1
|
Raymond M, Solberg B. Hemostatic Properties of Climbing Chalk: A Comparative Analysis. Wilderness Environ Med 2025:10806032251326025. [PMID: 40208048 DOI: 10.1177/10806032251326025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
IntroductionClimbing chalk is widely used by rock climbers and athletes to improve grip. It has been observed that climbers sometimes apply magnesium carbonate chalk to small wounds to stop bleeding, suggesting that climbing chalk may exhibit hemostatic properties useful for small cuts and scrapes. This study aimed to investigate and compare the effects of different types of climbing chalk on prothrombin time (PT) and activated partial thromboplastin time (aPTT).MethodsThree types of climbing chalk were randomly selected for comparative analysis of hemostatic properties, with talcum powder used as a negative control. PT and aPTT testing were conducted on normal plasma samples containing varying concentrations of climbing chalk (from 0.125 mg/mL to 4 mg/mL). Statistical analyses of the results were performed using two-tailed t-tests, Welch's analysis of variance (ANOVA), and Games-Howell post-hoc analysis.ResultsResults indicated that climbing chalk had no significant effect on PT but did significantly reduce aPTT compared to the negative control. Additional analyses revealed significant differences in aPTT results between different types of chalk and between higher and lower concentrations of chalk.ConclusionsMagnesium carbonate-based climbing chalks appear to have a procoagulant effect on hemostasis, likely by affecting the intrinsic pathway of the coagulation cascade. While further research is needed to better understand its coagulative properties, climbing chalk shows potential as a hemostatic agent for minor wounds in wilderness medicine.
Collapse
Affiliation(s)
- Mark Raymond
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Brooke Solberg
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
2
|
Daniel Y, Dufour-Gaume F, Vergnaud A, Denis M, Giaume L, Rozec B, Prat N, Lauzier B. Adjuvant therapies for management of hemorrhagic shock: a narrative review. Crit Care 2025; 29:138. [PMID: 40158128 PMCID: PMC11955146 DOI: 10.1186/s13054-025-05368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Severe bleeding remains a leading cause of death in patients with major trauma, despite improvements in care during the acute phase, especially the application of damage control concepts. Death from hemorrhage occurs rapidly after the initial trauma, in most cases before the patient has had a chance to reach a hospital. Thus, the development of adjuvant drugs that would increase the survival of injured patients is necessary. Among the many avenues of research in this area, one is to improve cell survival during tissue hypoxia. During hemorrhagic shock, oxygen delivery to cells decreases and, despite increased oxygen extraction, anaerobic metabolism occurs, leading to acidosis, coagulopathy, apoptosis, and organ dysfunction. METHODS We selected six treatments that may help cells cope with this situation and could be used as adjuvant therapies during the initial resuscitation of severe trauma patients, including out-of-hospital settings: niacin, thiazolidinediones, prolyl hydroxylase domain inhibitors, O-GlcNAcylation stimulation, histone deacetylase inhibitors, and adenosine-lidocaine-magnesium solution. For each treatment, the biological mechanism involved and a systematic review of its interest in hemorrhagic shock (preclinical data and human clinical trials) are presented. CONCLUSION Promising molecules, some of which are already used in humans for other indications, give us hope for human clinical trials in the field of hemorrhagic shock in the near future.
Collapse
Affiliation(s)
- Yann Daniel
- French Military Health Service, 60, Bd du Général Martial Valin, 75509, Paris Cedex 15, France.
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France.
| | - Frédérique Dufour-Gaume
- French Military Health Service, 60, Bd du Général Martial Valin, 75509, Paris Cedex 15, France
| | - Amandine Vergnaud
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Manon Denis
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Louise Giaume
- Institut de Recherche Biomédicale des Armées (IRBA), 91220, Bretigny-sur-Orge, France
| | - Bertrand Rozec
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Nicolas Prat
- French Military Health Service, 60, Bd du Général Martial Valin, 75509, Paris Cedex 15, France
- Institut de Recherche Biomédicale des Armées (IRBA), 91220, Bretigny-sur-Orge, France
| | - Benjamin Lauzier
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| |
Collapse
|
3
|
Alghanem H, Liu NCP, Gupta A, Liao C, Wool GD, Rubin DS, Carll T. Ratios of calcium to citrate administration in blood transfusion for traumatic hemorrhage: A retrospective cohort study. Transfusion 2024; 64:2104-2113. [PMID: 39351914 PMCID: PMC11573635 DOI: 10.1111/trf.18029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Massive transfusion with citrated blood products causes hypocalcemia, which is associated with mortality. Recognition of this problem has led to increased calcium administration; however, the optimal dosing is still unknown. STUDY DESIGN AND METHODS This retrospective, single-center study included level 1 trauma patients in 2019 and 2020 who underwent an operation within 12 h of arrival and received a transfusion. Preoperative and intraoperative administrations were totaled to calculate the ratio of administered calcium to the number of blood transfusions for each patient. The citrate content of each blood component was estimated to calculate a second ratio, the ratio of administered calcium to administered citrate. Receiver Operating Characteristic (ROC) curves were performed on both ratios to determine the optimal cutoff values for predicting severe hypocalcemia (ionized calcium <0.9 mmol/L) and hypercalcemia (>1.35 mmol/L) at the end of the intraoperative period. RESULTS A total of 506 trauma activations were included, receiving a mean of 17.4 citrated blood products and 16.3 mmol of calcium (equivalent to 2400 mg of calcium chloride). No ratio was statistically significant in differentiating severely hypocalcemic patients from the rest. A calcium to blood ratio of 0.903 mmol of administered calcium per citrated blood product differentiated hypercalcemic patients from the rest. DISCUSSION Quantifying received calcium and citrated blood products was insufficient to predict severe hypocalcemia, suggesting other contributions to hypocalcemia. We demonstrated an upper-limit ratio for calcium administration in traumatic hemorrhage; however, further studies are required to determine what calcium dosing regimen results in the best outcomes.
Collapse
Affiliation(s)
- Husam Alghanem
- Department of Anesthesiology, Pain Medicine, and Perioperative Medicine, Henry Ford Health System, Detroit, MI
| | - Nathan Chi-Ping Liu
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL
| | - Atul Gupta
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL
| | - Chuanhong Liao
- Department of Public Health Sciences, University of Chicago, Chicago, IL
| | | | - Daniel Steven Rubin
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL
| | - Timothy Carll
- Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
4
|
Dobson GP, Morris JL, Letson HL. ALM Resuscitation With Brain and Multiorgan Protection for Far-Forward Operations: Survival at Hypotensive Pressures. Mil Med 2024; 189:268-275. [PMID: 39160853 DOI: 10.1093/milmed/usae090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Accepted: 05/16/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Non-compressible torso hemorrhagic (NCTH) shock is the leading cause of potentially survivable trauma on the battlefield. New hypotensive drug therapies are urgently required to resuscitate and protect the heart and brain following NCTH. Our aim was to examine the strengths and limitations of permissive hypotension and discuss the development of small-volume adenosine, lidocaine, and Mg2+ (ALM) fluid resuscitation in rats and pigs. MATERIALS AND METHODS For review of permissive hypotension, a literature search was performed from inception up to November 2023 using PubMed, Cochrane, and Embase databases, with inclusion of animal studies, clinical trials and reviews with military and clinical relevance. For the preclinical study, adult female pigs underwent laparoscopic liver resection. After 30 minutes of bleeding, animals were resuscitated with 4 mL/kg 3% NaCl ± ALM bolus followed 60 minutes later with 4 h 3 mL/kg/h 0.9% NaCl ± ALM drip (n = 10 per group), then blood transfusion. Mean arterial pressure (MAP) and cardiac output (CO) were continuously measured via a left ventricular pressure catheter and pulmonary artery catheter, respectively. Systemic vascular resistance (SVR) was calculated using the formula: 80 × (MAP - CVP)/CI. Oxygen delivery was calculated as the product of CO and arterial oxygen content. RESULTS Targeting a MAP of ∼50 mmHg can be harmful or beneficial, depending on how CO and SVR are regulated. A theoretical example shows that for the same MAP of 50 mmHg, a higher CO and lower SVR can lead to a nearly 2-fold increase in O2 supply. We further show that in animal models of NCTH, 3% NaCl ALM bolus and 0.9% NaCl ALM drip induce a hypotensive, high flow, vasodilatory state with maintained tissue O2 supply and neuroprotection. ALM therapy increases survival by resuscitating the heart, reducing internal bleeding by correcting coagulopathy, and decreasing secondary injury. CONCLUSIONS In rat and pig models of NCTH, small-volume ALM therapy resuscitates at hypotensive pressures by increasing CO and reducing SVR. This strategy is associated with heart and brain protection and maintained tissue O2 delivery. Translational studies are required to determine reproducibility and optimal component dosing. ALM therapy may find wide utility in prehospital and far-forward military environments.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland, Queensland 4811, Australia
| | - Jodie L Morris
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland, Queensland 4811, Australia
| | - Hayley L Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland, Queensland 4811, Australia
| |
Collapse
|
5
|
Morris JL, Letson HL, Dobson GP. Safety evaluation of adenosine, lidocaine and magnesium (ALM) intranasal therapy toward human nasal epithelial cells in vitro. Basic Clin Pharmacol Toxicol 2024; 135:98-108. [PMID: 38784974 DOI: 10.1111/bcpt.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Adenosine, lidocaine and Mg2+ (ALM) solution is an emerging therapy that reduces secondary injury after intravenous administration in experimental models of traumatic brain injury (TBI). Intranasal delivery of ALM may offer an alternative route for rapid, point-of-care management of TBI. As a preliminary safety screen, we evaluated whether ALM exerts cytotoxic or inflammatory effects on primary human nasal epithelial cells (pHNEC) in vitro. Submerged monolayers and air-liquid interface cultures of pHNEC were exposed to media only, normal saline only, therapeutic ALM or supratherapeutic ALM for 15 or 60 min. Safety was measured through viability, cytotoxicity, apoptosis, cellular and mitochondrial stress, and inflammatory mediator secretion assays. No differences were found in viability or cytotoxicity in cultures exposed to saline or ALM for up to 60 min, with no evidence of apoptosis after exposure to supratherapeutic ALM concentrations. Despite comparable inflammatory cytokine secretion profiles and mitochondrial activity, cellular stress responses were significantly lower in cultures exposed to ALM than saline. In summary, data show ALM therapy has neither adverse toxic nor inflammatory effects on human nasal epithelial cells, setting the stage for in vivo toxicity studies and possible clinical translation of intranasal ALM therapy for TBI treatment.
