:1273-1290. [PMID: 33847158 PMCID: PMC8905257 DOI: 10.1089/ars.2021.0052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Sepsis is a major public health concern, with high mortality and morbidity, especially among patients undergoing trauma. It is characterized by a systemic inflammatory response syndrome (SIRS) occurring in response to infection. Although classically associated with pathogens, many patients with SIRS do not have infection. The variability of the disease course cannot be fully explained by our current understanding of its pathogenesis. Thus, other factors are likely to play key roles in the development and progression of SIRS/sepsis. Recent Advances: Circulating levels of damage-associated molecular patterns (DAMPs) seem to correlate with SIRS/sepsis morbidity and mortality. Of the known DAMPs, those of mitochondrial (mt) origin have been of particular interest, since their DNA (mtDNA) and formyl peptides (mtFPs) resemble bacterial DNA and peptides, and hence, when released, may be recognized as "danger signals." Critical Issues: mtDAMPs released after tissue injury trigger immune responses similar to those induced by pathogens. Thus, they can result in systemic inflammation and organ damage, similar to that observed in SIRS/sepsis. We will discuss recent findings on the roles of mtDAMPs, particularly regarding the less recognized mtFPs, in the activation of inflammatory responses and development of SIRS/sepsis. Future Directions: There are no established methods to predict the course of SIRS/sepsis, but clinical studies reveal that plasma levels of mtDAMPs may correlate with the outcome of the disease. We propose that non-pathogen-initiated, mtDAMPs-induced SIRS/sepsis events need further studies aimed at early clinical recognition and better treatment of this disease.
Collapse
Affiliation(s)
- Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Ingred Riça
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Barbora Konecna
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Jinbong Park
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Elzbieta Kaczmarek
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA.,Center for Vascular Biology Research, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Guti S, Baidya SK, Banerjee S, Adhikari N, Jha T. A robust classification-dependent multi-molecular modelling study on some biphenyl sulphonamide based MMP-8 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:835-861. [PMID: 34587852 DOI: 10.1080/1062936x.2021.1976831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc and calcium-dependent endopeptidases, which contribute to different physiological and biological activities via extracellular matrix (ECM) degradation. Matrix metalloproteinase-8 (MMP-8) belongs to type-II collagenases of the MMP family that has contribution in several physiological disorders such as cardiovascular diseases, joint, renal, digestive and respiratory disorders as well as in cancer. In clinical study, MMP-8 is found to be associated with periodontal disease condition. Therefore, MMP-8 specific inhibitors should be developed to target these disorders. The biphenyl sulphonamide (BPS) moiety is one of the crucial structural characteristics found in several MMP-8 inhibitors. Here, different classification-based molecular modelling methods were used to explore the structural features that lead to the activity variation of a series of MMP-8 inhibitors possessing a BPS moiety. Our current classification-based structural analysis of these BPS-derived MMP-8 inhibitors was able to identify the importance of several structural features such as the tetrahydroisoquinoline and N-Boc pyridyl groups, which have positive influences on MMP-8 inhibition. This study was also reflected the importance of the zinc-binding groups (ZBGs) like the hydroxamate and phosphonate for potent and sub-nanomolar range MMP-8 inhibition, which may benefit the development of highly potent MMP-8 inhibitors.
Collapse
Affiliation(s)
- S Guti
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
18
|
Lin Y, Yang P. Phillygenin inhibits the inflammation and apoptosis of pulmonary epithelial cells by activating PPARγ signaling via downregulation of MMP8. Mol Med Rep 2021; 24:775. [PMID: 34490481 PMCID: PMC8441984 DOI: 10.3892/mmr.2021.12415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/10/2021] [Indexed: 01/01/2023] Open
Abstract
Acute lung injury (ALI) is often responsible for the high morbidity of critically ill patients. The present study aimed to investigate whether phillygenin (PHI) can inhibit inflammation and apoptosis of pulmonary epithelial cells by activating peroxisome proliferator-activated receptor γ (PPARγ) signaling. The in vitro model of ALI was established using lipopolysaccharide (LPS) and PHI was used to treat the LPS-induced cells. Cell viability was assessed using the MTT assay and the concentration levels of the inflammatory factors were detected by ELISA. Western blotting and reverse transcription-quantitative PCR were conducted to measure the expression levels of the inflammation- and apoptosis-associated proteins. The MMP8-overexpression plasmid was transfected into LPS-induced cells, which were treated with PHI treatment and the expression levels of PPARγ were detected via western blotting. PHI treatment suppressed the induction of inflammation and apoptosis of LPS-induced BEAS-2B cells. Furthermore, the expression levels of MMP8 in BEAS-2B cells induced by LPS were decreased following PHI treatment. Following transfection of the MMP8 overexpression plasmid into the LPS-induced BEAS-2B cells and subsequent treatment of these cells with PHI, the expression levels of PPARγ were decreased. In conclusion, it was shown that PHI inhibited the inflammation and apoptosis of pulmonary epithelial cells by activating PPARγ signaling via downregulating MMP8. These data may provide valuable information for future studies exploring the therapeutic effects of PHI for ALI.
Collapse
Affiliation(s)
- Yufeng Lin
- Department of Pediatrics, Gaolangang Hospital of Zhuhai People's Hospital, Zhuhai, Guangdong 519050, P.R. China
| | - Peng Yang
- Department of PICU, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
19
|
Kim T, Jeon J, Park JS, Park Y, Kim J, Noh H, Kim HS, Seo H. Matrix Metalloproteinase-8 Inhibitor Ameliorates Inflammatory Responses and Behavioral Deficits in LRRK2 G2019S Parkinson's Disease Model Mice. Biomol Ther (Seoul) 2021; 29:483-491. [PMID: 34045367 PMCID: PMC8411029 DOI: 10.4062/biomolther.2020.181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 11/14/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that involves the loss of dopaminergic neurons in the substantia nigra (SN). Matrix metalloproteinases-8 (MMP-8), neutrophil collagenase, is a functional player in the progressive pathology of various inflammatory disorders. In this study, we administered an MMP-8 inhibitor (MMP-8i) in Leucine-rich repeat kinase 2 (LRRK2) G2019S transgenic mice, to determine the effects of MMP-8i on PD pathology. We observed a significant increase of ionized calcium-binding adapter molecule 1 (Iba1)-positive activated microglia in the striatum of LRRK2 G2019S mice compared to normal control mice, indicating enhanced neuro-inflammatory responses. The increased number of Iba1-positive activated microglia in LRRK2 G2019S PD mice was down-regulated by systemic administration of MMP-8i. Interestingly, this LRRK2 G2019S PD mice showed significantly reduced size of cell body area of tyrosine hydroxylase (TH) positive neurons in SN region and MMP-8i significantly recovered cellular atrophy shown in PD model indicating distinct neuro-protective effects of MMP-8i. Furthermore, MMP-8i administration markedly improved behavioral abnormalities of motor balancing coordination in rota-rod test in LRRK2 G2019S mice. These data suggest that MMP-8i attenuates the pathological symptoms of PD through anti-inflammatory processes.
Collapse
Affiliation(s)
- Taewoo Kim
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jeha Jeon
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jin-Sun Park
- Department of Molecular Medicine and Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Yeongwon Park
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jooeui Kim
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Haneul Noh
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine and Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Hyemyung Seo
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
20
|
Endothelial Dysfunction and Neutrophil Degranulation as Central Events in Sepsis Physiopathology. Int J Mol Sci 2021; 22:ijms22126272. [PMID: 34200950 PMCID: PMC8230689 DOI: 10.3390/ijms22126272] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a major health problem worldwide. It is a time-dependent disease, with a high rate of morbidity and mortality. In this sense, an early diagnosis is essential to reduce these rates. The progressive increase of both the incidence and prevalence of sepsis has translated into a significant socioeconomic burden for health systems. Currently, it is the leading cause of noncoronary mortality worldwide and represents one of the most prevalent pathologies both in hospital emergency services and in intensive care units. In this article, we review the role of both endothelial dysfunction and neutrophil dysregulation in the physiopathology of this disease. The lack of a key symptom in sepsis makes it difficult to obtain a quick and accurate diagnosis of this condition. Thus, it is essential to have fast and reliable diagnostic tools. In this sense, the use of biomarkers can be a very important alternative when it comes to achieving these goals. Both new biomarkers and treatments related to endothelial dysfunction and neutrophil dysregulation deserve to be further investigated in order to open new venues for the diagnosis, treatment and prognosis of sepsis.
