1
|
Hossain SM, Carpenter C, Eccles MR. Genomic and Epigenomic Biomarkers of Immune Checkpoint Immunotherapy Response in Melanoma: Current and Future Perspectives. Int J Mol Sci 2024; 25:7252. [PMID: 39000359 PMCID: PMC11241335 DOI: 10.3390/ijms25137252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) demonstrate durable responses, long-term survival benefits, and improved outcomes in cancer patients compared to chemotherapy. However, the majority of cancer patients do not respond to ICIs, and a high proportion of those patients who do respond to ICI therapy develop innate or acquired resistance to ICIs, limiting their clinical utility. The most studied predictive tissue biomarkers for ICI response are PD-L1 immunohistochemical expression, DNA mismatch repair deficiency, and tumour mutation burden, although these are weak predictors of ICI response. The identification of better predictive biomarkers remains an important goal to improve the identification of patients who would benefit from ICIs. Here, we review established and emerging biomarkers of ICI response, focusing on epigenomic and genomic alterations in cancer patients, which have the potential to help guide single-agent ICI immunotherapy or ICI immunotherapy in combination with other ICI immunotherapies or agents. We briefly review the current status of ICI response biomarkers, including investigational biomarkers, and we present insights into several emerging and promising epigenomic biomarker candidates, including current knowledge gaps in the context of ICI immunotherapy response in melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Carien Carpenter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Mascolo A, Sportiello L, Rafaniello C, Donniacuo M, Ruggiero D, Scisciola L, Barbieri M, Rossi F, Paolisso G, Capuano A. Do immune checkpoint inhibitors share the same pharmacological feature in the risk of cardiac arrhythmias? Biomed Pharmacother 2023; 164:114912. [PMID: 37210896 DOI: 10.1016/j.biopha.2023.114912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Despite the available evidence showing an association between cardiac arrhythmia and Immune Checkpoint Inhibitors (ICIs), few studies have compared this risk between ICIs. OBJECTIVES We aim to evaluate Individual Case Safety Reports (ICSRs) of ICIs-induced cardiac arrhythmias and compare the reporting frequency of cardiac arrhythmias among ICIs. METHODS ICSRs were retrieved from the European Pharmacovigilance database (Eudravigilance). ICSRs were classified based on the ICI reported (pembrolizumab, nivolumab, atezolizumab, ipilimumab, durvalumab, avelumab, cemiplimab, and dostarlimab). If more than one ICI was reported, the ICSR was classified as a combination of ICIs. ICSRs of ICI-related arrhythmias were described and the reporting frequency of cardiac arrhythmias was assessed by applying the reporting odds ratio (ROR) and its 95 % confidence interval (95 %CI). RESULTS A total of 1262 ICSRs were retrieved, of which 147 (11.65 %) were related to combinations of ICIs. A total of 1426 events of cardiac arrhythmias were identified. The three most reported events were atrial fibrillation, tachycardia, and cardiac arrest. Ipilimumab was associated with a reduced reporting frequency of cardiac arrhythmias compared to all other ICIs (ROR 0.71, 95 %CI 0.55-0.92; p = 0.009). Anti-PD1 was associated with a higher reporting frequency of cardiac arrhythmias than anti-CTLA4 (ROR 1.47, 95 %CI 1.14-1.90; p = 0.003). CONCLUSION This study is the first comparing ICIs for the risk of cardiac arrhythmias. We found that ipilimumab was the only ICI associated with a reduced reporting frequency. Further high-quality studies are needed to confirm our results.
Collapse
Affiliation(s)
- Annamaria Mascolo
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Napoli, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Napoli, Italy.