Collapse
Affiliation(s)
- Jodie L Morris
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Hayley L Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Geoffrey P Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| |
Collapse
|
6
|
Davenport LM, Letson HL, Dobson GP. Lung Protection After Severe Thermal Burns With Adenosine, Lidocaine, and Magnesium (ALM) Resuscitation and Importance of Shams in a Rat Model. J Burn Care Res 2024; 45:216-226. [PMID: 37602979 PMCID: PMC10768784 DOI: 10.1093/jbcr/irad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 08/22/2023]
Abstract
The management of severe burns remains a complex challenge. Adenosine, lidocaine, and magnesium (ALM) resuscitation therapy has been shown to protect against hemorrhagic shock and traumatic injury. The aim of the present study was to investigate the early protective effects of small-volume ALM fluid resuscitation in a rat model of 30% total body surface area (TBSA) thermal injury. Male Sprague-Dawley rats (320-340 g; n = 25) were randomly assigned to: 1) Sham (surgical instrumentation and saline infusion, without burn, n = 5), 2) Saline resuscitation group (n = 10), or 3) ALM resuscitation group (n = 10). Treatments were initiated 15-min after burn trauma, including 0.7 mL/kg 3% NaCl ± ALM bolus and 0.25-0.5 mL/kg/h 0.9% NaCl ± ALM drip, with animals monitored to 8.25-hr post-burn. Hemodynamics, cardiac function, blood chemistry, hematology, endothelial injury markers and histopathology were assessed. Survival was 100% for Shams and 90% for both ALM and Saline groups. Shams underwent significant physiological, immune and hematological changes over time as a result of surgical traums. ALM significantly reduced malondialdehyde levels in the lungs compared to Saline (P = .023), and showed minimal alveolar destruction and inflammatory cell infiltration (P < .001). ALM also improved cardiac function and oxygen delivery (21%, P = .418 vs Saline), reduced gut injury (P < .001 vs Saline), and increased plasma adiponectin (P < .001 vs baseline). Circulating levels of the acute phase protein alpha 1-acid glycoprotein (AGP) increased 1.6-times (P < .001), which may have impacted ALM's therapeutic efficacy. We conclude that small-volume ALM therapy significantly reduced lung oxidative stress and preserved alveolar integrity following severe burn trauma. Further studies are required to assess higher ALM doses with longer monitoring periods.
Collapse
Affiliation(s)
- Lisa M Davenport
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia
| | - Hayley L Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia
| | - Geoffrey P Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia
| |
Collapse
|
7
|
Wang R, Xu J, He M. Abnormal serum Magnesium Level is Associated with the Coagulopathy in Traumatic Brain Injury Patients. Clin Appl Thromb Hemost 2024; 30:10760296241280919. [PMID: 39308431 PMCID: PMC11443579 DOI: 10.1177/10760296241280919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Coagulopathy is associated with poor prognosis of traumatic brain injury (TBI) patients. This study is performed to explore the association between serum magnesium level and the risk of coagulopathy in TBI. METHODS TBI patients from the Medical Information Mart for Intensive Care-III database were included for this study. Logistic regression analysis was performed to explore risk factors and develop a predictive model for coagulopathy in TBI. The restricted cubic spline (RCS) was utilized to analyze the association between serum magnesium level and the development of coagulopathy. Receiver operating characteristic curve was drawn to evaluate the performance of the predictive model for coagulopathy. RESULTS The incidence of coagulopathy in TBI was 32.6%. The RCS indicated the association between magnesium and coagulopathy was U-shaped. Multivariate logistic regression confirmed age, coronary heart disease, cerebral vascular disease, chronic liver disease, GCS, ISS, epidural hematoma, hemoglobin, shock index and magnesium level were independently associated with the coagulopathy in TBI. Compared with patients of magnesium level between 1.7 and 2.3 mg/dL, those with magnesium level below 1.7 mg/dL or above 2.2 mg/dL had a higher risk of coagulopathy. CONCLUSION Both hypermagnesemia and hypomagnesemia are associated with higher risk of coagulopathy in TBI patients. Physicians should pay more attention on preventing coagulopathy in TBI patients with hypomagnesemia or hypermagnesemia.
Collapse
Affiliation(s)
- Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Min He
- Department of Critical care medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Dobson GP, Morris JL, Letson HL. Adenosine, lidocaine and Mg 2+ update: teaching old drugs new tricks. Front Med (Lausanne) 2023; 10:1231759. [PMID: 37828944 PMCID: PMC10565858 DOI: 10.3389/fmed.2023.1231759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
If a trauma (or infection) exceeds the body's evolutionary design limits, a stress response is activated to quickly restore homeostasis. However, when the injury severity score is high, death is often imminent. The goal of this review is to provide an update on the effect of small-volume adenosine, lidocaine and Mg2+ (ALM) therapy on increasing survival and blunting secondary injury after non-compressible hemorrhagic shock and other trauma and infective/endotoxemic states. Two standout features of ALM therapy are: (1) resuscitation occurs at permissive hypotensive blood pressures (MAPs 50-60 mmHg), and (2) the drug confers neuroprotection at these low pressures. The therapy appears to reset the body's baroreflex to produce a high-flow, hypotensive, vasodilatory state with maintained tissue O2 delivery. Whole body ALM protection appears to be afforded by NO synthesis-dependent pathways and shifting central nervous system (CNS) control from sympathetic to parasympathetic dominance, resulting in improved cardiovascular function, reduced immune activation and inflammation, correction of coagulopathy, restoration of endothelial glycocalyx, and reduced energy demand and mitochondrial oxidative stress. Recently, independent studies have shown ALM may also be useful for stroke, muscle trauma, and as an adjunct to Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA). Ongoing studies have further shown ALM may have utility for burn polytrauma, damage control surgery and orthopedic surgery. Lastly, we discuss the clinical applications of ALM fluid therapy for prehospital and military far-forward use for non-compressible hemorrhage and traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | |
Collapse
|
9
|
Dobson GP, Morris JL, Letson HL. Why are bleeding trauma patients still dying? Towards a systems hypothesis of trauma. Front Physiol 2022; 13:990903. [PMID: 36148305 PMCID: PMC9485567 DOI: 10.3389/fphys.2022.990903] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Over the years, many explanations have been put forward to explain early and late deaths following hemorrhagic trauma. Most include single-event, sequential contributions from sympathetic hyperactivity, endotheliopathy, trauma-induced coagulopathy (TIC), hyperinflammation, immune dysfunction, ATP deficit and multiple organ failure (MOF). We view early and late deaths as a systems failure, not as a series of manifestations that occur over time. The traditional approach appears to be a by-product of last century's highly reductionist, single-nodal thinking, which also extends to patient management, drug treatment and drug design. Current practices appear to focus more on alleviating symptoms rather than addressing the underlying problem. In this review, we discuss the importance of the system, and focus on the brain's "privilege" status to control secondary injury processes. Loss of status from blood brain barrier damage may be responsible for poor outcomes. We present a unified Systems Hypothesis Of Trauma (SHOT) which involves: 1) CNS-cardiovascular coupling, 2) Endothelial-glycocalyx health, and 3) Mitochondrial integrity. If central control of cardiovascular coupling is maintained, we hypothesize that the endothelium will be protected, mitochondrial energetics will be maintained, and immune dysregulation, inflammation, TIC and MOF will be minimized. Another overlooked contributor to early and late deaths following hemorrhagic trauma is from the trauma of emergent surgery itself. This adds further stress to central control of secondary injury processes. New point-of-care drug therapies are required to switch the body's genomic and proteomic programs from an injury phenotype to a survival phenotype. Currently, no drug therapy exists that targets the whole system following major trauma.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | |
Collapse
|
10
|
Letson HL, Dobson GP. The Role of Nitric Oxide in the Efficacy of Adenosine, Lidocaine, and Magnesium Treatment for Experimental Hemorrhagic Shock in Rats. Curr Ther Res Clin Exp 2021; 95:100655. [PMID: 34917219 PMCID: PMC8665347 DOI: 10.1016/j.curtheres.2021.100655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background Nitric oxide (NO) plays multiple roles regulating the central nervous, cardiovascular, and immune systems. Objective Our aim was to investigate the role of NO in the efficacy of hypertonic saline (7.5% sodium chloride [NaCl]) adenosine, lidocaine, and magnesium (ALM) to improve mean arterial pressure (MAP) and heart rate following hemorrhagic shock. Methods One hundred one male Sprague-Dawley rats (mean [SD] weight = 425 [6] g) were randomly assigned to 20 groups (groups of 4–8 rats each). Hemorrhagic shock (MAP < 40 mm Hg) was induced by 20-minute pressure-controlled bleeding (∼40% blood volume), and the animal was left in shock (MAP = 35-40 mm Hg) for 60 minutes. The NO synthase (NOS) inhibitor L-NAME was administered with a 0.3-mL bolus of different combinations of 7.5% NaCl ALM active ingredients and hemodynamic parameters were monitored for 60 minutes. A number of specific NOS and NO inhibitors were tested. Results We found that 7.5% NaCl ALM corrected MAP after hemorrhagic shock. In contrast, the addition of L-NAME to 7.5% NaCl ALM led to a rapid fall in MAP, sustained ventricular arrhythmias, and 100% mortality. Saline controls receiving 7.5% NaCl with NG-nitro-l-arginine methyl ester (L-NAME) showed improved MAP with no deaths. None of the specific NOS and NO inhibitors mimicked L-NAME's effect on ALM. The addition of inducible NOS inhibitor 1400W to 7.5% NaCl ALM failed to resuscitate, whereas the NO scavenger PTIO and the PI3K inhibitor wortmannin reduced MAP recovery during 60-minute resuscitation. Conclusions The ability of 7.5% NaCl ALM to resuscitate appears to be linked to 1 or more NO-producing pathways. Nonspecific NOS inhibition with L-NAME blocked ALM resuscitation and led to cardiovascular collapse. More studies are required to examine NO site-specific contributions to ALM resuscitation. (Curr Ther Res Clin Exp. 2022; 82:XXX–XXX)
Collapse
Affiliation(s)
- Hayley L Letson
- Heart, Trauma, and Sepsis Research Laboratory, College of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Geoffrey P Dobson
- Heart, Trauma, and Sepsis Research Laboratory, College of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
11
|
Conner J, Lammers D, Holtestaul T, Jones I, Kuckelman J, Letson H, Dobson G, Eckert M, Bingham J. Combatting ischemia reperfusion injury from resuscitative endovascular balloon occlusion of the aorta using adenosine, lidocaine and magnesium: A pilot study. J Trauma Acute Care Surg 2021; 91:995-1001. [PMID: 34446655 DOI: 10.1097/ta.0000000000003388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Resuscitative endovascular balloon occlusion of the aorta (REBOA), a minimally invasive alternative to resuscitative thoracotomy, has been associated with significant ischemia reperfusion injury (IRI). Resuscitation strategies using adenosine, lidocaine, and magnesium (ALM) have been shown to mitigate similar inflammatory responses in hemorrhagic and septic shock models. This study examined the effects of ALM on REBOA-associated IRI using a porcine model. METHODS Animals underwent a 20% controlled hemorrhage followed by 30 minutes of supraceliac balloon occlusion. They were assigned to one of four groups: control (n = 5), 4-hour ALM infusion starting at occlusion, 2-hour (n = 5) and 4-hour (n = 5) interventional ALM infusions starting at reperfusion. Adenosine, lidocaine, and magnesium cohorts received a posthemorrhage ALM bolus followed by their respective ALM infusion. Primary outcomes for the study assessed physiologic and hemodynamic parameters. RESULTS Adenosine, lidocaine, and magnesium infusion after reperfusion cohorts demonstrated a significant improvement in lactate, base deficit, and pH in the first hour following systemic reperfusion. At study endpoint, continuous ALM infusion initiated after reperfusion over 4 hours resulted in an overall improved lactate clearance when compared with the 2-hour and control cohorts. No differences in hemodynamic parameters were noted between ALM cohorts and controls. CONCLUSION Adenosine, lidocaine, and magnesium may prove beneficial in mitigating the inflammatory response seen from REBOA-associated IRI as evidenced by physiologic improvements early during resuscitation. Despite this, further refinement should be sought to optimize treatment strategies.