Collapse
|
21
|
Velly L, Volant S, Fitting C, Ghazali DA, Salipante F, Mayaux J, Monsel G, Cavaillon JM, Hausfater P. Optimal combination of early biomarkers for infection and sepsis diagnosis in the emergency department: The BIPS study. J Infect 2021; 82:11-21. [PMID: 33610685 DOI: 10.1016/j.jinf.2021.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To define the best combination of biomarkers for the diagnosis of infection and sepsis in the emergency room. METHODS In this prospective study, consecutive patients with a suspicion of infection in the emergency room were included. Eighteen different biomarkers measured in plasma, and twelve biomarkers measured on monocytes, neutrophils, B and T-lymphocytes were studied and the best combinations determined by a gradient tree boosting approach. RESULTS Overall, 291 patients were included and analysed, 148 with bacterial infection, and 47 with viral infection. The best biomarker combination which first allowed the diagnosis of bacterial infection, included HLA-DR (human leukocyte antigen DR) on monocytes, MerTk (Myeloid-epithelial-reproductive tyrosine kinase) on neutrophils and plasma metaloproteinase-8 (MMP8) with an area under the curve (AUC) = 0.94 [95% confidence interval (IC95): 0.91;0.97]. Among patients in whom a bacterial infection was excluded, the combination of CD64 expression, and CD24 on neutrophils and CX3CR1 on monocytes ended to an AUC = 0.98 [0.96;1] to define those with a viral infection. CONCLUSION In a convenient cohort of patients admitted with a suspicion of infection, two different combinations of plasma and cell surface biomarkers were performant to identify bacterial and viral infection.
Collapse
Affiliation(s)
- Laetitia Velly
- Emergency Department, Pitié-Salpêtrière Hospital, Groupe Hospitalier Sorbonne Université, AP-PH, Paris, France; Cytokines & Inflammation unit, Institut Pasteur, Paris France; Sorbonne-Université, GRC-14 BIOSFAST, UMR 1166, Paris France
| | - Steven Volant
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | | | - Daniel Aiham Ghazali
- Emergency Department, Pitié-Salpêtrière Hospital, Groupe Hospitalier Sorbonne Université, AP-PH, Paris, France; INSERM IAME (Infection, Antimicrobials, Modeling, Evolution), INSERM UMR1137, Paris-Diderot University
| | | | - Julien Mayaux
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Pneumologie, Médecine intensive - Réanimation (Département "R3S ») and Sorbonne Université, INSERM, UMR_S 1158 Neurophysiologie respiratoire expérimentale et clinique, Paris, France
| | - Gentiane Monsel
- Infectious Disease Department, Pitié-Salpêtrière Hospital, Groupe Hospitalier Sorbonne Université, AP-PH, Paris, France
| | | | - Pierre Hausfater
- Emergency Department, Pitié-Salpêtrière Hospital, Groupe Hospitalier Sorbonne Université, AP-PH, Paris, France; Sorbonne-Université, GRC-14 BIOSFAST, UMR 1166, Paris France.
| |
Collapse
|
22
|
Costa D, Bonet N, Solé A, González de Aledo-Castillo JM, Sabidó E, Casals F, Rovira C, Nadal A, Marin JL, Cobo T, Castelo R. Genome-wide postnatal changes in immunity following fetal inflammatory response. FEBS J 2020; 288:2311-2331. [PMID: 33006196 PMCID: PMC8049052 DOI: 10.1111/febs.15578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022]
Abstract
The fetal inflammatory response (FIR) increases the risk of perinatal brain injury, particularly in extremely low gestational age newborns (ELGANs, < 28 weeks of gestation). One of the mechanisms contributing to such a risk is a postnatal intermittent or sustained systemic inflammation (ISSI) following FIR. The link between prenatal and postnatal systemic inflammation is supported by the presence of well‐established inflammatory biomarkers in the umbilical cord and peripheral blood. However, the extent of molecular changes contributing to this association is unknown. Using RNA sequencing and mass spectrometry proteomics, we profiled the transcriptome and proteome of archived neonatal dried blood spot (DBS) specimens from 21 ELGANs. Comparing FIR‐affected and unaffected ELGANs, we identified 782 gene and 27 protein expression changes of 50% magnitude or more, and an experiment‐wide significance level below 5% false discovery rate. These expression changes confirm the robust postnatal activation of the innate immune system in FIR‐affected ELGANs and reveal for the first time an impairment of their adaptive immunity. In turn, the altered pathways provide clues about the molecular mechanisms triggering ISSI after FIR, and the onset of perinatal brain injury. Databases EGAS00001003635 (EGA); PXD011626 (PRIDE).
Collapse
Affiliation(s)
- Daniel Costa
- Department of Pediatrics, Hospital de Figueres, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Núria Bonet
- Genomics Core Facility, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Amanda Solé
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona, Spain.,Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Eduard Sabidó
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona, Spain.,Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ferran Casals
- Genomics Core Facility, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Alfons Nadal
- Department of Pathology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Spain
| | - Jose Luis Marin
- Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centre for Biomedical Research on Rare Diseases (CIBER-ER), University of Barcelona, Spain
| | - Teresa Cobo
- Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centre for Biomedical Research on Rare Diseases (CIBER-ER), University of Barcelona, Spain
| | - Robert Castelo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Research Programme on Biomedical Informatics, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| |
Collapse
|
23
|
Morla S, Desai UR. Discovery of Sulfated Small Molecule Inhibitors of Matrix Metalloproteinase-8. Biomolecules 2020; 10:biom10081166. [PMID: 32784891 PMCID: PMC7465109 DOI: 10.3390/biom10081166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
Abstract
Elevated matrix metalloproteinase-8 (MMP-8) activity contributes to the etiology of many diseases, including atherosclerosis, pulmonary fibrosis, and sepsis. Yet, very few small molecule inhibitors of MMP-8 have been identified. We reasoned that the synthetic non-sugar mimetics of glycosaminoglycans may inhibit MMP-8 because natural glycosaminoglycans are known to modulate the functions of various MMPs. The screening a library of 58 synthetic, sulfated mimetics consisting of a dozen scaffolds led to the identification of only two scaffolds, including sulfated benzofurans and sulfated quinazolinones, as promising inhibitors of MMP-8. Interestingly, the sulfated quinazolinones displayed full antagonism of MMP-8 and sulfated benzofuran appeared to show partial antagonism. Of the two, sulfated quinazolinones exhibited a >10-fold selectivity for MMP-8 over MMP-9, a closely related metalloproteinase. Molecular modeling suggested the plausible occupancy of the S1′ pocket on MMP-8 as the distinguishing feature of the interaction. Overall, this work provides the first proof that the sulfated mimetics of glycosaminoglycans could lead to potent, selective, and catalytic activity-tunable, small molecular inhibitors of MMP-8.
Collapse
Affiliation(s)
- Shravan Morla
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Drug Discovery and Development, Institute for Structural Biology, Virginia Commonwealth University, Richmond 23219, VA, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Drug Discovery and Development, Institute for Structural Biology, Virginia Commonwealth University, Richmond 23219, VA, USA
- Correspondence: ; Tel.: +804-828-7575; Fax: +804-827-3664
| |
Collapse
|
24
|
Martin-Fernandez M, Vaquero-Roncero LM, Almansa R, Gómez-Sánchez E, Martín S, Tamayo E, Esteban-Velasco MC, Ruiz-Granado P, Aragón M, Calvo D, Rico-Feijoo J, Ortega A, Gómez-Pesquera E, Lorenzo-López M, López J, Doncel C, González-Sanchez C, Álvarez D, Zarca E, Ríos-Llorente A, Diaz-Alvarez A, Sanchez-Barrado E, Andaluz-Ojeda D, Calvo-Vecino JM, Muñoz-Bellvís L, Gomez-Herreras JI, Abad-Molina C, Bermejo-Martin JF, Aldecoa C, Heredia-Rodríguez M. Endothelial dysfunction is an early indicator of sepsis and neutrophil degranulation of septic shock in surgical patients. BJS Open 2020; 4:524-534. [PMID: 32073224 PMCID: PMC7260414 DOI: 10.1002/bjs5.50265] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/14/2020] [Indexed: 01/01/2023] Open
Abstract
Background Stratification of the severity of infection is currently based on the Sequential Organ Failure Assessment (SOFA) score, which is difficult to calculate outside the ICU. Biomarkers could help to stratify the severity of infection in surgical patients. Methods Levels of ten biomarkers indicating endothelial dysfunction, 22 indicating emergency granulopoiesis, and six denoting neutrophil degranulation were compared in three groups of patients in the first 12 h after diagnosis at three Spanish hospitals. Results There were 100 patients with infection, 95 with sepsis and 57 with septic shock. Seven biomarkers indicating endothelial dysfunction (mid‐regional proadrenomedullin (MR‐ProADM), syndecan 1, thrombomodulin, angiopoietin 2, endothelial cell‐specific molecule 1, vascular cell adhesion molecule 1 and E‐selectin) had stronger associations with sepsis than infection alone. MR‐ProADM had the highest odds ratio (OR) in multivariable analysis (OR 11·53, 95 per cent c.i. 4·15 to 32·08; P = 0·006) and the best area under the curve (AUC) for detecting sepsis (0·86, 95 per cent c.i. 0·80 to 0·91; P < 0·001). In a comparison of sepsis with septic shock, two biomarkers of neutrophil degranulation, proteinase 3 (OR 8·09, 1·34 to 48·91; P = 0·028) and lipocalin 2 (OR 6·62, 2·47 to 17·77; P = 0·002), had the strongest association with septic shock, but lipocalin 2 exhibited the highest AUC (0·81, 0·73 to 0·90; P < 0·001). Conclusion MR‐ProADM and lipocalin 2 could be alternatives to the SOFA score in the detection of sepsis and septic shock respectively in surgical patients with infection.