| | - Liberata Sportiello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Napoli, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Concetta Rafaniello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Napoli, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Donatella Ruggiero
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Napoli, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Rossi
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Napoli, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Napoli, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
3
|
Immune Checkpoint Inhibitors and Cardiotoxicity: An Analysis of Spontaneous Reports in Eudravigilance. Drug Saf 2021; 44:957-971. [PMID: 34145536 PMCID: PMC8370948 DOI: 10.1007/s40264-021-01086-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are widely used in the treatment of many cancers as they improve clinical outcomes. However, ICIs have also been associated with the development of immune-related adverse drug reactions (ADRs). Among immune-related ADRs, cardiac immune-related ADRs are rare, but also associated with high mortality rates. OBJECTIVE The objective of this study was to evaluate the occurrence of cardiac ADRs reported with ICIs in the European spontaneous reporting system. METHODS We retrieved individual case safety reports on ICI-induced cardiac ADRs from the website of suspected ADR ( www.adrreports.eu ) of the European pharmacovigilance database (Eudravigilance). Data were retrieved from the date of marketing authorization of each ICI (ipilimumab, nivolumab, pembrolizumab, atezolizumab, durvalumab, avelumab, and cemiplimab) to 14 March, 2020. The reporting odds ratio and its 95% confidence interval were computed to assess the reporting frequency of cardiac ADRs for each ICI compared to all other ICIs. RESULTS A total of 2478 individual case safety reports with at least one ICI as the suspected drug were retrieved from Eudravigilance, of which 249 (10%) reported more than one ICI. The three most reported ICIs were nivolumab (43.2%), pembrolizumab (32.5%), and the association of nivolumab/ipilimumab (9.4%). A total of 3388 cardiac ADRs were identified. Cardiac ADRs were serious (99.4%) and had a fatal outcome (30.1%). The most reported cardiac events were myocarditis, cardiac failure, atrial fibrillation, pericardial effusion, and myocardial infarction. Nivolumab was reported with a small increased reporting frequency of individual case safety reports with cardiac ADRs compared to all other ICIs (reporting odds ratio 1.09, 95% confidence interval 1.01-1.18). CONCLUSIONS Immune checkpoint inhibitor-induced cardiac ADRs were serious and had unfavorable outcomes. In our study, nivolumab was the only ICI with a small increased reporting frequency of individual case safety reports with cardiac ADRs compared to all other ICIs. In this regard, further head-to-head studies are needed.
Collapse
|
4
|
He M, Yang T, Wang Y, Wang M, Chen X, Ding D, Zheng Y, Chen H. Immune Checkpoint Inhibitor-Based Strategies for Synergistic Cancer Therapy. Adv Healthc Mater 2021; 10:e2002104. [PMID: 33709564 DOI: 10.1002/adhm.202002104] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Immune checkpoint blockade therapy (ICBT) targeting checkpoints, such as, cytotoxic T-lymphocyte associated protein-4 (CTLA-4), programmed death-1 (PD-1), or programmed death-ligand 1 (PD-L1), can yield durable immune response in various types of cancers and has gained constantly increasing research interests in recent years. However, the efficacy of ICBT alone is limited by low response rate and immune-related side effects. Emerging preclinical and clinical studies reveal that chemotherapy, radiotherapy, phototherapy, or other immunotherapies can reprogramm immunologically "cold" tumor microenvironment into a "hot" one, thus synergizing with ICBT. In this review, the working principle and current development of various immune checkpoint inhibitors are summarized, while the interactive mechanism and recent progress of ICBT-based synergistic therapies with other immunotherapy, chemotherapy, phototherapy, and radiotherapy in fundamental and clinical studies in the past 5 years are depicted and highlighted. Moreover, the potential issues in current studies of ICBT-based synergistic therapies and future perspectives are also discussed.
Collapse
Affiliation(s)
- Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yuhan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Mengyuan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Xingye Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yiran Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
- State Key Laboratory of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| |
Collapse
|
5
|
Comments on the ambiguity of selected surface markers, signaling pathways and omics profiles hampering the identification of myeloid-derived suppressor cells. Cell Immunol 2021; 364:104347. [PMID: 33838447 DOI: 10.1016/j.cellimm.2021.104347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are important immune-regulatory cells but their identification remains difficult. Here, we provide a critical view on selected surface markers, transcriptional and translational pathways commonly used to identify MDSC by specific, their developmental origin and new possibilities by transcriptional or proteomic profiling. Discrimination of MDSC from their non-suppressive counterparts is a prerequisite for the development of successful therapies. Understanding the switch mechanisms that direct granulocytic and monocytic development into a pro-inflammatory or anti-inflammatory direction will be crucial for therapeutic strategies. Manipulation of these myeloid checkpoints are exploited by tumors and pathogens, such as M. tuberculosis (Mtb), HIV or SARS-CoV-2, that induce MDSC for immune evasion. Thus, specific markers for MDSC identification may reveal also novel molecular candidates for therapeutic intervention at the level of MDSC.