Collapse
Affiliation(s)
- Jeff Conner
- From the Madigan Army Medical Center (J.C., D.L., T.H., I.J., J.K., M.E., J.B.), Tacoma, Washington; Heart Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry (H.L., G.D.), James Cook University, Townsville, Queensland, Australia; and Department of Surgery (M.E.), University of North Carolina, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Stigall KS, Neidert LE, Morgan CG, Hemond PJ, Brown DR, Salas M, Hathaway EN, Tiller MM, Cardin S, Glaser JJ. Therapeutic cardiac arrest as an adjunct to resuscitative endovascular balloon occlusion of the aorta: Bridging the gap from fatal hemorrhage to definitive surgical control in swine. J Trauma Acute Care Surg 2021; 90:369-375. [PMID: 33502148 DOI: 10.1097/ta.0000000000003024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Uncontrolled hemorrhage is the leading cause of potentially survivable combat casualty mortality, with 86.5% of cases resulting from noncompressible torso hemorrhage. Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a minimally invasive technique used to stabilize patients with noncompressible torso hemorrhage; however, its application can take an average of 8 minutes to place. One therapeutic capable of bridging this gap is adenosine-lidocaine-magnesium (ALM), which at high doses induces a reversible cardioplegia. We hypothesize by using ALM as an adjunct to REBOA, the ALM-induced cardiac arrest will temporarily halt exsanguination and reduce blood loss, allowing for REBOA placement and control of bleeding. METHODS Male Yorkshire swine (60-80 kg) were randomly assigned to REBOA only or ALM-REBOA (n = 8/group). At baseline, uncontrolled hemorrhage was induced via a 1.5-cm right femoral arteriotomy, and hemorrhaged blood was quantified. One minute after injury (S1), ALM was administered, and 7 minutes later (T0), zone 1 REBOA inflation occurred. If cardiac arrest ensued, cardiac function either recovered spontaneously or advanced life support was initiated. At T30, surgical hemostasis was obtained, and REBOA was deflated. Animals were resuscitated until they were humanely euthanized at T90. RESULTS During field care phase, heart rate and end-tidal CO2 of the ALM-REBOA group were significantly lower than the REBOA only group. While mean arterial pressure significantly decreased from baseline, no significant differences between groups were observed throughout the field care phase. There was no significant difference in survival between the two groups (ALM-REBOA = 89% vs. REBOA only = 100%). Total blood loss was significantly decreased in the ALM-REBOA group (REBOA only = 24.32 ± 1.89 mL/kg vs. ALM-REBOA = 17.75 ± 2.04 mL/kg, p = 0.0499). CONCLUSION Adenosine-lidocaine-magnesium is a novel therapeutic, which, when used with REBOA, can significantly decrease the amount of blood loss at initial presentation, without compromising survival. This study provides proof of concept for ALM and its ability to bridge the gap between patient presentation and REBOA placement.
Collapse
Affiliation(s)
- Kyle S Stigall
- From the Department of Surgery, San Antonio Military Medical Center (K.S.S., E.N.H., M.M.T., J.J.G.); Department of Expeditionary and Trauma Medicine, Naval Medical Research Unit San Antonio (L.E.N., C.G.M., P.J.H., D.R.B., M.S., M.M.T., S.C., J.J.G.), JBSA-Fort Sam Houston; and Austin Shock Trauma (J.J.G.), St David's South Austin Medical Center, Austin, Texas
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Huang S, Tang Y, Lin W, Wen K, Han W, Lin Z, Han M. Study on coagulation profiles and platelet function in trauma-induced coagulopathy caused by three types of injury. Injury 2020; 51:1312-1320. [PMID: 32093941 DOI: 10.1016/j.injury.2020.02.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/16/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Traumatic coagulopathy is a major public health issue globally with undefined mechanisms. We established rat models of hemorrhagic shock (HS), multiple injury (MI) and traumatic brain injury (TBI) to investigate the diversity of traumatic coagulopathy, especially platelet dysfunction. METHODS Seventy male SD rats were divided randomly into seven groups(n = 10): control, HS30min, HS3h, MI30min, MI3h, TBI30min and TBI3h. Plasma or whole blood was collected for conventional coagulation tests, thromboelastography and platelet mapping. X-ray, 7T magnetic resonance imaging and hematoxylin-eosin staining of injured tissues were conducted to confirm the injuries of rats model. RESULTS The activated partial thromboplastin time (aPTT) prolonged significantly in HS30min and MI3h groups, compared with those in control (P = 0.0403 and P = 0.0076, respectively). R values decreased in HS30min and HS3h groups, compared with those in control (P < 0.0001 and P < 0.0001, respectively). The maximum amplitude (MA) were 71.8 ± 0.6 mm, 71.9 ± 0.5 mm, 71.8 ± 0.7 mm, 70.0 ± 0.7 mm, 72.6 ± 0.9 mm, 70.4 ± 0.9 mm in HS30min, HS3h, MI30min, MI3h, TBI30min and TBI3h groups respectively, which were lower than those in control (P = 0.0304, P = 0.0205, P = 0.0431, P = 0.0007 and P = 0.0066, respectively). The platelet counts were 539±46 × 109/L, 523±31 × 109/L, 629 ± 18 × 109/L and 636±20 × 109/L in HS30min, HS3h, MI3h and TBI3h groups respectively, which were lower than those in control (P = 0.0040, P = 0.0001, P = 0.0127 and P = 0.0232, respectively). The adenosine diphosphate (ADP) inhibition rate decreased in HS30min group, compared with that in control (P = 0.0355). While, ADP inhibition rate increased in HS3h and TBI3h groups (P = 0.0041 and P = 0.0433 vs. control, respectively). The arachidonic acid (AA) inhibition rate increased in MI30min and MI3h groups, compared with control (P = 0.0029 and P = 0.0185, respectively). CONCLUSION These results demonstrated that it might be the failure of forming a strong clot instead of the prolonged clot time, which contributed to traumatic coagulopathy. The platelet dysfunctions might contribute to trauma-induced coagulopathy in different ways. The loss of platelets might be the main reason for HS-induced coagulopathy. While, AA-dependent pathway inhibition might account for MI-induced coagulopathy. ADP-dependent pathway inhibition might be the major contributor for TBI-induced coagulopathy.
Collapse
Affiliation(s)
- Sunhua Huang
- The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yao Tang
- The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wenhao Lin
- The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Ke Wen
- Department of Microsurgery, Taihe Hospital, Shiyan, China
| | - Wei Han
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Zhexuan Lin
- Bio-analytical Laboratory, Shantou University Medical College, Shantou, China.
| | - Ming Han
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China.
| |
Collapse
|
14
|
Prehospital adenosine, lidocaine, and magnesium has inferior survival compared with tactical combat casualty care resuscitation in a porcine model of prolonged hemorrhagic shock. J Trauma Acute Care Surg 2020; 87:68-75. [PMID: 30985476 DOI: 10.1097/ta.0000000000002308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Adenosine, lidocaine, and magnesium (ALM) is a cardioplegic agent shown to improve survival by improving cardiac function, tissue perfusion, and coagulopathy in animal models of shock. We hypothesized prehospital ALM treatment in hemorrhagic shock would improve survival compared to current Tactical Combat Casualty Care (TCCC) resuscitation beyond the golden hour. METHODS Swine were randomized to: (1) TCCC, (2) 2 mL·kg vehicle control (VC), (3) 2 mL·kg ALM + drip, (4) 4 mL·kg ALM + drip, 5) 4 mL·kg ALM + delayed drip at 0.5 mL·kg·h, 6) 4 mL/kg VC, 7) 4 mL·kg ALM for 15 minutes + delayed drip at 3 mL·kg·h. Animals underwent pressure controlled hemorrhage to mean arterial pressure (MAP) of 30 mm Hg (S = 0). Treatment was administered at T = 0. After 120 minutes of simulated prehospital care (T = 120) blood product resuscitation commenced. Physiologic variables were recorded and laboratories were drawn at specified time points. RESULTS Tactical Combat Casualty Care demonstrated superior survival to all other agents. The VC and ALM groups had lower MAPs and systolic blood pressures compared with TCCC. Except for the VC groups, lactate levels remained similar with correction of base deficit after prehospital resuscitation in all groups. Kidney function and liver function remained comparable across all groups. Compared with baseline values, TCCC demonstrated significant hypocoagulability. CONCLUSION Adenosine, lidocaine, and magnesium, as administered in this study, are inferior to current Hextend-based resuscitation for survival from prolonged hemorrhagic shock in this model. In survivors, ALM groups had lower systolic blood pressures and MAPs, but provided a protective effect on coagulopathy as compared to TCCC. Adenosine, lidocaine, and magnesium do not appear to be a suitable low volume replacement to current TCCC resuscitation. The reduced coagulopathy compared to TCCC warrants future studies of ALM, perhaps as a therapeutic adjunct.
Collapse
|
15
|
Liotta EM, Karmarkar A, Batra A, Kim M, Prabhakaran S, Naidech AM, Maas MB. Magnesium and Hemorrhage Volume in Patients With Aneurysmal Subarachnoid Hemorrhage. Crit Care Med 2020; 48:104-110. [PMID: 31688193 PMCID: PMC7008932 DOI: 10.1097/ccm.0000000000004079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES We tested the hypothesis that admission serum magnesium levels are associated with extent of hemorrhage in patients with aneurysmal subarachnoid hemorrhage. DESIGN Single-center prospective observational study. SETTING Tertiary hospital neurologic ICU. PATIENTS Patients with aneurysmal subarachnoid hemorrhage. INTERVENTIONS Clinically indicated CT scans and serum laboratory studies. MEASUREMENTS AND MAIN RESULTS Demographic, clinical, laboratory, and radiographic data were analyzed. Extent of initial hemorrhage was graded semi-quantitatively on admission CT scans using the modified Fisher scale (grades: 0, no radiographic hemorrhage; 1, thin [< 1 mm in depth] subarachnoid hemorrhage; 2, thin subarachnoid hemorrhage with intraventricular hemorrhage; 3, thick [≥ 1 mm] subarachnoid hemorrhage; 4, thick subarachnoid hemorrhage with intraventricular hemorrhage). We used both ordinal (modified Fisher scale) and dichotomized (thick vs thin subarachnoid hemorrhage) univariate and adjusted logistic regression models to assess associations between serum magnesium and radiographic subarachnoid hemorrhage severity. Data from 354 patients (mean age 55 ± 14 yr, 28.5% male, median admission Glasgow Coma Scale 14 [10-15]) were analyzed. Mean magnesium was lower in patients with thick versus thin subarachnoid hemorrhage (1.92 vs 1.99 mg/dL; p = 0.022). A monotonic trend across categories of modified Fisher scale was found using analysis of variance and Spearman rank correlation (p = 0.015 and p = 0.008, respectively). In adjusted ordinal and binary regression models, lower magnesium levels were associated with higher modified Fisher scale (odds ratio 0.33 per 1 mg/dL increase; 95% CI, 0.14-0.77; p = 0.011) and with thick subarachnoid hemorrhage (odds ratio 0.29 per 1 mg/dL increase; 95% CI, 0.10-0.78; p = 0.015). CONCLUSIONS These data support the hypothesis that magnesium influences hemorrhage severity in patients with aneurysmal subarachnoid hemorrhage, potentially through a hemostatic mechanism.