Collapse
Affiliation(s)
- M Martin-Fernandez
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - L M Vaquero-Roncero
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - R Almansa
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - E Gómez-Sánchez
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - S Martín
- Anaesthesiology and Reanimation Service, Hospital Universitario Río Hortega, Valladolid, Spain
| | - E Tamayo
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - M C Esteban-Velasco
- Department of General and Gastrointestinal Surgery, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL) and Universidad de Salamanca, Salamanca, Spain
| | - P Ruiz-Granado
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - M Aragón
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - D Calvo
- Clinical Analysis Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - J Rico-Feijoo
- Anaesthesiology and Reanimation Service, Hospital Universitario Río Hortega, Valladolid, Spain
| | - A Ortega
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - E Gómez-Pesquera
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - M Lorenzo-López
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - J López
- Department of General and Gastrointestinal Surgery, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL) and Universidad de Salamanca, Salamanca, Spain
| | - C Doncel
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - C González-Sanchez
- Department of General and Gastrointestinal Surgery, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL) and Universidad de Salamanca, Salamanca, Spain
| | - D Álvarez
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - E Zarca
- Clinical Analysis Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - A Ríos-Llorente
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - A Diaz-Alvarez
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - E Sanchez-Barrado
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - D Andaluz-Ojeda
- Intensive Care Medicine Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - J M Calvo-Vecino
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - L Muñoz-Bellvís
- Department of General and Gastrointestinal Surgery, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL) and Universidad de Salamanca, Salamanca, Spain.,Biomedical Research Networking Centre on Cancer (CIBERONC), Madrid, Spain
| | - J I Gomez-Herreras
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - C Abad-Molina
- Microbiology and Immunology Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - J F Bermejo-Martin
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C Aldecoa
- Anaesthesiology and Reanimation Service, Hospital Universitario Río Hortega, Valladolid, Spain
| | - M Heredia-Rodríguez
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
25
|
Magrone T, Jirillo E. Sepsis: From Historical Aspects to Novel Vistas. Pathogenic and Therapeutic Considerations. Endocr Metab Immune Disord Drug Targets 2020; 19:490-502. [PMID: 30857516 DOI: 10.2174/1871530319666181129112708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sepsis is a clinical condition due to an infectious event which leads to an early hyper-inflammatory phase followed by a status of tolerance or immune paralysis. Hyper-inflammation derives from a massive activation of immune (neutrophils, monocytes/macrophages, dendritic cells and lymphocytes) and non-immune cells (platelets and endothelial cells) in response to Gram-negative and Gram-positive bacteria and fungi. DISCUSSION A storm of pro-inflammatory cytokines and reactive oxygen species accounts for the systemic inflammatory response syndrome. In this phase, bacterial clearance may be associated with a severe organ failure development. Tolerance or compensatory anti-inflammatory response syndrome (CARS) depends on the production of anti-inflammatory mediators, such as interleukin-10, secreted by T regulatory cells. However, once triggered, CARS, if prolonged, may also be detrimental to the host, thus reducing bacterial clearance. CONCLUSION In this review, the description of pathogenic mechanisms of sepsis is propaedeutic to the illustration of novel therapeutic attempts for the prevention or attenuation of experimental sepsis as well as of clinical trials. In this direction, inhibitors of NF-κB pathway, cell therapy and use of dietary products in sepsis will be described in detail.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
26
|
Quantification of Immune Dysregulation by Next-generation Polymerase Chain Reaction to Improve Sepsis Diagnosis in Surgical Patients. Ann Surg 2019; 269:545-553. [PMID: 28692472 DOI: 10.1097/sla.0000000000002406] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To quantify immunological dysfunction in surgical patients with presence/absence of sepsis using a droplet digital polymerase chain reaction (ddPCR) transcriptomic analysis. The study also aims to evaluate this approach for improving identification of sepsis in these patients. BACKGROUND Immune dysregulation is a central event in sepsis. Quantification of the expression of immunological genes participating in the pathogenesis of sepsis could represent a new avenue to improve its diagnosis. METHODS Expression of 6 neutrophil protease genes (MMP8, OLFM4, LCN2/NGAL, LTF, PRTN3, MPO) and also of 5 genes involved in the immunological synapse (HLA-DRA, CD40LG, CD3E, CD28, ICOS) was quantified in blood from 101 surgical patients with sepsis, 53 uninfected surgical patients, and 16 blood donors by using ddPCR. Areas under receiver operating characteristic curves (AUROC) and multivariate regression analysis were employed to test individual genes and gene ratios to identify sepsis, in comparison with procalcitonin. RESULTS Sepsis-induced overexpression of neutrophil protease genes and depressed expression of immunological synapse genes. MMP8/HLA-DRA, LCN2/HLA-DRA outperformed procalcitonin in differentiating between patients with sepsis and surgical controls in the AUROC analysis: LCN2/HLA-DRA: 0.90 (0.85-0.96), MMP8/HLA-DRA: 0.89 (0.84-0.95), procalcitonin: 0.80 (0.73-0.88) (AUROC, confidence interval 95%), and also in the multivariate analysis: LCN2/HLA-DRA: 8.57 (2.25-32.62); MMP8/HLA-DRA: 8.03 (2.10-30.76), procalcitonin: 4.20 (1.15-15.43) [odds ratio (confidence interval 95%)]. Gene expression levels of HLA-DRA were an independent marker of hospital mortality. CONCLUSIONS Quantifying the transcriptomic ratios MMP8/HLA-DRA, LCN2/HLA-DRA by ddPCR is a promising approach to improve sepsis diagnosis in surgical patients.
Collapse
|
27
|
Matrix Metalloproteinase Triple-Helical Peptide Inhibitors: Potential Cross-Reactivity with Caspase-11. Molecules 2019; 24:molecules24234355. [PMID: 31795279 PMCID: PMC6930605 DOI: 10.3390/molecules24234355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
Triple-helical peptide inhibitors (THPIs) of matrix metalloproteinases (MMPs) have recently been demonstrated to be effective in a variety of animal models of disease, coincidental with knockout studies. However, passenger mutations have been described in MMP knockout mice that impact the activity of other proteins, including caspase-11. Thus, it is possible that the results observed with THPIs may be based on inhibition of caspase-11, not MMPs. The present study evaluated whether THPIs were cross-reactive with caspase-11. Two different THPIs were tested, one that is known to inhibit MMP-1 and MMP-8 (GlyΨ{PO2H-CH2}Ile-His-Lys-Gln THPI) and one that is selective for MMP-2 and MMP-9 (α1(V)GlyΨ{PO2H-CH2}Val [mep14,32,Flp15,33] THPI). No inhibition of caspase-11 was observed with GlyΨ{PO2H–CH2}Ile–His–Lys–Gln THPI, even at an inhibitor concentration of 5 μM, while 5 μM α1(V)GlyΨ{PO2H-CH2}Val [mep14,32,Flp15,33] THPI exhibited 40% inhibition of caspase-11. Further testing of GlyΨ{PO2H-CH2}Ile-His-Lys-Gln THPI revealed nM inhibition of MMP-2, MMP-9, and MMP-13. Thus, the effectiveness of GlyΨ{PO2H-CH2}Ile-His-Lys-Gln THPI observed in a sepsis animal model may not be due to caspase-11 inhibition, but may be due to broader MMP inhibition than previously thought.