Collapse
|
6
|
Ling B, Ye G, Zhao Q, Jiang Y, Liang L, Tang Q. Identification of an Immunologic Signature of Lung Adenocarcinomas Based on Genome-Wide Immune Expression Profiles. Front Mol Biosci 2021; 7:603701. [PMID: 33505988 PMCID: PMC7832236 DOI: 10.3389/fmolb.2020.603701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Lung cancer is one of the most common types of cancer, and it has a poor prognosis. It is urgent to identify prognostic biomarkers to guide therapy. Methods: The immune gene expression profiles for patients with lung adenocarcinomas (LUADs) were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). The relationships between the expression of 45 immune checkpoint genes (ICGs) and prognosis were analyzed. Additionally, the correlations between the expression of 45 biomarkers and immunotherapy biomarkers, including tumor mutation burden (TMB), mismatch repair defects, neoantigens, and others, were identified. Ultimately, prognostic ICGs were combined to determine immune subgroups, and the prognostic differences between these subgroups were identified in LUAD. Results: A total of 11 and nine ICGs closely related to prognosis were obtained from the GEO and TCGA databases, respectively. CD200R1 expression had a significant negative correlation with TMB and neoantigens. CD200R1 showed a significant positive correlation with CD8A, CD68, and GZMB, indicating that it may cause the disordered expression of adaptive immune resistance pathway genes. Multivariable Cox regression was used to construct a signature composed of four prognostic ICGs (IDO1, CD274, CTLA4, and CD200R1): Risk Score = -0.002* IDO1+0.031* CD274-0.069* CTLA4-0.517* CD200R1. The median Risk Score was used to classify the samples for the high- and low-risk groups. We observed significant differences between groups in the training, testing, and external validation cohorts. Conclusion: Our research provides a method of integrating ICG expression profiles and clinical prognosis information to predict lung cancer prognosis, which will provide a unique reference for gene immunotherapy for LUAD.
Collapse
Affiliation(s)
- Bo Ling
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, China
| | - Guangbin Ye
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, China
- Medical College of Guangxi University, Nanning, China
| | - Qiuhua Zhao
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, China
| | - Yan Jiang
- Medical College of Guangxi University, Nanning, China
| | - Lingling Liang
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise, China
| | - Qianli Tang
- Key Laboratory of High Incidence of Disease Prevention in the West of Guangxi, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
7
|
Ruggiero R, Fraenza F, Scavone C, di Mauro G, Piscitelli R, Mascolo A, Ferrajolo C, Rafaniello C, Sportiello L, Rossi F, Capuano A. Immune Checkpoint Inhibitors and Immune-Related Adverse Drug Reactions: Data From Italian Pharmacovigilance Database. Front Pharmacol 2020; 11:830. [PMID: 32581796 PMCID: PMC7295943 DOI: 10.3389/fphar.2020.00830] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The introduction of immune checkpoint inhibitors (ICIs) in clinical practice has brought significant benefits for patients. Seven ICIs are available in Europe: nivolumab, pembrolizumab, atezolizumab, avelumab, durvalumab, cemiplimab, and ipilimumab. Despite their proven clinical efficacy, these innovative drugs may cause serious immune-related adverse drugs reactions (irADRs). Given the significance of these ADRs for patients' health, we analyzed individual case safety reports (ICSRs) related to ICIs, focusing on those reporting irADRs, collected in the Italian spontaneous reporting database. METHODS We analyzed ICI-induced irADRs collected in the Italian Pharmacovigilance database (Rete Nazionale di Farmacovigilanza [RNF]) from January 1, 2002, to February 28, 2019, focusing on those reported in the Campania Region. We retrieved from an open-access Italian pharmacovigilance system, the RAM system (for national safety data), and from the RNF (for Campania safety data) all ICSRs reporting ADRs related to ICIs authorized until the analysis date. Focusing on irADRs, we performed descriptive and disproportionality analyses through the reporting odds ratio (ROR) with 95% confidence interval. RESULTS National results. Among 2,088 ICI-related ICSRs, 801 reported irADRs. The majority of such ADRs occurred in male patients reporting gastrointestinal and skin toxicities. Nivolumab and pembrolizumab were drugs most commonly reported as suspect drugs. Compared to other ICIs, ROR was statistically significant for pembrolizumab and ipilimumab.Campania Region results. Out of 253 ICI-related ICSRs sent to Regional Pharmacovigilance Center of Campania Region, 121 reported at least one ICI-induced irADR. These were serious in 37.2% of cases and had an unfavorable outcome in 32.2% of cases. Overall, out of 8 ICSRs reported ADR with a fatal outcome, four reported irADRs. From disproportionality analyses on Campania Region ICSRs, statistically significant ROR emerged only for ipilimumab. CONCLUSIONS Our results showed that during the study period several serious irADRs were reported, some of which had fatal outcome. Given the clinical relevance of irADRs, further investigations in real-life context are necessary for a better characterization of ICIs safety profiles. Oncologists should be trained to early recognize and adequately manage irADRs. Patients should also be educated to immediately report any new symptom or worsening of pre-existed ones during the ICI treatment.