Collapse
Affiliation(s)
- Eric M. Liotta
- Department of Neurology, Northwestern University, Chicago, IL
| | | | - Ayush Batra
- Department of Neurology, Northwestern University, Chicago, IL
| | - Minjee Kim
- Department of Neurology, Northwestern University, Chicago, IL
| | | | | | - Matthew B. Maas
- Department of Neurology, Northwestern University, Chicago, IL
| |
Collapse
|
16
|
Abstract
Hemorrhagic shock is the leading cause of preventable death after trauma. Hibernation-based treatment approaches have been of increasing interest for various biomedical applications. Owing to apparent similarities in tissue perfusion and metabolic activity between severe blood loss and the hibernating state, hibernation-based approaches have also emerged for the treatment of hemorrhagic shock. Research has shown that hibernators are protected from shock-induced injury and inflammation. Utilizing the adaptive mechanisms that prevent injury in these animals may help alleviate the detrimental effects of hemorrhagic shock in non-hibernating species. This review describes hibernation-based preclinical and clinical approaches for the treatment of severe blood loss. Treatments include the delta opioid receptor agonist D-Ala-Leu-enkephalin (DADLE), the gasotransmitter hydrogen sulfide, combinations of adenosine, lidocaine, and magnesium (ALM) or D-beta-hydroxybutyrate and melatonin (BHB/M), and therapeutic hypothermia. While we focus on hemorrhagic shock, many of the described treatments may be used in other situations of hypoxia or ischemia/reperfusion injury.
Collapse
|
17
|
Jafari M, Di Napoli M, Lattanzi S, Mayer SA, Bachour S, Bershad EM, Damani R, Datta YH, Divani AA. Serum magnesium level and hematoma expansion in patients with intracerebral hemorrhage. J Neurol Sci 2019; 398:39-44. [PMID: 30682519 DOI: 10.1016/j.jns.2019.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/25/2018] [Accepted: 01/15/2019] [Indexed: 12/28/2022]
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a devastating subtype of stroke that results in significant rates of mortality and morbidities. The initial hematoma volume, hematoma expansion (HE), blood pressure (BP), and coagulopathy are considered strong predictors of clinical outcomes and mortality. Low serum magnesium (Mg++) levels have been shown to be associated with larger initial hematoma and greater HE. Coagulopathy, platelet dysfunction, high BP, and increased inflammatory response might form the mechanistic link between low serum Mg++ levels, larger hematoma size and greater HE. However, randomized clinical trials administering intravenous Mg++ have shown no benefit over placebo in ICH patients. The confounding effect of hypocalcemia and a delay in Mg++ trafficking across the blood-brain barrier might explain the futile results for intravenous Mg++ therapy. In the current review, we will discuss the evidence regarding the possible role of low serum Mg++ level on HE in acute ICH.
Collapse
Affiliation(s)
- Mostafa Jafari
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Mario Di Napoli
- Department of Neurology, San Camillo de' Lellis District General Hospital, Rieti, Italy
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Stephan A Mayer
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Salam Bachour
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, United States
| | - Eric M Bershad
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Rahul Damani
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Yvonne H Datta
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Afshin A Divani
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States; Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
18
|
Chang JJ, Armonda R, Goyal N, Arthur AS. Magnesium: Pathophysiological mechanisms and potential therapeutic roles in intracerebral hemorrhage. Neural Regen Res 2019; 14:1116-1121. [PMID: 30804233 PMCID: PMC6425828 DOI: 10.4103/1673-5374.251189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Intracerebral hemorrhage (ICH) remains the second-most common form of stroke with high morbidity and mortality. ICH can be divided into two pathophysiological stages: an acute primary phase, including hematoma volume expansion, and a subacute secondary phase consisting of blood-brain barrier disruption and perihematomal edema expansion. To date, all major trials for ICH have targeted the primary phase with therapies designed to reduce hematoma expansion through blood pressure control, surgical evacuation, and hemostasis. However, none of these trials has resulted in improved clinical outcomes. Magnesium is a ubiquitous element that also plays roles in vasodilation, hemostasis, and blood-brain barrier preservation. Animal models have highlighted potential therapeutic roles for magnesium in neurological diseases specifically targeting these pathophysiological mechanisms. Retrospective studies have also demonstrated inverse associations between admission magnesium levels and hematoma volume, hematoma expansion, and clinical outcome in patients with ICH. These associations, coupled with the multifactorial role of magnesium that targets both primary and secondary phases of ICH, suggest that magnesium may be a viable target of study in future ICH studies.
Collapse
Affiliation(s)
- Jason J Chang
- Department of Critical Care Medicine, MedStar Washington Hospital Center; Department of Neurology, Georgetown University School of Medicine, Washington, DC, USA
| | - Rocco Armonda
- Department of Neurosurgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Nitin Goyal
- Department of Neurology, University of Tennessee Health Science Center; Semmes Murphey Clinic, Memphis, TN, USA
| | - Adam S Arthur
- Semmes Murphey Clinic; Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
19
|
Goyal N, Tsivgoulis G, Malhotra K, Houck AL, Khorchid YM, Pandhi A, Inoa V, Alsherbini K, Alexandrov AV, Arthur AS, Elijovich L, Chang JJ. Serum Magnesium Levels and Outcomes in Patients With Acute Spontaneous Intracerebral Hemorrhage. J Am Heart Assoc 2018; 7:JAHA.118.008698. [PMID: 29654197 PMCID: PMC6015418 DOI: 10.1161/jaha.118.008698] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Magnesium (Mg) has potential hemostatic properties. We sought to investigate the potential association of serum Mg levels (at baseline and at 48 hours) with outcomes in patients with acute spontaneous intracerebral hemorrhage (ICH). METHODS AND RESULTS We reviewed data on all patients with spontaneous ICH with available Mg levels at baseline, over a 5-year period. Clinical and radiological outcome measures included initial hematoma volume, admission National Institutes of Health Stroke Scale and ICH scores, in-hospital mortality, favorable functional outcome (modified Rankin Scale scores, 0-1), and functional independence (modified Rankin Scale scores, 0-2) at discharge. Our study population consisted of 299 patients with ICH (mean age, 61±13 years; mean admission serum Mg, 1.8±0.3 mg/dL). Increasing admission Mg levels strongly correlated with lower admission National Institutes of Health Stroke Scale score (Spearman's r, -0.141; P=0.015), lower ICH score (Spearman's r, -0.153; P=0.009), and lower initial hematoma volume (Spearman's r, -0.153; P=0.012). Higher admission Mg levels were documented in patients with favorable functional outcome (1.9±0.3 versus 1.8±0.3 mg/dL; P=0.025) and functional independence (1.9±0.3 versus 1.8±0.3 mg/dL; P=0.022) at discharge. No association between serum Mg levels at 48 hours and any of the outcome variables was detected. In multiple linear regression analyses, a 0.1-mg/dL increase in admission serum Mg was independently and negatively associated with the cubed root of hematoma volume at admission (regression coefficient, -0.020; 95% confidence interval, -0.040 to -0.000; P=0.049) and admission ICH score (regression coefficient, -0.053; 95% confidence interval, -0.102 to -0.005; P=0.032). CONCLUSIONS Higher admission Mg levels were independently related to lower admission hematoma volume and lower admission ICH score in patients with acute spontaneous ICH.
Collapse
Affiliation(s)
- Nitin Goyal
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN
| | - Georgios Tsivgoulis
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN.,Second Department of Neurology, "Attikon University Hospital,", School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Konark Malhotra
- Department of Neurology, West Virginia University Charleston Division, Charleston, WV
| | - Alexander L Houck
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN
| | - Yasser M Khorchid
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN
| | - Abhi Pandhi
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN
| | - Violiza Inoa
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN.,Department of Neurosurgery, University of Tennessee Health Science Center, Semmes-Murphey Neurologic and Spine Clinic, Memphis, TN
| | - Khalid Alsherbini
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN
| | - Andrei V Alexandrov
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN
| | - Adam S Arthur
- Department of Neurosurgery, University of Tennessee Health Science Center, Semmes-Murphey Neurologic and Spine Clinic, Memphis, TN
| | - Lucas Elijovich
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN.,Department of Neurosurgery, University of Tennessee Health Science Center, Semmes-Murphey Neurologic and Spine Clinic, Memphis, TN
| | - Jason J Chang
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN.,Medstar Washington Hospital Medical Center, Washington, DC
| |
Collapse
|
20
|
Letson HL, Dobson GP. 7.5% NaCl Resuscitation Leads to Abnormal Clot Fibrinolysis after Severe Hemorrhagic Shock and its Correction with 7.5% NaCl Adenosine, Lidocaine, and Mg 2. J Emerg Trauma Shock 2018; 11:15-24. [PMID: 29628664 PMCID: PMC5852910 DOI: 10.4103/jets.jets_84_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Hyperfibrinolysis is a common complication of hemorrhagic shock. Our aim was to examine the effect of small-volume 7.5% NaCl adenosine, lidocaine, and Mg2+ (ALM) on fibrinolysis in the rat model of hemorrhagic shock. Methods Rats were anesthetized and randomly assigned to one of four groups: (1) baseline, (2) shock, (3) 7.5% NaCl controls, and (4) 7.5% NaCl ALM. Animals were bled for 20 min (42% blood loss) and left in shock for 60 min before resuscitation with 0.3 ml intravenous bolus 7.5% NaCl ± ALM. Rats were sacrificed at 5, 10, 15, 30, and 60 min for rotation thromboelastometry and 15 and 60 min for ELISA analyses. Results After hemorrhagic shock, 7.5% NaCl failed to resuscitate and exacerbated coagulopathy and fibrinolysis. At 15 and 60 min, the activation as extrinsically-activated test using tissue factor (EXTEM) with aprotinin to inhibit fibrinolysis (APTEM) test showed little or no correction of fibrinolysis, indicating a plasmin-independent fibrinolysis. Clots also had ~ 60% lower fibrinogen (fibrin-based EXTEM activated test with platelet inhibitor cytochalasin D A10) and 36%-50% reduced fibrinogen-to-platelet ratio (11%-14% vs. 22% baseline). In contrast, 7.5% NaCl ALM resuscitated mean arterial pressure and attenuated hyperfibrinolysis and coagulopathy by 15 min. Correction was associated with lower plasma tissue factor, higher plasminogen activator inhibitor-1, and lower D-dimers (5% of controls at 60 min). Platelet selectin fell to undetectable levels in ALM animals, which may imply improved endothelial and platelet function during resuscitation. Conclusions Small-volume 7.5% NaCl resuscitation exacerbated coagulopathy and fibrinolysis that was not corrected by APTEM test. Fibrinolysis appears to be associated with altered fibrin structure during early clot formation and elongation. In contrast, 7.5% NaCl ALM rapidly corrected both coagulopathy and hyperfibrinolysis.