Collapse
|
28
|
The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Cells 2019; 8:cells8090984. [PMID: 31461880 PMCID: PMC6769477 DOI: 10.3390/cells8090984] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
The pursuit of matrix metalloproteinase (MMP) inhibitors began in earnest over three decades ago. Initial clinical trials were disappointing, resulting in a negative view of MMPs as therapeutic targets. As a better understanding of MMP biology and inhibitor pharmacokinetic properties emerged, it became clear that initial MMP inhibitor clinical trials were held prematurely. Further complicating matters were problematic conclusions drawn from animal model studies. The most recent generation of MMP inhibitors have desirable selectivities and improved pharmacokinetics, resulting in improved toxicity profiles. Application of selective MMP inhibitors led to the conclusion that MMP-2, MMP-9, MMP-13, and MT1-MMP are not involved in musculoskeletal syndrome, a common side effect observed with broad spectrum MMP inhibitors. Specific activities within a single MMP can now be inhibited. Better definition of the roles of MMPs in immunological responses and inflammation will help inform clinic trials, and multiple studies indicate that modulating MMP activity can improve immunotherapy. There is a U.S. Food and Drug Administration (FDA)-approved MMP inhibitor for periodontal disease, and several MMP inhibitors are in clinic trials, targeting a variety of maladies including gastric cancer, diabetic foot ulcers, and multiple sclerosis. It is clearly time to move on from the dogma of viewing MMP inhibition as intractable.
Collapse
|
29
|
Skibsted S, Bhasin MK, Henning DJ, Jaminet SC, Lewandowski J, Kirkegaard H, Aird WC, Shapiro NI. Leukocyte Transcriptional Response in Sepsis. Shock 2019; 52:166-173. [PMID: 30211758 PMCID: PMC10608800 DOI: 10.1097/shk.0000000000001258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The complex host response to sepsis is incompletely understood. The aim of this investigation is to use leukocyte RNA sequencing to characterize biological functions, cellular pathways, and key regulatory molecules driving sepsis pathophysiology. METHODS This was a prospective, observational study of emergency department patients with sepsis, at an urban, academic, tertiary care center. In the derivation cohort, we collected blood at enrollment and 90 days after hospital discharge allowing each patient to serve as an internal control. We performed RNA sequencing to quantify transcriptional expression changes during sepsis and non-sepsis states. We then performed unsupervised and supervised analyses, as well as functional and pathway analyses. We selected the top down and upregulated genes and key regulatory molecules for validation. Validation occurred in a cohort of septic and non-septic using real-time PCR. RESULTS The derivation cohort included 5 patients, and RNA sequencing revealed 916 unique mRNA transcripts differentially expressed during sepsis. Among these, 673 (73%) genes were upregulated, and 243 (27%) were downregulated. Functional enrichment analysis revealed a highly dynamic downstream effect of the transcriptional activity during sepsis. Of the 43 functional cellular pathways activated during sepsis, the top pathways were closely associated with inflammation and response to infection. Validation occurred in 18 septic and 25 non-septic control patients, with 34/45 (76%) of identified genes validated. The regulatory analysis identified several key regulators of sepsis. CONCLUSIONS Highly dynamic transcriptional activity occurs in leukocytes during sepsis, activating key cellular pathways and master regulatory molecules that drive the sepsis process.
Collapse
Affiliation(s)
- Simon Skibsted
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
- Center for Emergency Medicine Research, Aarhus University Hospital & Aarhus University, Aarhus, Denmark
| | - Manoj K. Bhasin
- Center for Genomics, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
| | - Daniel J. Henning
- Division of Emergency Medicine, University of Washington, Seattle, WA, USA
| | - Shou Ching Jaminet
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
| | - Jeffrey Lewandowski
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
| | - Hans Kirkegaard
- Center for Emergency Medicine Research, Aarhus University Hospital & Aarhus University, Aarhus, Denmark
| | - William C. Aird
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
| | - Nathan I. Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
In Trauma Patients, the Occurrence of Early-Onset Nosocomial Infections is Associated With Increased Plasma Concentrations of Chromogranin A. Shock 2019; 49:522-528. [PMID: 29049134 DOI: 10.1097/shk.0000000000001000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In previously healthy persons suffering from acute illnesses, nosocomial infections (NIs) are frequent. Their prevalence suggests the existence of as yet unknown conditions that may promote care-related infection. This study assessed whether the measurement of plasma chromogranin A, a stress-related protein involved in innate defense, is related to NI risk, and whether any chromogranin A-derived fragment included in vasostatin-I displays immunosuppressive activities related to AP-1 or NF-kappa B downregulation. At the clinical level, trauma patients and healthy controls were recruited to be eligible. Clinical histories were recorded, and standard biological tests (including plasma chromogranin A) were performed. For 9 randomly chosen patients and 16 controls, the time-dependent concentrations of chromogranin A (CGA) were assessed twice a day over 66 h. The data show that trauma patients present a higher value of CGA concentration during 66 h in comparison with healthy controls. In addition, patients maintaining this significant increase in CGA readily develop NIs. We therefore studied the effects of chromogranin A-derived peptides on monocytes, focusing on transcription factors that play a central role in inflammation. In vitro assay demonstrated that a chromogranin A-derived fragment (CGA47-70) displays a significant inhibition of NF-kappa B and AP-1 transcriptional activities in these cells. In conclusion, the occurrence of NI in trauma patients is associated with significantly increased plasma CGA concentrations. Downregulation of the two transcription factors by CGA47-70 might induce early acquired immune defect after a serious medical stress.
Collapse
|
31
|
Passmore MR, Byrne L, Obonyo NG, See Hoe LE, Boon AC, Diab SD, Dunster KR, Bisht K, Tung JP, Fauzi MH, Narula M, Pedersen SE, Esguerra-Lallen A, Simonova G, Sultana A, Anstey CM, Shekar K, Maitland K, Suen JY, Fraser JF. Inflammation and lung injury in an ovine model of fluid resuscitated endotoxemic shock. Respir Res 2018; 19:231. [PMID: 30466423 PMCID: PMC6249903 DOI: 10.1186/s12931-018-0935-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Background Sepsis is a multi-system syndrome that remains the leading cause of mortality and critical illness worldwide, with hemodynamic support being one of the cornerstones of the acute management of sepsis. We used an ovine model of endotoxemic shock to determine if 0.9% saline resuscitation contributes to lung inflammation and injury in acute respiratory distress syndrome, which is a common complication of sepsis, and investigated the potential role of matrix metalloproteinases in this process. Methods Endotoxemic shock was induced in sheep by administration of an escalating dose of lipopolysaccharide, after which they subsequently received either no fluid bolus resuscitation or a 0.9% saline bolus. Lung tissue, bronchoalveolar fluid (BAL) and plasma were analysed by real-time PCR, ELISA, flow cytometry and immunohistochemical staining to assess inflammatory cells, cytokines, hyaluronan and matrix metalloproteinases. Results Endotoxemia was associated with decreased serum albumin and total protein levels, with activated neutrophils, while the glycocalyx glycosaminoglycan hyaluronan was significantly increased in BAL. Quantitative real-time PCR studies showed higher expression of IL-6 and IL-8 with saline resuscitation but no difference in matrix metalloproteinase expression. BAL and tissue homogenate levels of IL-6, IL-8 and IL-1β were elevated. Conclusions This data shows that the inflammatory response is enhanced when a host with endotoxemia is resuscitated with saline, with a comparatively higher release of inflammatory cytokines and endothelial/glycocalyx damage, but no change in matrix metalloproteinase levels.
Collapse
Affiliation(s)
- Margaret R Passmore
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia. .,University of Queensland, Brisbane, Australia.
| | - Liam Byrne
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,Australian National University, Canberra, Australia
| | - Nchafatso G Obonyo
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Louise E See Hoe
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Ai-Ching Boon
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Sara D Diab
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia
| | - Kimble R Dunster
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,Queensland University of Technology, Brisbane, Australia
| | - Kavita Bisht
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia
| | - John-Paul Tung
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,Research and Development, Australian Red Cross Blood Service, Brisbane, Australia
| | - Mohd H Fauzi
- Department of Emergency Medicine, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Monica Narula
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Sanne E Pedersen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia
| | - Arlanna Esguerra-Lallen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia
| | - Gabriela Simonova
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,University of Queensland, Brisbane, Australia.,Research and Development, Australian Red Cross Blood Service, Brisbane, Australia
| | - Annette Sultana
- Research and Development, Australian Red Cross Blood Service, Brisbane, Australia
| | - Chris M Anstey
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,Sunshine Coast University Hospital Intensive Care, Birtinya, Australia
| | - Kiran Shekar
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Wellcome Trust Centre for Clinical Tropical Medicine and Department of Paediatrics, Faculty of Medicine, Imperial College, London, UK
| | - Jacky Y Suen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - John F Fraser
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| |
Collapse
|
32
|
Sirniö P, Tuomisto A, Tervahartiala T, Sorsa T, Klintrup K, Karhu T, Herzig KH, Mäkelä J, Karttunen TJ, Salo T, Mäkinen MJ, Väyrynen JP. High-serum MMP-8 levels are associated with decreased survival and systemic inflammation in colorectal cancer. Br J Cancer 2018; 119:213-219. [PMID: 29808017 PMCID: PMC6048114 DOI: 10.1038/s41416-018-0136-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022] Open
Abstract
Background Matrix metalloproteinase-8 (MMP-8) is a protease mainly expressed by neutrophils that cleaves numerous substrates, including collagens and cytokines. We have previously shown that serum MMP-8 levels increase in colorectal cancer (CRC) and correlate with distant metastasis. However, short follow-up in our prospective cohort did not enable survival analyses at the time of the first publication. Methods Preoperative serum MMP-8 levels were measured by immunofluorometric assay in 271 CRC patients and related to clinicopathological parameters, markers of systemic inflammation (modified Glasgow Prognostic Score, mGPS; serum levels of C-reactive protein (CRP), albumin and 13 cytokines), the density of six types of tumour-infiltrating immune cells and survival. Results Increased MMP-8 levels associated with higher mGPS and higher serum levels of CRP and several cytokines, including IL-1ra, IL-7 and IL-8 (p < 0.001 for all). Serum MMP-8 negatively correlated with tumour-infiltrating mast cells (invasive margin: p = 0.005, tumour centre: p = 0.010). The patients with high-serum MMP-8 levels (>100 ng/mL) had poor cancer-specific survival, independent of tumour stage, grade, lymphatic invasion, patient age, BRAF VE1 immunohistochemistry, mismatch repair deficiency, Immunoscore and mGPS (multivariate HR 2.12, 95% CI 1.21–3.71, p = 0.009). Conclusions High-serum MMP-8 levels are associated with systemic inflammation and adverse outcome in CRC.