Collapse
Affiliation(s)
| | | | - Cristina Scavone
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Qi X, Schepers E, Avella D, Kimchi ET, Kaifi JT, Staveley-O'Carroll KF, Li G. An Oncogenic Hepatocyte-Induced Orthotopic Mouse Model of Hepatocellular Cancer Arising in the Setting of Hepatic Inflammation and Fibrosis. J Vis Exp 2019. [PMID: 31566616 DOI: 10.3791/59368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The absence of a clinically relevant animal model addressing the typical immune characteristics of hepatocellular cancer (HCC) has significantly impeded elucidation of the underlying mechanisms and development of innovative immunotherapeutic strategies. To develop an ideal animal model recapitulating human HCC, immunocompetent male C57BL/6J mice first receive a carbon tetrachloride (CCl4) injection to induce liver fibrosis, then receive histologically-normal oncogenic hepatocytes from young male SV40 T antigen (TAg)-transgenic mice (MTD2) by intra-splenic (ISPL) inoculation. Androgen generated in recipient male mice at puberty initiates TAg expression under control of a liver-specific promoter. As a result, the transferred hepatocytes become cancer cells and form tumor masses in the setting of liver fibrosis/cirrhosis. This novel model mimics human HCC initiation and progression in the context of liver fibrosis/cirrhosis and reflects the most typical features of human HCC including immune dysfunction.
Collapse
Affiliation(s)
- Xiaoqiang Qi
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia; Molecular Microbiology and Immunology, University of Missouri-Columbia
| | - Emily Schepers
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia
| | - Diego Avella
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia
| | - Eric T Kimchi
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia
| | - Jussuf T Kaifi
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia;
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia; Ellis Fischel Cancer Center, University of Missouri-Columbia; Molecular Microbiology and Immunology, University of Missouri-Columbia;
| |
Collapse
|
9
|
Hughes MS, Zheng H, Zubiri L, Molina GE, Chen ST, Mooradian MJ, Allen IM, Reynolds KL, Dougan M. Colitis after checkpoint blockade: A retrospective cohort study of melanoma patients requiring admission for symptom control. Cancer Med 2019; 8:4986-4999. [PMID: 31286682 PMCID: PMC6718531 DOI: 10.1002/cam4.2397] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/28/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (CPIs) have revolutionized oncologic therapy but can lead to immune-related adverse events (irAEs). Corticosteroids are first-line treatment with escalation to biologic immunosuppression in refractory cases. CPI-related gastroenterocolitis (GEC) affects 20%-50% of patients receiving CPIs and can carry significant morbidity and mortality. Severe CPI-related GEC is not well-described. We present the clinical characterization of all CPI-related GEC requiring admission at a single institution. METHODS Clinical, laboratory, radiographic, and endoscopic data were extracted from charts of all melanoma patients ≥18 years of age admitted to one institution for CPI-related GEC, from February 5, 2011 to December 13, 2016. Patients were followed until December 31, 2017 for further admissions. Survival, outcomes, and pharmaceutical-use analyses were performed. RESULTS Median time-to-admission from initial CPI exposure was 73.5 days. Median length of stay was 4.5 days. About 50.0% required second-line immunosuppression. Readmission for recrudescence occurred in 33.3%. Common Terminology Criteria for Adverse Events (CTCAE) grade was not significantly associated with outcomes. Hypoalbuminemia (P = 0.005), relative lymphopenia (P = 0.027), and decreased lactate dehydrogenase (P = 0.026) were associated with second-line immunosuppression. There was no difference in progression-free survival (PFS) or OS (P = 0.367, 0.400) for second-line immunosuppression. Subgroup analysis showed that early corticosteroid administration (P = 0.045) was associated with decreased PFS. CONCLUSIONS Severe CPI-related GEC typically manifests within 3 months of immunotherapy exposure. Rates of second-line immunosuppression and readmission for recrudescence were high. CTCAE grade did not capture the degree of severity in our cohort. Second-line immunosuppression was not associated with poorer oncologic outcomes; however, early corticosteroid exposure was associated with decreased PFS. Further investigation is warranted.