Collapse
Affiliation(s)
- Hayley Louise Letson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia
| | - Geoffrey Phillip Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia
| |
Collapse
|
21
|
Adenosine, lidocaine and Mg2+ (ALM) fluid therapy attenuates systemic inflammation, platelet dysfunction and coagulopathy after non-compressible truncal hemorrhage. PLoS One 2017; 12:e0188144. [PMID: 29145467 PMCID: PMC5690633 DOI: 10.1371/journal.pone.0188144] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/01/2017] [Indexed: 11/19/2022] Open
Abstract
Background Systemic inflammation and coagulopathy are major drivers of injury progression following hemorrhagic trauma. Our aim was to examine the effect of small-volume 3% NaCl adenosine, lidocaine and Mg2+ (ALM) bolus and 0.9% NaCl/ALM ‘drip’ on inflammation and coagulation in a rat model of hemorrhagic shock. Methods Sprague-Dawley rats (429±4 g) were randomly assigned to: 1) shams, 2) no-treatment, 3) saline-controls, 4) ALM-therapy, and 5) Hextend®. Hemorrhage was induced in anesthetized-ventilated animals by liver resection (60% left lateral lobe and 50% medial lobe). After 15 min, a bolus of 3% NaCl ± ALM (0.7 ml/kg) was administered intravenously (Phase 1) followed 60 min later by 4 hour infusion of 0.9% NaCl ± ALM (0.5 ml/kg/hour) with 1-hour monitoring (Phase 2). Plasma cytokines were measured on Magpix® and coagulation using Stago/Rotational Thromboelastometry. Results After Phase 1, saline-controls, no-treatment and Hextend® groups showed significant falls in white and red cells, hemoglobin and hematocrit (up to 30%), whereas ALM animals had similar values to shams (9–15% losses). After Phase 2, these deficits in non-ALM groups were accompanied by profound systemic inflammation. In contrast, after Phase 1 ALM-treated animals had undetectable plasma levels of IL-1α and IL-1β, and IL-2, IL-6 and TNF-α were below baseline, and after Phase 2 they were less or similar to shams. Non-ALM groups (except shams) also lost their ability to aggregate platelets, had lower plasma fibrinogen levels, and were hypocoagulable. ALM-treated animals had 50-fold higher ADP-induced platelet aggregation, and 9.3-times higher collagen-induced aggregation compared to saline-controls, and had little or no coagulopathy with significantly higher fibrinogen shifting towards baseline. Hextend® had poor outcomes. Conclusions Small-volume ALM bolus/drip mounted a frontline defense against non-compressible traumatic hemorrhage by defending immune cell numbers, suppressing systemic inflammation, improving platelet aggregation and correcting coagulopathy. Saline-controls were equivalent to no-treatment. Possible mechanisms of ALM's immune-bolstering effect are discussed.
Collapse
|
22
|
|
23
|
3% NaCl adenosine, lidocaine, Mg2+ (ALM) bolus and 4 hours "drip" infusion reduces noncompressible hemorrhage by 60% in a rat model. J Trauma Acute Care Surg 2017; 82:1063-1072. [PMID: 28520687 DOI: 10.1097/ta.0000000000001454] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Noncompressible torso hemorrhage is the leading cause of potentially survivable trauma in far-forward combat environments. Our aim was to examine the effect of small-volume 3% NaCl adenosine, lidocaine, and Mg (ALM) bolus and 0.9% NaCl/ALM "drip" on survivability and cardiac/gut/kidney function in a rat model of hepatic hemorrhage and shock. METHODS Male Sprague-Dawley rats (428 ± 4 g) were anesthetized and randomly assigned to one of five groups (n = 16): (1) Sham, (2) No treatment, (3) Saline controls, (4) ALM therapy, and (5) Hextend. Animals were ventilated, instrumented with single or double laparotomy for tissue probe insertion, and hemorrhage induced by liver resection. After 15 minutes, a single 3% NaCl ± ALM bolus (0.7 ml/kg) was injected IV (phase 1) and after 60 minutes, 4 hours 0.9% NaCl ± ALM stabilization "drip" (0.5 ml/kg/h) was administered (phase 2), with 1-hour monitoring. RESULTS Mortality for Shams (no resection) was 0% (25%); No treatment, 87.5% (100%); Saline controls, 37.5% (75%); ALM therapy, 0% (25%), and Hextend, 87.5% (100%) (double laparotomy in parentheses). Hextend-treated animals died during the first 20 minutes of phase 2. A single ALM bolus during phase 1 led to a 2.4-fold higher cardiac output and improved hemodynamics. 3% NaCl ALM bolus increased tissue pO2 and flow in gut and kidney during phase 1 and, during ALM "drip" in phase 2, tissue pO2 decreased but flow continued to rise, indicating increased tissue O2 extraction and delivery. During phase 2, CO, ejection fraction, and fractional shortening decreased and were erratic in all groups except ALM treatment. ALM therapy led to up to 60% less bleeding over 6 hours compared to Saline controls and 75% less bleeding than Hextend. CONCLUSIONS Small-volume ALM therapy significantly reduced mortality and internal bleeding compared to Saline controls or Hextend-treated rats. Hextend increased mortality, severe bleeding, and microvascular-organ injury.
Collapse
|
24
|
Liotta EM, Prabhakaran S, Sangha RS, Bush RA, Long AE, Trevick SA, Potts MB, Jahromi BS, Kim M, Manno EM, Sorond FA, Naidech AM, Maas MB. Magnesium, hemostasis, and outcomes in patients with intracerebral hemorrhage. Neurology 2017; 89:813-819. [PMID: 28747450 DOI: 10.1212/wnl.0000000000004249] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/31/2017] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE We tested the hypothesis that admission serum magnesium levels are associated with hematoma volume, hematoma growth, and functional outcomes in patients with intracerebral hemorrhage (ICH). METHODS Patients presenting with spontaneous ICH were enrolled in an observational cohort study that prospectively collected demographic, clinical, laboratory, radiographic, and outcome data. We performed univariate and adjusted multivariate analyses to assess for associations between serum magnesium levels and initial hematoma volume, final hematoma volume, and in-hospital hematoma growth as radiographic measures of hemostasis, and functional outcome measured by the modified Rankin Scale (mRS) at 3 months. RESULTS We included 290 patients for analysis. Admission serum magnesium was 2.0 ± 0.3 mg/dL. Lower admission magnesium levels were associated with larger initial hematoma volumes on univariate (p = 0.02), parsimoniously adjusted (p = 0.002), and fully adjusted models (p = 0.006), as well as greater hematoma growth (p = 0.004, p = 0.005, and p = 0.008, respectively) and larger final hematoma volumes (p = 0.02, p = 0.001, and p = 0.002, respectively). Lower admission magnesium level was associated with worse functional outcomes at 3 months (i.e., higher mRS; odds ratio 0.14, 95% confidence interval 0.03-0.64, p = 0.011) after adjustment for age, admission Glasgow Coma Scale score, initial hematoma volume, time from symptom onset to initial CT, and hematoma growth, with evidence that the effect of magnesium is mediated through hematoma growth. CONCLUSIONS These data support the hypothesis that magnesium exerts a clinically meaningful influence on hemostasis in patients with ICH.
Collapse
Affiliation(s)
- Eric M Liotta
- From the Departments of Neurology (E.M.L., S.P., R.S.S., R.A.B., A.E.L., S.A.T., M.K., E.M.M., F.A.S., A.M.N., M.B.M.) and Neurological Surgery (M.B.P., B.S.J.), Northwestern University, Chicago, IL.
| | - Shyam Prabhakaran
- From the Departments of Neurology (E.M.L., S.P., R.S.S., R.A.B., A.E.L., S.A.T., M.K., E.M.M., F.A.S., A.M.N., M.B.M.) and Neurological Surgery (M.B.P., B.S.J.), Northwestern University, Chicago, IL
| | - Rajbeer S Sangha
- From the Departments of Neurology (E.M.L., S.P., R.S.S., R.A.B., A.E.L., S.A.T., M.K., E.M.M., F.A.S., A.M.N., M.B.M.) and Neurological Surgery (M.B.P., B.S.J.), Northwestern University, Chicago, IL
| | - Robin A Bush
- From the Departments of Neurology (E.M.L., S.P., R.S.S., R.A.B., A.E.L., S.A.T., M.K., E.M.M., F.A.S., A.M.N., M.B.M.) and Neurological Surgery (M.B.P., B.S.J.), Northwestern University, Chicago, IL
| | - Alan E Long
- From the Departments of Neurology (E.M.L., S.P., R.S.S., R.A.B., A.E.L., S.A.T., M.K., E.M.M., F.A.S., A.M.N., M.B.M.) and Neurological Surgery (M.B.P., B.S.J.), Northwestern University, Chicago, IL
| | - Stephen A Trevick
- From the Departments of Neurology (E.M.L., S.P., R.S.S., R.A.B., A.E.L., S.A.T., M.K., E.M.M., F.A.S., A.M.N., M.B.M.) and Neurological Surgery (M.B.P., B.S.J.), Northwestern University, Chicago, IL
| | - Matthew B Potts
- From the Departments of Neurology (E.M.L., S.P., R.S.S., R.A.B., A.E.L., S.A.T., M.K., E.M.M., F.A.S., A.M.N., M.B.M.) and Neurological Surgery (M.B.P., B.S.J.), Northwestern University, Chicago, IL
| | - Babak S Jahromi
- From the Departments of Neurology (E.M.L., S.P., R.S.S., R.A.B., A.E.L., S.A.T., M.K., E.M.M., F.A.S., A.M.N., M.B.M.) and Neurological Surgery (M.B.P., B.S.J.), Northwestern University, Chicago, IL
| | - Minjee Kim
- From the Departments of Neurology (E.M.L., S.P., R.S.S., R.A.B., A.E.L., S.A.T., M.K., E.M.M., F.A.S., A.M.N., M.B.M.) and Neurological Surgery (M.B.P., B.S.J.), Northwestern University, Chicago, IL
| | - Edward M Manno
- From the Departments of Neurology (E.M.L., S.P., R.S.S., R.A.B., A.E.L., S.A.T., M.K., E.M.M., F.A.S., A.M.N., M.B.M.) and Neurological Surgery (M.B.P., B.S.J.), Northwestern University, Chicago, IL
| | - Farzaneh A Sorond
- From the Departments of Neurology (E.M.L., S.P., R.S.S., R.A.B., A.E.L., S.A.T., M.K., E.M.M., F.A.S., A.M.N., M.B.M.) and Neurological Surgery (M.B.P., B.S.J.), Northwestern University, Chicago, IL
| | - Andrew M Naidech
- From the Departments of Neurology (E.M.L., S.P., R.S.S., R.A.B., A.E.L., S.A.T., M.K., E.M.M., F.A.S., A.M.N., M.B.M.) and Neurological Surgery (M.B.P., B.S.J.), Northwestern University, Chicago, IL
| | - Matthew B Maas
- From the Departments of Neurology (E.M.L., S.P., R.S.S., R.A.B., A.E.L., S.A.T., M.K., E.M.M., F.A.S., A.M.N., M.B.M.) and Neurological Surgery (M.B.P., B.S.J.), Northwestern University, Chicago, IL
| |
Collapse
|
25
|
Davenport L, Letson HL, Dobson GP. Immune-inflammatory activation after a single laparotomy in a rat model: effect of adenosine, lidocaine and Mg2+ infusion to dampen the stress response. Innate Immun 2017; 23:482-494. [DOI: 10.1177/1753425917718921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Our aim was to examine the effect of low-volume 0.9% NaCl adenosine, lidocaine and Mg2+ (ALM) ‘drip’ on early immune-inflammatory activation after a single laparotomy with no further manipulation. Male Sprague–Dawley rats were anesthetized and randomly assigned to one of the groups, baseline, 1 h infusion 0.9% NaCl ± ALM and metrics, 1 h infusion and 6-h metrics, and 6 h continuous infusion and metrics. Complete blood count, acid–base balance, systemic levels of IL-6 and IL-10, and coagulation status were measured. After 1 h, there was a disproportionate increase in circulating neutrophils between saline and ALM groups despite an identical 45% fall in lymphocytes. Disproportionate increases also occurred in platelet counts 1 h after surgery, and saline controls had increased respiratory alkalosis at 6 h with higher lactate. Systemic inflammation was also evident after 1 h in both groups (plasma IL-6 increase) and was amplified in saline-controls after 6 h. The ALM group increased anti-inflammatory cytokine IL-10. Surgery was not associated with acute coagulopathy; however, there were significant reductions in fibrinolysis. Following a single laparotomy, ALM infusion appeared to reduce stress-induced release of neutrophils and platelets into the circulation, and reduced acid–base disturbance. After 1 h, both groups had similar IL-6 levels, but ALM animals had increased IL-10, indicating improved inflammatory balance. The uncoupling of inflammation and coagulation activation but not fibrinolysis may offer a unique opportunity to investigate differential activation of innate immunity in response to sterile injury in this model.