Collapse
Affiliation(s)
- Päivi Sirniö
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland.,Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland
| | - Anne Tuomisto
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland.,Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Haartmaninkatu 8, POB 63, 00014, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Haartmaninkatu 8, POB 63, 00014, Helsinki, Finland
| | - Kai Klintrup
- Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland.,Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, POB 5000, 90014, Oulu, Finland
| | - Toni Karhu
- Research Unit of Biomedicine and Biocenter Oulu, Department of Physiology, University of Oulu, POB 5000, 90014, Oulu, Finland
| | - Karl-Heinz Herzig
- Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland.,Research Unit of Biomedicine and Biocenter Oulu, Department of Physiology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, ul. Szpitalna 27/33, 60-572, Poznan, Poland
| | - Jyrki Mäkelä
- Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland.,Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, POB 5000, 90014, Oulu, Finland
| | - Tuomo J Karttunen
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland.,Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland.,Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland.,Department of Oral and Maxillofacial Diseases, University of Helsinki, Haartmaninkatu 8, POB 63, 00014, Helsinki, Finland.,Helsinki University Hospital, 00014, Helsinki, Finland
| | - Markus J Mäkinen
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland.,Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland
| | - Juha P Väyrynen
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland. .,Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland.
| |
Collapse
|
33
|
Daly MC, von Allmen D, Wong HR. Biomarkers to estimate the probability of complicated appendicitis. J Pediatr Surg 2018; 53:437-440. [PMID: 28951011 DOI: 10.1016/j.jpedsurg.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/02/2017] [Accepted: 09/02/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND The conventional paradigm that all children with appendicitis require an appendectomy is being challenged by the idea that some patients may be successfully managed non-operatively. The study aimed to determine if matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) are candidate biomarkers for estimating the probability of complicated appendicitis in pediatric patients. METHODS The study was a single-institution, prospective cohort study. MMP and TIMP serum protein concentrations were measured in patients with suspected appendicitis. Three hundred and thirty-one patients were enrolled with appendicitis. Classification and Regression Tree (CART) analysis was used to determine the combination of candidate biomarkers that best predicted complicated appendicitis. RESULTS The CART-generated decision tree for the derivation cohort included WBC count, MMP-8, MMP-9, MMP-12, TIMP-2, and TIMP-4 and had the following test characteristics for estimating the probability of complicated appendicitis (95% CI): AUC 0.86 (0.81-0.90); sensitivity 91% (83-96); specificity 61% (53-68); positive predictive value 58% (50-66); negative predictive value 92% (84-96); positive likelihood ratio (LR) 2.3 (1.9-2.8); and negative LR 0.15 (0.08-0.3). CONCLUSIONS MMPs and TIMPs have the potential to serve as biomarkers to estimate the probability of complicated appendicitis in pediatric patients. The multi-biomarker-based decision tree has test characteristics suggesting clinical utility for decision making. LEVEL OF EVIDENCE Level II: Study of Diagnostic Test.
Collapse
Affiliation(s)
- Meghan C Daly
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, USA; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Daniel von Allmen
- Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
34
|
Multiplex Cytokine Profiling Identifies Interleukin-27 as a Novel Biomarker For Neonatal Early Onset Sepsis. Shock 2018; 47:140-147. [PMID: 27648693 DOI: 10.1097/shk.0000000000000753] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Early onset sepsis (EOS) remains a major cause of mortality and morbidity in neonates, and traditional clinical markers effective for adults are less effective in these patients. This study aimed to assess the value of individual plasma biomarkers as well as biomarker combinations for predicting EOS in neonates. METHODS This prospective study included 151 neonates with suspected EOS. Plasma levels of interleukin (IL)-27, IL-6, IL-8, tumor necrosis factor (TNF)-α, heat shock protein (HSP) 70, macrophage inflammatory protein (MIP)-1α, MIP-1β, granzyme B, and matrix metalloproteinase (MMP)-8 were measured through multiplex cytokine profiling and assessed along with C-reactive protein (CRP) and procalcitonin (PCT). Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive ability of biomarkers individually and in combination. Logistic regression model was constructed to identify independent predictors of EOS. RESULTS The proven sepsis and probable sepsis groups were combined to form the infected group (n = 68), and the possible sepsis and low-risk sepsis groups were combined to form the uninfected group (n = 83). The ROC area under the curve was 0.747 for IL-27 (P <0.01). In addition, IL-6, TNF-α, HSP 70, MMP-8, PCT, and CRP were significantly predictive of EOS, whereas IL-8, granzyme B, MIP-1α, and MIP-1β were not. Both IL-27 and PCT were identified as independent predictors of EOS in the multivariate model, and the combined use of these markers showed significantly increased predictive ability for EOS. CONCLUSION Our results indicate that elevated IL-27 strongly correlates with EOS and may provide additional diagnostic value along with PCT.
Collapse
|
35
|
Coates BM, Staricha KL, Koch CM, Cheng Y, Shumaker DK, Budinger GRS, Perlman H, Misharin AV, Ridge KM. Inflammatory Monocytes Drive Influenza A Virus-Mediated Lung Injury in Juvenile Mice. THE JOURNAL OF IMMUNOLOGY 2018; 200:2391-2404. [PMID: 29445006 DOI: 10.4049/jimmunol.1701543] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/21/2018] [Indexed: 12/23/2022]
Abstract
Healthy children are more likely to die of influenza A virus (IAV) infection than healthy adults. However, little is known about the mechanisms underlying the impact of young age on the development of life-threatening IAV infection. We report increased mortality in juvenile mice compared with adult mice at each infectious dose of IAV. Juvenile mice had sustained elevation of type I IFNs and persistent NLRP3 inflammasome activation in the lungs, both of which were independent of viral titer. Juvenile mice, but not adult mice, had increased MCP-1 levels that remained high even after viral clearance. Importantly, continued production of MCP-1 was associated with persistent recruitment of monocytes to the lungs and prolonged elevation of inflammatory cytokines. Transcriptional signatures of recruited monocytes to the juvenile and adult IAV-infected lungs were assessed by RNA-seq. Genes associated with a proinflammatory signature were upregulated in the juvenile monocytes compared with adult monocytes. Depletion of monocytes with anti-CCR2 Ab decreased type I IFN secretion, NLRP3 inflammasome activation, and lung injury in juvenile mice. This suggests an exaggerated inflammatory response mediated by increased recruitment of monocytes to the lung, and not an inability to control viral replication, is responsible for severe IAV infection in juvenile mice. This study provides insight into severe IAV infection in juveniles and identifies key inflammatory monocytes that may be central to pediatric acute lung injury secondary to IAV.