Collapse
Affiliation(s)
- Michael S. Hughes
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
| | - Hui Zheng
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
| | - Leyre Zubiri
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
| | - Gabriel E. Molina
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
| | - Steven T. Chen
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
- Department of DermatologyMassachusetts General HospitalBostonMassachusetts
| | - Meghan J. Mooradian
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
- Massachusetts General Hospital Cancer CenterBostonMassachusetts
| | - Ian M. Allen
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
| | - Kerry L. Reynolds
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
- Massachusetts General Hospital Cancer CenterBostonMassachusetts
| | - Michael Dougan
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
- Division of GastroenterologyMassachusetts General HospitalBostonMassachusetts
| |
Collapse
|
10
|
Chae YJ, Kim J, Heo H, Woo CW, Kim ST, Kim MJ, Choi JR, Kim DH, Woo DC, Kim KW, Choi Y. Magnetic Resonance Colonography Enables the Efficacy Assessment of Immune Checkpoint Inhibitors in an Orthotopic Colorectal Cancer Mouse Model. Transl Oncol 2019; 12:1264-1270. [PMID: 31302474 PMCID: PMC6626083 DOI: 10.1016/j.tranon.2019.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become an effective therapeutic option for colorectal cancer and studies on these drugs have therefore increased greatly. Efficacy assessments of ICIs in preclinical orthotopic colorectal cancer using MRI have not been reported however due to the difficulties in conducting colorectal imaging. The purpose of this present study was to investigate the feasibility of using magnetic resonance colonography (MRC) to evaluate the efficacy of an ICI, an anti-PD-L1 antibody, in an orthotopic colorectal cancer mouse model. The mouse model was generated by the engraftment of colorectal cancer cells into the submucosal layer of the colon. Anti-cancer efficacy was assessed by tumor volume and metastatic tumor number analyses, and these values were significantly lower in the PD-L1 antibody-treated group compared to the controls. Histological analyses using H&E and Ki-67 immunohistochemical staining confirmed a highly efficacious tumor growth inhibition and enhanced infiltration by CD4+ and CD8+ lymphocytes in the PD-L1 antibody-treated group. We conclude that MRC has the potential to be used for ICI efficacy assessments against orthotopic colorectal cancer mouse model.
Collapse
Affiliation(s)
- Yeon Ji Chae
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinil Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hwon Heo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chul-Woong Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Tae Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Min Jung Kim
- Scripps Korea Antibody Institute, Chuncheon, Gangwon-do, Republic of Korea
| | - Jong Rip Choi
- Scripps Korea Antibody Institute, Chuncheon, Gangwon-do, Republic of Korea
| | - Dae Hee Kim
- Scripps Korea Antibody Institute, Chuncheon, Gangwon-do, Republic of Korea
| | - Dong-Cheol Woo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Yoonseok Choi
- Medical Research Institute, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung-si, Gangwon-do, Republic of Korea.
| |
Collapse
|
11
|
Rotman J, Koster BD, Jordanova ES, Heeren AM, de Gruijl TD. Unlocking the therapeutic potential of primary tumor-draining lymph nodes. Cancer Immunol Immunother 2019; 68:1681-1688. [PMID: 30944963 PMCID: PMC6805797 DOI: 10.1007/s00262-019-02330-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/22/2019] [Indexed: 01/24/2023]
Abstract
Lymph nodes draining the primary tumor are essential for the initiation of an effective anti-tumor T-cell immune response. However, cancer-derived immune suppressive factors render the tumor-draining lymph nodes (TDLN) immune compromised, enabling tumors to invade and metastasize. Unraveling the different mechanisms underlying this immune escape will inform therapeutic intervention strategies to halt tumor spread in early clinical stages. Here, we review our findings from translational studies in melanoma, breast, and cervical cancer and discuss clinical opportunities for local immune modulation of TDLN in each of these indications.