Collapse
Affiliation(s)
- Lisa Davenport
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland, Australia
| | - Hayley L Letson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland, Australia
| | - Geoffrey P Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland, Australia
| |
Collapse
|
26
|
Differential contributions of platelets and fibrinogen to early coagulopathy in a rat model of hemorrhagic shock. Thromb Res 2016; 141:58-65. [DOI: 10.1016/j.thromres.2016.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/02/2016] [Accepted: 03/05/2016] [Indexed: 11/20/2022]
|
27
|
Abstract
BACKGROUND Perturbations in coagulation function are common following trauma and are associated with poor clinical outcomes. Traditionally considered an iatrogenic process, it is now recognized that an acute coagulation dysfunction develops prior to medical intervention. The mechanisms underlying the development of this acute traumatic coagulopathy remain poorly understood. Preclinical animal research is a necessary adjunct to improve mechanistic understanding and management of this condition. This review aims to identify and evaluate existing animal models of traumatic coagulopathy for clinical relevance. METHODS A structured search of MEDLINE/PubMed was performed in September 2014 in accordance with the PRISMA guidelines. RESULTS A total of 62 relevant publications describing 27 distinct models of traumatic coagulopathy were identified. Porcine models predominated, and hemodilution in isolation or in combination with hypothermia and/or acidosis was the principal mechanism for inducing coagulopathy. Acute coagulation changes in response to tissue injury and hemorrhage were evident in five publications, and pathophysiological evaluation of postulated mechanisms was performed in three studies. CONCLUSIONS There are few clinically relevant animal models that reflect the contemporary understanding of traumatic coagulopathy. This relative deficiency highlights the need for further development of valid and reproducible animal models of trauma. Well-designed models will facilitate improved mechanistic understanding and development of targeted treatment strategies for traumatic coagulopathy.
Collapse
|
28
|
|
29
|
Both acute delivery of and storage with magnesium sulfate promote cold-stored platelet aggregation and coagulation function. J Trauma Acute Care Surg 2015; 79:S139-45. [DOI: 10.1097/ta.0000000000000739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Dobson GP. Addressing the Global Burden of Trauma in Major Surgery. Front Surg 2015; 2:43. [PMID: 26389122 PMCID: PMC4558465 DOI: 10.3389/fsurg.2015.00043] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
Despite a technically perfect procedure, surgical stress can determine the success or failure of an operation. Surgical trauma is often referred to as the "neglected step-child" of global health in terms of patient numbers, mortality, morbidity, and costs. A staggering 234 million major surgeries are performed every year, and depending upon country and institution, up to 4% of patients will die before leaving hospital, up to 15% will have serious post-operative morbidity, and 5-15% will be readmitted within 30 days. These percentages equate to around 1000 deaths and 4000 major complications every hour, and it has been estimated that 50% may be preventable. New frontline drugs are urgently required to make major surgery safer for the patient and more predictable for the surgeon. We review the basic physiology of the stress response from neuroendocrine to genomic systems, and discuss the paucity of clinical data supporting the use of statins, beta-adrenergic blockers and calcium-channel blockers. Since cardiac-related complications are the most common, particularly in the elderly, a key strategy would be to improve ventricular-arterial coupling to safeguard the endothelium and maintain tissue oxygenation. Reduced O2 supply is associated with glycocalyx shedding, decreased endothelial barrier function, fluid leakage, inflammation, and coagulopathy. A healthy endothelium may prevent these "secondary hit" complications, including possibly immunosuppression. Thus, the four pillars of whole body resynchronization during surgical trauma, and targets for new therapies, are: (1) the CNS, (2) the heart, (3) arterial supply and venous return functions, and (4) the endothelium. This is termed the Central-Cardio-Vascular-Endothelium (CCVE) coupling hypothesis. Since similar sterile injury cascades exist in critical illness, accidental trauma, hemorrhage, cardiac arrest, infection and burns, new drugs that improve CCVE coupling may find wide utility in civilian and military medicine.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Trauma and Sepsis Research Laboratory, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University , Townsville, QLD , Australia
| |
Collapse
|
31
|
Correction of acute traumatic coagulopathy with small-volume 7.5% NaCl adenosine, lidocaine, and Mg2+ occurs within 5 minutes: a ROTEM analysis. J Trauma Acute Care Surg 2015; 78:773-83. [PMID: 25807406 DOI: 10.1097/ta.0000000000000587] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Acute traumatic coagulopathy is a major contributor to mortality and morbidity following hemorrhagic shock. Our aim was to examine the effect of small-volume 7.5% NaCl with adenosine, lidocaine, and Mg (ALM) resuscitation on the timing of correction of coagulopathy in the rat model of severe hemorrhagic shock using ROTEM. METHODS Male rats (300-450 g, n = 64) were randomly assigned to (1) baseline, (2) sham, (3) bleed, (4) shock, (5) 7.5% NaCl for 5 minutes, (6) 7.5% NaCl with ALM for 5 minutes, (7) 7.5% NaCl for 60 minutes, or (8) 7.5% NaCl with ALM for 60 minutes (all n = 8). For resuscitation, 0.3-mL intravenous bolus of 7.5% NaCl was administered with and without ALM (n = 8 each group). Hemodynamics and coagulopathy were assessed. RESULTS After hemorrhage, prothrombin time (PT) and activated partial thromboplastin time (aPTT) increased approximately four to six times, and ROTEM indicated hypocoagulopathy. After 60-minute shock, no sustainable clots could form. 7.5% NaCl increased mean arterial pressure (MAP) to 46 ± 2 mm Hg at 5 minutes and generated a weak clot in EXTEM with hyperfibrinolysis in all tests. At 60 minutes, 7.5% NaCl failed to sustain MAP (43 ± 5 mm Hg) and generate a viable clot. In direct contrast, 7.5% NaCl with ALM at 5 minutes resuscitated MAP to 64 ± 3 mm Hg, corrected PT and aPTT, and generated fully formed EXTEM and FIBTEM clots. At 60 minutes, MAP was 69 ± 5 mm Hg, PT and aPTT were fully corrected, and α angle, clot amplitudes (A10, A30), as well as clot firmness and elasticity were not significantly different from baseline. ALM clot lysis at 60 minutes was significantly less than bleed, shock, or 7.5% NaCl, indicating protection against hyperfibrinolysis. CONCLUSION Small-volume 7.5% NaCl failed to resuscitate and correct coagulopathy. In contrast, 7.5% NaCl with ALM resuscitated MAP and corrected coagulopathy at 5 minutes, with further improvements at 60 minutes in clot kinetics, propagation, and firmness. ALM fully reversed hyperfibrinolysis to baseline. The possible mechanisms are discussed.
Collapse
|
32
|
Granfeldt A, Letson HL, Dobson GP, Shi W, Vinten-Johansen J, Tønnesen E. Adenosine, lidocaine and Mg2+ improves cardiac and pulmonary function, induces reversible hypotension and exerts anti-inflammatory effects in an endotoxemic porcine model. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:682. [PMID: 25497775 PMCID: PMC4301798 DOI: 10.1186/s13054-014-0682-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022]
Abstract
Introduction The combination of Adenosine (A), lidocaine (L) and Mg2+ (M) (ALM) has demonstrated cardioprotective and resuscitative properties in models of cardiac arrest and hemorrhagic shock. This study evaluates whether ALM also demonstrates organ protective properties in an endotoxemic porcine model. Methods Pigs (37 to 42 kg) were randomized into: 1) Control (n = 8) or 2) ALM (n = 8) followed by lipopolysaccharide infusion (1 μg∙kg-1∙h-1) for five hours. ALM treatment consisted of 1) a high dose bolus (A (0.82 mg/kg), L (1.76 mg/kg), M (0.92 mg/kg)), 2) one hour continuous infusion (A (300 μg∙kg-1 ∙min-1), L (600 μg∙kg-1 ∙min-1), M (336 μg∙kg-1 ∙min-1)) and three hours at a lower dose (A (240∙kg-1∙min-1), L (480 μg∙kg-1∙min-1), M (268 μg∙kg-1 ∙min-1)); controls received normal saline. Hemodynamic, cardiac, pulmonary, metabolic and renal functions were evaluated. Results ALM lowered mean arterial pressure (Mean value during infusion period: ALM: 47 (95% confidence interval (CI): 44 to 50) mmHg versus control: 79 (95% CI: 75 to 85) mmHg, P <0.0001). After cessation of ALM, mean arterial pressure immediately increased (end of study: ALM: 88 (95% CI: 81 to 96) mmHg versus control: 86 (95% CI: 79 to 94) mmHg, P = 0.72). Whole body oxygen consumption was significantly reduced during ALM infusion (ALM: 205 (95% CI: 192 to 217) ml oxygen/min versus control: 231 (95% CI: 219 to 243) ml oxygen/min, P = 0.016). ALM treatment reduced pulmonary injury evaluated by PaO2/FiO2 ratio (ALM: 388 (95% CI: 349 to 427) versus control: 260 (95% CI: 221 to 299), P = 0.0005). ALM infusion led to an increase in heart rate while preserving preload recruitable stroke work. Creatinine clearance was significantly lower during ALM infusion but reversed after cessation of infusion. ALM reduced tumor necrosis factor-α peak levels (ALM 7121 (95% CI: 5069 to 10004) pg/ml versus control 11596 (95% CI: 9083 to 14805) pg/ml, P = 0.02). Conclusion ALM infusion induces a reversible hypotensive and hypometabolic state, attenuates tumor necrosis factor-α levels and improves cardiac and pulmonary function, and led to a transient drop in renal function that was reversed after the treatment was stopped.