Collapse
Affiliation(s)
- Bria M Coates
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; .,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611
| | - Kelly L Staricha
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Clarissa M Koch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Yuan Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Dale K Shumaker
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.,Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
36
|
Simultaneous Inhibition of Tumor Necrosis Factor Receptor 1 and Matrix Metalloproteinase 8 Completely Protects Against Acute Inflammation and Sepsis. Crit Care Med 2017; 46:e67-e75. [PMID: 29095202 DOI: 10.1097/ccm.0000000000002813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Sepsis causes very high mortality and morbidity rates and remains one of the biggest medical challenges. This study investigates whether plasma levels of both matrix metalloproteinase 8 and tumor necrosis factor receptor 1 are associated with sepsis severity and also investigates the therapeutic applicability of simultaneous inhibition of the two molecules in sepsis. DESIGN Observational human pilot study-prospective controlled animal study. SETTING University hospital and research laboratory. SUBJECTS Sepsis patients and C57BL/6 mice deficient for matrix metalloproteinase 8 and/or tumor necrosis factor receptor 1. INTERVENTION Plasma and whole blood RNA were collected from 13 sepsis patients for 7 consecutive days and within 24 hours of admission to ICU. Matrix metalloproteinase 8 and tumor necrosis factor receptor 1 plasma and expression levels were determined in these patients. Mice deficient for both matrix metalloproteinase 8 and tumor necrosis factor receptor 1 were generated and subjected to endotoxemia and cecal ligation and puncture. Additionally, a bispecific Nanobody that simultaneously blocks matrix metalloproteinase 8 and tumor necrosis factor receptor 1 was created. MEASUREMENTS AND MAIN RESULTS Plasma levels of matrix metalloproteinase 8 and tumor necrosis factor receptor 1 were positively correlated with the Sequential Organ Failure Assessment score (r, 0.51 and 0.58) and interleukin 6 levels (r, 0.59 and 0.52) in 13 sepsis patients. Combined elimination of tumor necrosis factor receptor 1 and matrix metalloproteinase 8 in double knockout mice resulted in superior survival in endotoxemia and CLP compared with single knockouts and wild-type mice. Cotreatment with our bispecific Nanobody in CLP resulted in improved survival rates (28% vs 19%) compared with untreated mice. CONCLUSIONS Inhibition of matrix metalloproteinase 8 and tumor necrosis factor receptor 1 might have therapeutic potential to treat sepsis and proof-of-principle was provided as therapeutics that inhibit both tumor necrosis factor receptor 1 and matrix metalloproteinase 8 are effective in CLP.
Collapse
|
37
|
Bhowmick M, Tokmina-Roszyk D, Onwuha-Ekpete L, Harmon K, Robichaud T, Fuerst R, Stawikowska R, Steffensen B, Roush W, Wong HR, Fields GB. Second Generation Triple-Helical Peptide Inhibitors of Matrix Metalloproteinases. J Med Chem 2017; 60:3814-3827. [PMID: 28394608 PMCID: PMC6413923 DOI: 10.1021/acs.jmedchem.7b00018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The design of selective matrix metalloproteinase (MMP) inhibitors that also possess favorable solubility properties has proved to be especially challenging. A prior approach using collagen-model templates combined with transition state analogs produced a first generation of triple-helical peptide inhibitors (THPIs) that were effective in vitro against discrete members of the MMP family. These THPI constructs were also highly water-soluble. The present study sought improvements in the first generation THPIs by enhancing thermal stability and selectivity. A THPI selective for MMP-2 and MMP-9 was redesigned to incorporate non-native amino acids (Flp and mep), resulting in an increase of 18 °C in thermal stability. This THPI was effective in vivo in a mouse model of multiple sclerosis, reducing clinical severity and weight loss. Two other THPIs were developed to be more selective within the collagenolytic members of the MMP family. One of these THPIs was serendipitously more effective against MMP-8 than MT1-MMP and was utilized successfully in a mouse model of sepsis. The THPI targeting MMP-8 minimized lung damage, increased production of the anti-inflammatory cytokine IL-10, and vastly improved mouse survival.
Collapse
Affiliation(s)
- Manishabrata Bhowmick
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
- Sigma-Aldrich Corporation, 3 Strathmore Road, Natick, Massachusetts 01760, United States
| | - Dorota Tokmina-Roszyk
- Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| | - Lillian Onwuha-Ekpete
- Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| | - Kelli Harmon
- Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, United States
| | - Trista Robichaud
- University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio Texas 78229, United States
| | - Rita Fuerst
- The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Roma Stawikowska
- Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| | - Bjorn Steffensen
- University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio Texas 78229, United States
- School of Dental Medicine, Tufts University, 1 Kneeland Street, Boston, Massachusetts 02111, United States
| | - William Roush
- The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hector R. Wong
- Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, United States
| | - Gregg B. Fields
- Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
- The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
38
|
|
39
|
Ganatra HA, Varisco BM, Harmon K, Lahni P, Opoka A, Wong HR. Zinc supplementation leads to immune modulation and improved survival in a juvenile model of murine sepsis. Innate Immun 2016; 23:67-76. [PMID: 27821649 DOI: 10.1177/1753425916677073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Children with severe sepsis are known to have altered zinc homeostasis and decreased circulating zinc levels, suggesting a role for zinc supplementation to improve outcomes. We tested the hypothesis that zinc supplementation would improve survival in a juvenile model of polymicrobial sepsis. Juvenile (13-14-d-old) C57BL/6 mice were treated with 10 mg/kg of zinc via i.p. injections (or vehicle) for 3 d prior to induction of polymicrobial sepsis via i.p. cecal slurry injections. Survival after sepsis was followed for 3 d, and bacterial clearance, ex vivo phagocytosis, systemic inflammatory markers and neutrophil extracellular trap (NET) formation were quantified. We found a significant survival benefit and decreased bacterial burden among zinc supplemented mice when compared with the control group. Zinc supplementation also resulted in enhanced phagocytic activity, greater neutrophil recruitment in the peritoneal cavity and NET formation, suggesting a possible mechanism for improved bacterial clearance and survival. We also noted decreased serum cytokine levels and decreased myeloperoxidase activity in lung tissue following zinc supplementation, suggesting attenuation of the systemic inflammatory response. In conclusion, zinc supplementation improves bacterial clearance, and hence survival, in juvenile mice with polymicrobial sepsis.
Collapse
Affiliation(s)
- Hammad A Ganatra
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian M Varisco
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelli Harmon
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Amy Opoka
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
40
|
Lauhio A, Färkkilä E, Pietiläinen KH, Åström P, Winkelmann A, Tervahartiala T, Pirilä E, Rissanen A, Kaprio J, Sorsa TA, Salo T. Association of MMP-8 with obesity, smoking and insulin resistance. Eur J Clin Invest 2016; 46:757-65. [PMID: 27296149 DOI: 10.1111/eci.12649] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 06/13/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Obesity has been recognized as a state of subclinical inflammation resulting in a loss of insulin receptors and decreased insulin sensitivity. We here studied in vivo the role of circulating matrix metalloproteinase-8 (MMP-8) among young healthy twin adults. Also, in vitro analysis of the cleavage of human insulin receptor (INSR) by MMP-8 was investigated as well its inhibition by doxycycline and other MMP-8 inhibitor, Ilomastat/GM6001, which are broad-spectrum MMP inhibitors. MATERIALS AND METHODS We analysed serum MMP-8 levels by a time-resolved immunofluorometric assay in obese (n = 34), overweight (n = 76) and normal weight (n = 130) twin individuals. The effect of MMP-8 on INSR and the effects of synthetic MMP-8 inhibitors, doxycycline and Ilomastat/GM6001, were studied by SDS-PAGE. RESULTS We found that in obese individuals relative to normal weight individuals, the serum MMP-8 levels and MMP-8/TIMP-1 ratio were significantly increased (P = 0·0031 and P = 0·031, respectively). Among normal weight and obese individuals, also smoking significantly increases serum MMP-8 and MMP-8/TIMP-1 ratio. In vitro, we found that INSR was degraded by MMP-8 and this was inhibited by doxycycline and Ilomastat/GM6001. CONCLUSIONS Obesity associated with elevated circulating MMP-8 found among young adults may contribute to progression of insulin resistance by cleaving INSR. This INSR cleavage by MMP-8 can be inhibited by synthetic MMP-8 inhibitors such as doxycycline. In addition to obesity, also smoking independently explained increased MMP-8 levels. Our results suggest that MMP-8 is an essential mediator in systemic subclinical inflammatory response in obesity, and a potential drug target.
Collapse
Affiliation(s)
- Anneli Lauhio
- Department of Infectious Diseases, Helsinki University Central Hospital, Helsinki, Finland.,Clinicum, University of Helsinki, Helsinki, Finland
| | - Esa Färkkilä
- Department of Infectious Diseases, Helsinki University Central Hospital, Helsinki, Finland.,Clinicum, University of Helsinki, Helsinki, Finland.,Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Clinicum, University of Helsinki, Helsinki, Finland.,Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,FIMM, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Pirjo Åström
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Alina Winkelmann
- Department of Periodontology, Institute of Dentistry, University of Helsinki, Helsinki, Finland
| | - Taina Tervahartiala
- Department of Periodontology, Institute of Dentistry, University of Helsinki, Helsinki, Finland
| | - Emma Pirilä
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Aila Rissanen
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Department of Psychiatry, Helsinki University Central Hospital, Helsinki, Finland
| | - Jaakko Kaprio
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland.,Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Timo A Sorsa
- Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland.,Department of Periodontology, Institute of Dentistry, University of Helsinki, Helsinki, Finland.,Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Oral Pathology, Institute of Dentistry, University of Helsinki, Helsinki, Finland.,Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
41
|
Atkinson SJ, Varisco BM, Sandquist M, Daly MN, Klingbeil L, Kuethe JW, Midura EF, Harmon K, Opaka A, Lahni P, Piraino G, Hake P, Zingarelli B, Mortenson JE, Wynn JL, Wong HR. Matrix Metalloproteinase-8 Augments Bacterial Clearance in a Juvenile Sepsis Model. Mol Med 2016; 22:455-463. [PMID: 27506554 DOI: 10.2119/molmed.2016.00058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022] Open
Abstract
Genetic ablation or pharmacologic inhibition of matrix metalloproteinase-8 (MMP8) improves survival in an adult murine sepsis model. Because developmental age influences the host inflammatory response, we hypothesized that developmental age influences the role of MMP8 in sepsis. First, we compared sepsis survival between wild type (WT, C57BL/6) and MMP8 null juvenile-aged mice (12-14 days) after intraperitoneal injection of a standardized cecal slurry. Second, peritoneal lavages collected at 6 and 18 hours after cecal slurry injection were analyzed for bacterial burden, leukocyte subsets, and inflammatory cytokines. Third, juvenile WT mice were pretreated with an MMP8 inhibitor prior to cecal slurry injection; analysis of their bacterial burden was compared to vehicle-injected animals. Fourth, the phagocytic capacity of WT and MMP8 null peritoneal macrophages was compared. Finally, peritoneal neutrophil extracellular traps (NETs) were compared using immunofluorescent imaging and quantitative image analysis. We found that juvenile MMP8 null mice had greater mortality and higher bacterial burden than WT mice. Leukocyte counts and cytokine concentrations in the peritoneal fluid were increased in the MMP8 null mice, relative to the wild type mice. Peritoneal macrophages from MMP8 null mice had reduced phagocytic capacity compared to WT macrophages. There was no quantitative difference in NET formation, but fewer bacteria were adherent to NETs from MMP8 null animals. In conclusion, in contrast to septic adult mice, genetic ablation of MMP8 increased mortality following bacterial peritonitis in juvenile mice. The increase in mortality in MMP8 null juvenile mice was associated with reduced bacterial clearance and reduced NET efficiency. We conclude that developmental age influences the role of MMP8 in sepsis.
Collapse
Affiliation(s)
- Sarah J Atkinson
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Brian M Varisco
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Mary Sandquist
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Meghan N Daly
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lindsey Klingbeil
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joshua W Kuethe
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Emily F Midura
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kelli Harmon
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH
| | - Amy Opaka
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH
| | - Giovanna Piraino
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH
| | - Paul Hake
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joel E Mortenson
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - James L Wynn
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
42
|
Intestine-Derived Matrix Metalloproteinase-8 Is a Critical Mediator of Polymicrobial Peritonitis. Crit Care Med 2016; 44:e200-6. [PMID: 26496446 DOI: 10.1097/ccm.0000000000001374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Inhibition of matrix metalloproteinase-8 improves survival following cecal ligation and puncture in mice, making it a potential therapeutic target. In the current study, we expand our understanding of the role of matrix metalloproteinase-8 in sepsis by using an adoptive transfer approach and alternative sepsis models. DESIGN We used three different sepsis models: cecal ligation and puncture, cecal slurry, and intestinal implantation. In our first model, adoptive transfer experiments were followed by cecal ligation and puncture to test the hypothesis that matrix metalloproteinase-8-containing myeloid cells are a critical factor in sepsis following cecal ligation and puncture. Our second model, cecal slurry, used intraperitoneal injections of cecal contents to induce polymicrobial peritonitis without tissue compromise in the recipient. Our third model, intestinal implantation, involved ligating and puncturing a cecum from a donor, and then removing the cecum and placing it into the recipient's peritoneal cavity. Clinically, blood samples were drawn from pediatric patients within 24 hours of meeting criteria for septic shock. SETTING Basic science laboratory. SUBJECTS Wild type and genetically modified mice. INTERVENTIONS Experimental models of sepsis. MEASUREMENTS AND MAIN RESULTS In our adoptive transfer experiments, matrix metalloproteinase-8 null mice receiving wild-type marrow had a survival advantage when compared with wild-type mice receiving matrix metalloproteinase-8 null marrow, suggesting that matrix metalloproteinase-8-containing myeloid cells are not a critical factor in sepsis following cecal ligation and puncture. In our cecal slurry model, no survival advantage was seen among matrix metalloproteinase-8 null mice. Our third model, intestinal implantation, found that mice receiving matrix metalloproteinase-8 null intestine had a survival advantage when compared with mice receiving wild-type intestine, regardless of recipient genotype. Clinically, median matrix metalloproteinase-8 serum concentrations were higher in patients with sepsis and primary intestinal pathology than in septic patients without primary intestinal pathology. CONCLUSIONS Intestine-derived matrix metalloproteinase-8 is a critical component of septic peritonitis secondary to intestinal compromise.
Collapse
|
43
|
Daly MC, Atkinson SJ, Varisco BM, Klingbeil L, Hake P, Lahni P, Piraino G, Wu D, Hogan SP, Zingarelli B, Wong HR. Role of matrix metalloproteinase-8 as a mediator of injury in intestinal ischemia and reperfusion. FASEB J 2016; 30:3453-3460. [PMID: 27435263 DOI: 10.1096/fj.201600242r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022]
Abstract
Acute mesenteric ischemia is associated with high morbidity and mortality. In recent studies, we found that the intestine is an important source of matrix metalloproteinase (MMP)8 during intestinal injury. We hypothesized that genetic ablation or pharmacological inhibition of MMP8 would reduce intestinal injury in mice subjected to intestinal ischemia-reperfusion (I/R) injury. Male mice aged 8-12 wk were subjected to intestinal I/R injury by transient occlusion of the superior mesenteric artery for 30 min. MMP8 was inhibited by genetic and pharmacological approaches. In vivo study endpoints included several functional, histological, and biochemical assays. Intestinal sections were assessed for barrier function and expression of tight junction proteins. I/R injury led to increased intestinal and systemic expression of MMP8. This increase was associated with increased intestinal neutrophil infiltration, epithelial injury, and permeability. I/R injury was associated with increased systemic inflammation and weight loss. These parameters were ameliorated by inhibiting MMP8. I/R injury caused a loss of the tight junction protein claudin-3, which was ameliorated by genetic ablation of MMP8. MMP8 plays an important role in intestinal I/R injury through mechanisms involving increased inflammation and loss of claudin-3. Inhibition of MMP8 is a potential therapeutic strategy in this setting.-Daly, M. C., Atkinson, S. J., Varisco, B. M., Klingbeil L., Hake, P., Lahni, P., Piraino, G., Wu, D., Hogan, S. P., Zingarelli, B., Wong, H. R. Role of matrix metalloproteinase-8 as a mediator of injury in intestinal ischemia and reperfusion.
Collapse
Affiliation(s)
- Meghan C Daly
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sarah J Atkinson
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brian M Varisco
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lindsey Klingbeil
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul Hake
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Giovanna Piraino
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - David Wu
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Simon P Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA;
| |
Collapse
|
44
|
Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 2016; 21:1076-113. [DOI: 10.1016/j.drudis.2016.04.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/26/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022]
|
45
|
Is Matrix Metalloproteinase-8 Activity in the Mucosal Barrier a Requirement for Leakage of Cecal Material in Peritonitis? Crit Care Med 2016; 44:854-5. [PMID: 26974453 DOI: 10.1097/ccm.0000000000001500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Development and Validation of a Small Single-domain Antibody That Effectively Inhibits Matrix Metalloproteinase 8. Mol Ther 2016; 24:890-902. [PMID: 26775809 DOI: 10.1038/mt.2016.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/31/2015] [Indexed: 12/15/2022] Open
Abstract
A detrimental role for matrix metalloproteinase 8 (MMP8) has been identified in several pathological conditions, e.g., lethal hepatitis and the systemic inflammatory response syndrome. Since matrix MMP8-deficient mice are protected in the above-mentioned diseases, specific MMP8 inhibitors could be of clinical value. However, targeting a specific matrix metalloproteinase remains challenging due to the strong structural homology of matrix metalloproteinases, which form a family of 25 members in mammals. Single-domain antibodies, called nanobodies, offer a range of possibilities toward therapy since they are easy to generate, express, produce, and modify, e.g., by linkage to nanobodies directed against other target molecules. Hence, we generated small MMP8-binding nanobodies, and established a proof-of-principle for developing nanobodies that inhibit matrix metalloproteinase activity. Also, we demonstrated for the first time the possibility of expressing nanobodies systemically by in vivo electroporation of the muscle and its relevance as a potential therapy in inflammatory diseases.