Collapse
Affiliation(s)
- Asger Granfeldt
- Department of Anesthesiology, Aarhus University Hospital, Nørrebrogade 44 building 21 1st floor 8000, Aarhus, Denmark. .,Department of Anesthesiology, Regional Hospital of Randers, Skovlyvej 1, 8930, Randers, Denmark.
| | - Hayley L Letson
- Heart, Trauma & Sepsis Research Laboratory, Australian Institute of Tropical Health and Medicine, School of Medicine and Dentistry, James Cook University, Pharmacy and Medical Research Building 47, Rm 113B, Townsville, Queensland, Australia.
| | - Geoffrey P Dobson
- Heart, Trauma & Sepsis Research Laboratory, Australian Institute of Tropical Health and Medicine, School of Medicine and Dentistry, James Cook University, Pharmacy and Medical Research Building 47, Rm 113B, Townsville, Queensland, Australia.
| | - Wei Shi
- The Cardiothoracic Research Laboratory, Carlyle Fraser Heart Center, Emory University School of Medicine, 387 Technology Circle Suite 180, Atlanta, Georgia 30313, USA.
| | - Jakob Vinten-Johansen
- The Cardiothoracic Research Laboratory, Carlyle Fraser Heart Center, Emory University School of Medicine, 387 Technology Circle Suite 180, Atlanta, Georgia 30313, USA.
| | - Else Tønnesen
- Department of Anesthesiology, Aarhus University Hospital, Nørrebrogade 44 building 21 1st floor 8000, Aarhus, Denmark.
| |
Collapse
|
33
|
Adenosine, lidocaine and Mg2+ (ALM) induces a reversible hypotensive state, reduces lung edema and prevents coagulopathy in the rat model of polymicrobial sepsis. J Trauma Acute Care Surg 2014; 77:471-8. [PMID: 25159253 DOI: 10.1097/ta.0000000000000361] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND No drug therapy has demonstrated improved clinical outcomes in the treatment of sepsis. A bolus of adenosine, lidocaine, and magnesium (ALM) has been shown to be cardioprotective and restore coagulopathy in different trauma states. We hypothesized that ALM therapy may improve hemodynamics, protect the lung, and prevent coagulopathy in the rat sepsis model. METHODS Nonheparinized, anesthetized Sprague-Dawley rats (350-450 g, n = 32) were randomly assigned to (1) shams (without sepsis), (2) saline controls, and (3) ALM treatment. Sepsis was induced by cecal ligation and puncture. A 0.3-mL bolus was administered intravenously, followed by a 4-hour intravenous infusion (1 mL/kg/h), and hemodynamics (mean arterial pressure [MAP], systolic arterial pressure, diastolic arterial pressure, and heart rate [HR]) and body temperature (BT) were monitored. Coagulation was assessed using prothrombin time and activated partial thromboplastin time (aPTT). RESULTS Shams displayed progressive falls in MAP, HR, and BT as well as a prolonged aPTT, which were related to surgery, not infection. At 4 hours, controls showed more pronounced falls in MAP (33%), HR (17%), and BT (3.3°C), and MAP continued to fall after the infusion was stopped. In contrast, ALM treatment resulted in a rapid fall in MAP from 111 mm Hg to 73 mm Hg at 30 minutes (p < 0.05 all groups) and was 59 mm Hg at 240 minutes (p < 0.05 shams), which immediately corrected after 4 hours (p < 0.05 controls). HR paralleled MAP changes in ALM rats, and BT was significantly higher than that of the controls but not that of shams. ALM rats had no arrhythmias compared with the controls or shams and had significantly lower lung wet-dry ratios. Prothrombin time in saline controls at 1 hour and 5 hours was prolonged but not in the shams or ALM rats. aPTT at 1 hour in the sham, control, and ALM groups was 158 ± 41 seconds, 161 ± 41 seconds, and 54 ± 23 seconds and at 5 hours was 104 ± 43 seconds, 205 ± 40 seconds, and 33 ± 3 seconds (p < 0.05), respectively. CONCLUSION An ALM bolus/infusion induces a stable, hypotensive hemodynamic state with no arrhythmias, significantly less pulmonary edema, and a higher BT and prevents coagulopathy compared with the controls.
Collapse
|
34
|
NIELSEN TK, HVAS CL, DOBSON GP, TØNNESEN E, GRANFELDT A. Pulmonary function after hemorrhagic shock and resuscitation in a porcine model. Acta Anaesthesiol Scand 2014; 58:1015-24. [PMID: 24961485 DOI: 10.1111/aas.12355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hemorrhagic shock may trigger an inflammatory response and acute lung injury. The combination adenosine, lidocaine (AL) plus Mg(2+) (ALM) has organ-protective and anti-inflammatory properties with potential benefits in resuscitation.The aims of this study were to investigate: (1) pulmonary function and inflammation after hemorrhagic shock; (2) the effects of ALM/AL on pulmonary function and inflammation. METHODS Pigs (38 kg) were randomized to: sham + saline (n = 5); sham + ALM/AL (n = 5); hemorrhage control (n = 11); and hemorrhage + ALM/AL (n = 9). Hemorrhage animals bled to a mean arterial pressure (MAP) of 35 mmHg for 90 min, received resuscitation with Ringer's acetate and 20 ml of 7.5% NaCl with ALM to a minimum MAP of 50 mmHg, after 30 min shed blood and 0.9% NaCl with AL were infused. Hemorrhage controls did not receive ALM/AL. Primary endpoints were pulmonary wet/dry ratio, PaO2 /FiO2 ratio (partial pressure of arterial oxygen to the fraction of inspired oxygen), cytokine and protein measurements in bronchoalveolar lavage fluid (BALF) and lung tissue, neutrophil invasion and blood flow in lung tissue. RESULTS In the hemorrhage groups, wet/dry ratio increased significantly compared with the sham groups. PaO2 /FiO2 ratio decreased during shock but normalized after resuscitation. BALF did not indicate significant pulmonary inflammation, oxidative stress or increased permeability. Intervention with ALM caused a temporary increase in pulmonary vascular resistance and reduced urea diffusion across the alveolar epithelia, but had no effect on wet/dry ratio. CONCLUSION Hemorrhagic shock and resuscitation did not cause acute lung injury or pulmonary inflammation. The question whether ALM/AL has the potential to attenuate acute lung injury is unanswered.
Collapse
Affiliation(s)
- T. K. NIELSEN
- Department of Anesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus Denmark
- Department of Anesthesiology; Regional Hospital of Randers; Randers Denmark
| | - C. L. HVAS
- Department of Anesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus Denmark
| | - G. P. DOBSON
- Heart and Trauma Research Laboratory; Department of Physiology and Pharmacology; James Cook University; Townsville QLD Australia
| | - E. TØNNESEN
- Department of Anesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus Denmark
| | - A. GRANFELDT
- Department of Anesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus Denmark
- Department of Internal Medicine; Regional Hospital of Randers; Randers Denmark
| |
Collapse
|
35
|
Small-volume 7.5% NaCl adenosine, lidocaine, and Mg2+ has multiple benefits during hypotensive and blood resuscitation in the pig following severe blood loss: rat to pig translation. Crit Care Med 2014; 42:e329-44. [PMID: 24557427 DOI: 10.1097/ccm.0000000000000225] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Currently, there is no effective small-volume fluid for traumatic hemorrhagic shock. Our objective was to translate small-volume 7.5% NaCl adenosine, lidocaine, and Mg hypotensive fluid resuscitation from the rat to the pig. DESIGN Pigs (35-40 kg) were anesthetized and bled to mean arterial pressure of 35-40 mm Hg for 90 minutes, followed by 60 minutes of hypotensive resuscitation and infusion of shed blood. Data were collected continuously. SETTING University hospital laboratory. SUBJECTS Female farm-bred pigs. INTERVENTIONS Pigs were randomly assigned to a single IV bolus of 4 mL/kg 7.5% NaCl + adenosine, lidocaine and Mg (n = 8) or 4 mL/kg 7.5% NaCl (n = 8) at hypotensive resuscitation and 0.9% NaCl ± adenosine and lidocaine at infusion of shed blood. MEASUREMENTS AND MAIN RESULTS At 60 minutes of hypotensive resuscitation, treatment with 7.5% NaCl + adenosine, lidocaine, and Mg generated significantly higher mean arterial pressure (48 mm Hg [95% CI, 44-52] vs 33 mm Hg [95% CI, 30-36], p < 0.0001), cardiac index (76 mL/min/kg [95% CI, 63-91] vs 47 mL/min/kg [95% CI, 39-57], p = 0.002), and oxygen delivery (7.6 mL O2/min/kg [95% CI, 6.4-9.0] vs 5.2 mL O2/min/kg [95% CI, 4.4-6.2], p = 0.003) when compared with controls. Pigs that received adenosine, lidocaine, and Mg/adenosine and lidocaine also had significantly lower blood lactate (7.1 mM [95% CI, 5.7-8.9] vs 11.3 mM [95% CI, 9.0-14.1], p = 0.004), core body temperature (39.3°C [95% CI, 39.0-39.5] vs 39.7°C [95% CI, 39.4-39.9]), and higher base excess (-5.9 mEq/L [95% CI, -8.0 to -3.8] vs -11.2 mEq/L [95% CI, -13.4 to -9.1]). One control died from cardiovascular collapse. Higher cardiac index in the adenosine, lidocaine, and Mg/adenosine and lidocaine group was due to a two-fold increase in stroke volume. Left ventricular systolic ejection times were significantly higher and inversely related to heart rate in the adenosine, lidocaine, and Mg/adenosine and lidocaine group. Thirty minutes after blood return, whole-body oxygen consumption decreased in pigs that received adenosine, lidocaine, and Mg/adenosine and lidocaine (5.7 mL O2/min/kg [95% CI, 4.7-6.8] to 4.9 mL O2/min/kg [95% CI, 4.2-5.8]), whereas it increased in controls (4.2 mL O2/min/kg [95% CI, 3.5-5.0] to 5.8 mL O2/min/kg [95% CI, 4.9-5.8], p = 0.02). After 180 minutes, pigs in the adenosine, lidocaine, and Mg/adenosine and lidocaine group had three-fold higher urinary output (2.1 mL//kg/hr [95% CI, 1.2-3.8] vs 0.7 mL//kg/hr [95% CI, 0.4-1.2], p = 0.001) and lower plasma creatinine levels. CONCLUSION Small-volume resuscitation with 7.5% NaCl + adenosine, lidocaine, and Mg/adenosine and lidocaine provided superior cardiovascular, acid-base, metabolic, and renal recoveries following severe hemorrhagic shock in the pig compared with 7.5% NaCl alone.
Collapse
|
36
|
Quinones QJ, Ma Q, Zhang Z, Barnes BM, Podgoreanu MV. Organ protective mechanisms common to extremes of physiology: a window through hibernation biology. Integr Comp Biol 2014; 54:497-515. [PMID: 24848803 DOI: 10.1093/icb/icu047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Supply and demand relationships govern survival of animals in the wild and are also key determinants of clinical outcomes in critically ill patients. Most animals' survival strategies focus on the supply side of the equation by pursuing territory and resources, but hibernators are able to anticipate declining availability of nutrients by reducing their energetic needs through the seasonal use of torpor, a reversible state of suppressed metabolic demand and decreased body temperature. Similarly, in clinical medicine the majority of therapeutic interventions to care for critically ill or trauma patients remain focused on elevating physiologic supply above critical thresholds by increasing the main determinants of delivery of oxygen to the tissues (cardiac output, perfusion pressure, hemoglobin concentrations, and oxygen saturation), as well as increasing nutritional support, maintaining euthermia, and other general supportive measures. Techniques, such as induced hypothermia and preconditioning, aimed at diminishing a patient's physiologic requirements as a short-term strategy to match reduced supply and to stabilize their condition, are few and underutilized in clinical settings. Consequently, comparative approaches to understand the mechanistic adaptations that suppress metabolic demand and alter metabolic use of fuel as well as the application of concepts gleaned from studies of hibernation, to the care of critically ill and injured patients could create novel opportunities to improve outcomes in intensive care and perioperative medicine.