Collapse
|
47
|
Decreased salivary matrix metalloproteinase-8 reflecting a defensive potential in juvenile parotitis. Int J Pediatr Otorhinolaryngol 2016; 80:74-7. [PMID: 26746616 DOI: 10.1016/j.ijporl.2015.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Matrix metalloproteinases MMP-2 and MMP-9 have been associated with juvenile parotitis. However, the role of MMP-8 has not been addressed previously. This work focuses on salivary MMP-8 and -9 levels in juvenile parotitis. METHODS During a five-year period at Helsinki University Hospital, a tertiary care hospital, 41 patients aged 17 or under, were identified as having parotitis; from 36 of these patients, saliva samples were collected for MMP-8 IFMA (time-resolved immunofluorometric assay) analyses. Control saliva samples were collected from 34 age- and gender-matched children admitted for an elective surgery who had no history of parotitis. For comparison, salivary levels of MMP-9, tissue inhibitor of matrix metalloproteinase (TIMP-1), MMP-8/TIMP-1 ratio, human neutrophil elastase (HNE), and myeloperoxidase (MPO) were analyzed by ELISA. Additionally, salivary MMP-8 levels were compared to historical saliva samples from 18 adult gingivitis patients as well as to 10 healthy adult controls. RESULTS The median (25%, 75% percentile) MMP-8 concentration in saliva of parotitis patients was significantly lower than MMP-8 concentration in saliva of their controls [50.4ng/ml (37.5, 72.9) vs. 148.5ng/ml (101.2, 178.5) p<0.0001] and lower than in patients with gingivitis [347.9ng/ml (242.6, 383.2) p<0.0001] or healthy adult controls [257.2ng/ml (164.9, 320.7) p<0.0001]. The MMP-8/TIMP-1 ratio was lower than in controls [0.13 (0.05-0.02) vs. 0.3 (0.17-0.46) p<0.0001]. The median MMP-9 concentration in saliva of parotitis patients was significantly higher than in controls [143.9ng/m (68.8-189.0) vs. 34.9ng/ml (16.3-87.6) p<0.0001]. Neither HNE, MPO, nor TIMP-1 alone separated the patients from the control groups. CONCLUSIONS MMP-9 was up-regulated in juvenile parotitis saliva, suggesting that MMP-9 may play a destructive role in juvenile parotitis, as others have suggested. The present novel findings reveal a decreased salivary MMP-8 concentration, suggesting that MMP-8 may reflect in juvenile parotitis down-regulated or anti-inflammatory immune characteristics.
Collapse
|
48
|
Wong HR, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, Weiss SL, Fitzgerald J, Checchia PA, Meyer K, Quasney M, Hall M, Gedeit R, Freishtat RJ, Nowak J, Raj SS, Gertz S, Howard K, Harmon K, Lahni P, Frank E, Hart KW, Lindsell CJ. Prospective Testing and Redesign of a Temporal Biomarker Based Risk Model for Patients With Septic Shock: Implications for Septic Shock Biology. EBioMedicine 2015; 2:2087-93. [PMID: 26844289 PMCID: PMC4703723 DOI: 10.1016/j.ebiom.2015.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/07/2015] [Accepted: 11/19/2015] [Indexed: 01/01/2023] Open
Abstract
The temporal version of the pediatric sepsis biomarker risk model (tPERSEVERE) estimates the risk of a complicated course in children with septic shock based on biomarker changes from days 1 to 3 of septic shock. We validated tPERSEVERE performance in a prospective cohort, with an a priori plan to redesign tPERSEVERE if it did not perform well. Biomarkers were measured in the validation cohort (n = 168) and study subjects were classified according to tPERSEVERE. To redesign tPERSEVERE, the validation cohort and the original derivation cohort (n = 299) were combined and randomly allocated to training (n = 374) and test (n = 93) sets. tPERSEVERE was redesigned using the training set and CART methodology. tPERSEVERE performed poorly in the validation cohort, with an area under the curve (AUC) of 0.67 (95% CI: 0.58–0.75). Failure analysis revealed potential confounders related to clinical characteristics. The redesigned tPERSEVERE model had an AUC of 0.83 (0.79–0.87) and a sensitivity of 93% (68–97) for estimating the risk of a complicated course. Similar performance was seen in the test set. The classification tree segregated patients into two broad endotypes of septic shock characterized by either excessive inflammation or immune suppression. We prospectively tested the performance of the temporal version of the pediatric sepsis biomarker risk model (tPERSEVERE). tPERSEVERE performed poorly in the test cohort, prompting a redesign. The redesigned tPERSEVERE model performed well upon testing. The redesigned tPERSEVERE provides information regarding septic shock endotypes.
Septic shock is characterized by individual heterogeneity and it is not known who is at greatest risk of poor outcome and would thus benefit from more aggressive treatment. We designed a biomarker-based model to estimate the risk of poor outcome in children with septic shock. The model measures biomarker concentrations over the early period of disease evolution, and estimates how the biomarker changes reflect changing risk for poor outcome. The model has potential to serve as a monitor to evaluate the effectiveness of therapy in children with septic shock and may provide information regarding the biological mechanisms of septic shock.
Collapse
Affiliation(s)
- Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | | - Nick Anas
- Children's Hospital of Orange County, Orange, CA, United States
| | | | - Neal J Thomas
- Penn State Hershey Children's Hospital, Hershey, PA, United States
| | | | - Scott L Weiss
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Julie Fitzgerald
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Paul A Checchia
- Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Keith Meyer
- Miami Children's Hospital, Miami, FL, United States
| | - Michael Quasney
- CS Mott Children's Hospital at the University of Michigan, Ann Arbor, MI, United States
| | - Mark Hall
- Nationwide Children's Hospital, Columbus, OH, United States
| | - Rainer Gedeit
- Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | | | - Jeffrey Nowak
- Children's Hospital and Clinics of Minnesota, Minneapolis, MN, United States
| | - Shekhar S Raj
- Riley Hospital for Children, Indianapolis, IN, United States
| | - Shira Gertz
- Hackensack University Medical Center, Joseph M. Sanzari Children's Hospital, Hackensack, NJ, United States
| | - Kelli Howard
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Kelli Harmon
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Erin Frank
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Kimberly W Hart
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christopher J Lindsell
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
49
|
Abstract
OBJECTIVE The development of acute kidney injury in patients with sepsis is associated with worse outcomes. Identifying those at risk for septic acute kidney injury could help to inform clinical decision making. We derived and tested a multibiomarker-based model to estimate the risk of septic acute kidney injury in children with septic shock. DESIGN Candidate serum protein septic acute kidney injury biomarkers were identified from previous transcriptomic studies. Model derivation involved measuring these biomarkers in serum samples from 241 subjects with septic shock obtained during the first 24 hours of admission and then using a Classification and Regression Tree approach to estimate the probability of septic acute kidney injury 3 days after the onset of septic shock, defined as at least two-fold increase from baseline serum creatinine. The model was then tested in a separate cohort of 200 subjects. SETTING Multiple PICUs in the United States. INTERVENTIONS None other than standard care. MEASUREMENTS AND MAIN RESULTS The decision tree included a first-level decision node based on day 1 septic acute kidney injury status and five subsequent biomarker-based decision nodes. The area under the curve for the tree was 0.95 (CI95, 0.91-0.99), with a sensitivity of 93% and a specificity of 88%. The tree was superior to day 1 septic acute kidney injury status alone for estimating day 3 septic acute kidney injury risk. In the test cohort, the tree had an area under the curve of 0.83 (0.72-0.95), with a sensitivity of 85% and a specificity of 77% and was also superior to day 1 septic acute kidney injury status alone for estimating day 3 septic acute kidney injury risk. CONCLUSIONS We have derived and tested a model to estimate the risk of septic acute kidney injury on day 3 of septic shock using a novel panel of biomarkers. The model had very good performance in a test cohort and has test characteristics supporting clinical utility and further prospective evaluation.
Collapse
|
50
|
Nukarinen E, Tervahartiala T, Valkonen M, Hynninen M, Kolho E, Pettilä V, Sorsa T, Backman J, Hästbacka J. Targeting matrix metalloproteinases with intravenous doxycycline in severe sepsis – A randomised placebo-controlled pilot trial. Pharmacol Res 2015; 99:44-51. [DOI: 10.1016/j.phrs.2015.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 12/11/2022]
|