Collapse
Affiliation(s)
- Quintin J Quinones
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Qing Ma
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Zhiquan Zhang
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Brian M Barnes
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Mihai V Podgoreanu
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA*Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| |
Collapse
|
37
|
Djabir Y, Letson HL, Dobson GP. Adenosine, lidocaine, and Mg2+ (ALM™) increases survival and corrects coagulopathy after eight-minute asphyxial cardiac arrest in the rat. Shock 2014; 40:222-32. [PMID: 23846412 DOI: 10.1097/shk.0b013e3182a03566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION No drug therapy has demonstrated improved survival following cardiac arrest (CA) of cardiac or noncardiac origin. In an effort to translate the cardiorescue properties of Adenocaine (adenosine and lidocaine) and magnesium sulfate (ALM) from cardiac surgery and hemorrhagic shock to resuscitation, we examined the effect of ALM on hemodynamic rescue and coagulopathy following asphyxial-induced CA in the rat. METHODS Nonheparinized animals (400-500 g, n = 39) were randomly assigned to 0.9% saline (n = 12) and 0.9% saline ALM (n = 10) groups. After baseline data were acquired, the animal was surface cooled (33°C-34°C) and the ventilator line clamped for 8 min inducing CA; 0.5 mL of solution was injected intravenously followed by 60-s chest compressions (300/min), and rats were rewarmed. Return of spontaneous circulation (ROSC), mean arterial pressure, heart rate, and rectal temperature were recorded for 2 h. Additional rats were randomized for rotation thromboelastometry measurements (n = 17). RESULTS Rats treated with ALM had a significant survival benefit (100% ALM vs. 67% controls achieved ROSC) and generated a higher mean arterial pressure than did controls after 75 min (81 vs. 72 mmHg at 120 min, P < 0.05). In all rats, rotation thromboelastometry lysis index decreased during CA, implying hyperfibrinolysis. Control ROSC survivors displayed hypocoagulopathy (prolonged EXTEM/INTEM clotting time, clot formation time, prothrombin time, activated partial thromboplastin time), decreased maximal clot firmness, lowered elasticity, and lowered clot amplitudes but no change in lysis index. These coagulation abnormalities were corrected by ALM at 120 min after ROSC. CONCLUSIONS Small bolus of 0.9% NaCl ALM improved survival and hemodynamics following nonhemorrhagic, asphyxial CA and corrected prolonged clot times and clot retraction compared with controls.
Collapse
Affiliation(s)
- Yulia Djabir
- Heart and Trauma Research Laboratory, Physiology and Pharmacology, James Cook University, Queensland, Australia
| | | | | |
Collapse
|
38
|
Abstract
In 1984, Col. Ronald Bellamy launched a worldwide challenge to develop a new resuscitation fluid to aid survival after catastrophic blood loss on the battlefield. In 1996, after careful compromise among need, cube weight and efficacy, the US military and later coalition forces adopted 6% hetastarch (HES) fluids for early resuscitation. In the intervening years, evidence has amassed indicating that the HES fluids may not be safe, and in June 2013 the US Food and Drug Administration issued a warning that HES solutions should not be used to treat patients with hypovolaemia or the critically ill. We review the unique challenges of early battlefield resuscitation, why the 'Bellamy challenge' remains open and discuss a number of forward-looking strategies that may help to solve the problem. The first two pillars of resuscitation that we believe have not been adequately addressed are rescuing and stabilising the heart (and brain) and the vascular system. The 'ideal' resuscitation fluid needs to nurture the heart and body slowly back to health, and not 'shock' it a second time with unnatural colloids or large volumes of unphysiological saline-based solutions.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Department of Physiology and Pharmacology, Heart and Trauma Research Laboratory, James Cook University, Townsville, Queensland, Australia
| | | | | |
Collapse
|
39
|
Djabir Y, Dobson GP. Hemodynamic rescue and ECG stability during chest compressions using adenosine and lidocaine after 8-minute asphyxial hypoxia in the rat. Am J Emerg Med 2013; 31:1539-45. [PMID: 24060325 DOI: 10.1016/j.ajem.2013.05.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 10/26/2022] Open
Abstract
INTRODUCTION Sudden cardiac death generally arises from either ventricular fibrillation or asphyxial hypoxia. In an effort to translate the cardioprotective effects of adenosine and lidocaine (AL) from hemorrhagic shock to cardiopulmonary resuscitation, we examined the effect of AL on hemodynamics and electrocardiogram (ECG) stability in the rat model of asphyxial hypoxia. METHODS Male Sprague-Dawley rats were randomly assigned to 1 of 4 groups (n = 8): saline (SAL), adenosine (ADO), lidocaine (LIDO), and AL. Cardiac arrest (mean arterial pressure <10 mm Hg) was induced by clamping the ventilator line for 8 minutes. A 0.5-mL intravenous drug bolus was injected followed by chest compressions (300 min(-1)), which were repeated every 5 minutes for 1 hour. RESULTS Return of spontaneous circulation was achieved in 5 SAL (62.6%), 4 ADO (50%), 7 LIDO (87.5%), and 8 AL rats (100%) within 5 minutes but could not be sustained. During chest compressions, mean arterial pressure was consistently higher in the AL-treated rats compared with all groups (P < .05; 35-45 and 55 minutes) followed by the LIDO group and was lowest in the ADO and SAL groups (P < .05). Systolic pressure followed a similar pattern. In addition, diastolic pressure in the AL-treated rats was significantly higher from 25 to 60 minutes than LIDO and ADO alone or SAL, and heart rate was 30% to 40% lower. Improved ECG rhythm and R-R variability were apparent in AL-treated rats during early compressions and hands-off intervals. CONCLUSIONS We conclude that a small bolus of 0.9% NaCl AL improved hemodynamics with possible diastolic rescue and ECG stabilization during chest compressions compared with ADO, LIDO, or SAL controls.
Collapse
Affiliation(s)
- Yulia Djabir
- Department of Physiology and Pharmacology, Heart and Trauma Research Laboratory, James Cook University, Queensland 4811, Australia
| | | |
Collapse
|
40
|
Dobson GP, Faggian G, Onorati F, Vinten-Johansen J. Hyperkalemic cardioplegia for adult and pediatric surgery: end of an era? Front Physiol 2013; 4:228. [PMID: 24009586 PMCID: PMC3755226 DOI: 10.3389/fphys.2013.00228] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/05/2013] [Indexed: 12/16/2022] Open
Abstract
Despite surgical proficiency and innovation driving low mortality rates in cardiac surgery, the disease severity, comorbidity rate, and operative procedural difficulty have increased. Today's cardiac surgery patient is older, has a "sicker" heart and often presents with multiple comorbidities; a scenario that was relatively rare 20 years ago. The global challenge has been to find new ways to make surgery safer for the patient and more predictable for the surgeon. A confounding factor that may influence clinical outcome is high K(+) cardioplegia. For over 40 years, potassium depolarization has been linked to transmembrane ionic imbalances, arrhythmias and conduction disturbances, vasoconstriction, coronary spasm, contractile stunning, and low output syndrome. Other than inducing rapid electrochemical arrest, high K(+) cardioplegia offers little or no inherent protection to adult or pediatric patients. This review provides a brief history of high K(+) cardioplegia, five areas of increasing concern with prolonged membrane K(+) depolarization, and the basic science and clinical data underpinning a new normokalemic, "polarizing" cardioplegia comprising adenosine and lidocaine (AL) with magnesium (Mg(2+)) (ALM™). We argue that improved cardioprotection, better outcomes, faster recoveries and lower healthcare costs are achievable and, despite the early predictions from the stent industry and cardiology, the "cath lab" may not be the place where the new wave of high-risk morbid patients are best served.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Department of Physiology and Pharmacology, Heart and Trauma Research Laboratory, James Cook UniversityTownsville, QLD, Australia
| | - Giuseppe Faggian
- Division of Cardiac Surgery, University of Verona Medical SchoolVerona, Italy
| | - Francesco Onorati
- Division of Cardiac Surgery, University of Verona Medical SchoolVerona, Italy
| | - Jakob Vinten-Johansen
- Cardiothoracic Research Laboratory of Emory University Hospital Midtown, Carlyle Fraser Heart CenterAtlanta, GA, USA
| |
Collapse
|
41
|
|
42
|
Vinten-Johansen J. Adenosine-lidocaine-magnesium non-depolarizing cardioplegia: moving forward from bench to bedside. Int J Cardiol 2013; 166:537-8. [PMID: 23079088 DOI: 10.1016/j.ijcard.2012.09.193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 09/25/2012] [Indexed: 11/26/2022]
|
43
|
Adenocaine and Mg(2+) reduce fluid requirement to maintain hypotensive resuscitation and improve cardiac and renal function in a porcine model of severe hemorrhagic shock*. Crit Care Med 2013; 40:3013-25. [PMID: 22926331 DOI: 10.1097/ccm.0b013e31825fd4ed] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Hypotensive resuscitation is gaining clinical acceptance in the treatment of hemorrhagic shock. Our aims were to investigate: 1) the effect of 7.5% NaCl with adenocaine (adenosine and lidocaine, AL) and AL with Mg (ALM) on fluid requirement to maintain a minimum mean arterial pressure of 50 mm Hg, and 2) the effect of a second bolus of 0.9% NaCl with AL during return of shed blood on cardiac and renal function in a porcine model of hemorrhagic shock. DESIGN Pigs were randomized to: Sham (n = 5), Sham + ALM/AL (n = 5), hemorrhage control (n = 11), or hemorrhage + ALM/AL (n = 9). Hemorrhage animals were bled to a mean arterial pressure of 35 mm Hg. After 90 mins, pigs were fluid resuscitated with Ringers acetate and 20 mL 7.5% NaCl with ALM to maintain a target mean arterial pressure of minimum 50 mm Hg. Shed blood and 0.9% NaCl with AL were infused 30 mins later. Hemorrhage control group was subjected to the same protocol but without ALM/AL. Hemodynamics, cardiodynamics (pressure-volume analysis), oxygen consumption, and kidney function were measured for 6 hrs. SETTING University hospital laboratory. SUBJECTS Female farm-bred pigs. RESULTS Fluid volume infused during hypotensive resuscitation was 40% less in the 7.5% NaCl-/ALM-treated pigs than controls (25 vs. 41 mL/kg, p < .05). ALM was associated with a significant increase in dp/dtmax, end-systolic blood pressure, and systemic vascular resistance. Return of shed blood and 0.9% NaCl/AL reduced whole body oxygen consumption by 27% (p < .05), and significantly improved the end-systolic pressure-volume relationship and preload recruitable stroke work compared to controls. Glomerular filtration rate in the ALM/AL group returned to 83% of baseline compared to 54% in controls (p = .01). CONCLUSION Resuscitation with 7.5% NaCl ALM increases cardiac function and reduces fluid requirements during hypotensive resuscitation, whereas a second AL infusion during blood resuscitation transiently reduces whole body oxygen consumption and improves cardiac and renal function.
Collapse
|
44
|
Just another fascinating property of hypertonic solutions or something clinically relevant this time?*. Crit Care Med 2012; 40:2519-20. [DOI: 10.1097/ccm.0b013e31825ae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|