Collapse
Affiliation(s)
- Jossie Rotman
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bas D Koster
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ekaterina S Jordanova
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - A Marijne Heeren
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Filaci G, Fenoglio D, Taramasso L, Indiveri F, Di Biagio A. Rationale for an Association Between PD1 Checkpoint Inhibition and Therapeutic Vaccination Against HIV. Front Immunol 2018; 9:2447. [PMID: 30459765 PMCID: PMC6232923 DOI: 10.3389/fimmu.2018.02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 12/02/2022] Open
Abstract
The pathogenesis of HIV immunodeficiency is mainly dependent on the cytopatic effects exerted by the virus against infected CD4+ T cells. However, CD4+ T cell loss cannot be the only pathogenic factor since severe opportunistic infections may develop in HIV infected patients with normal CD4+ T cell counts and since the recent START study indicated that absolute CD4+ T cell counts are not predictive for AIDS and non-AIDS events. Recently our group demonstrated that CD8+CD28-CD127lowCD39+ regulatory T lymphocytes, previously found highly concentrated within tumor microenvironment, circulate with elevated frequency in the peripheral blood of HIV infected patients. Here, we show that these cells, that at least in part are HIV specific, express the PD1 immune checkpoint. Based on these evidences and considerations, in this Perspective article we speculate on the opportunity to treat HIV infected patients with anti-PD1 immune checkpoint inhibitors as a way to counteract the T regulatory cell compartment and to unleash virus-specific immune responses. In order to potentiate the immune responses against HIV we also propose the potential utility to associate immune checkpoint inhibition with HIV-specific therapeutic vaccination, reminiscent of what currently applied in oncologic protocols. We suggest that such an innovative strategy could permit drug-sparing regimens and, perhaps, lead to eradication of the infection in some patients.
Collapse
Affiliation(s)
- Gilberto Filaci
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Genoa, Italy.,Biotherapy Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Genoa, Italy.,Biotherapy Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Taramasso
- Infectious Disease Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Indiveri
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Antonio Di Biagio
- Infectious Disease Unit, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
13
|
ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med 2018; 24:556-562. [PMID: 29736026 DOI: 10.1038/s41591-018-0012-z] [Citation(s) in RCA: 401] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
ARID1A (the AT-rich interaction domain 1A, also known as BAF250a) is one of the most commonly mutated genes in cancer1,2. The majority of ARID1A mutations are inactivating mutations and lead to loss of ARID1A expression 3 , which makes ARID1A a poor therapeutic target. Therefore, it is of clinical importance to identify molecular consequences of ARID1A deficiency that create therapeutic vulnerabilities in ARID1A-mutant tumors. In a proteomic screen, we found that ARID1A interacts with mismatch repair (MMR) protein MSH2. ARID1A recruited MSH2 to chromatin during DNA replication and promoted MMR. Conversely, ARID1A inactivation compromised MMR and increased mutagenesis. ARID1A deficiency correlated with microsatellite instability genomic signature and a predominant C>T mutation pattern and increased mutation load across multiple human cancer types. Tumors formed by an ARID1A-deficient ovarian cancer cell line in syngeneic mice displayed increased mutation load, elevated numbers of tumor-infiltrating lymphocytes, and PD-L1 expression. Notably, treatment with anti-PD-L1 antibody reduced tumor burden and prolonged survival of mice bearing ARID1A-deficient but not ARID1A-wild-type ovarian tumors. Together, these results suggest ARID1A deficiency contributes to impaired MMR and mutator phenotype in cancer, and may cooperate with immune checkpoint blockade therapy.
Collapse
|
14
|
D'Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR-T cells: the long and winding road to solid tumors. Cell Death Dis 2018; 9:282. [PMID: 29449531 PMCID: PMC5833816 DOI: 10.1038/s41419-018-0278-6] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 01/11/2023]
Abstract
Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the “next generation” of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host’s defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles.
Collapse
Affiliation(s)
- Maria Michela D'Aloia
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Luca Pierelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Alimandi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
15
|
Kersh AE, Ng S, Chang YM, Sasaki M, Thomas SN, Kissick HT, Lesinski GB, Kudchadkar RR, Waller EK, Pollack BP. Targeted Therapies: Immunologic Effects and Potential Applications Outside of Cancer. J Clin Pharmacol 2018; 58:7-24. [PMID: 29136276 PMCID: PMC5972536 DOI: 10.1002/jcph.1028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Two pharmacologic approaches that are currently at the forefront of treating advanced cancer are those that center on disrupting critical growth/survival signaling pathways within tumor cells (commonly referred to as "targeted therapies") and those that center on enhancing the capacity of a patient's immune system to mount an antitumor response (immunotherapy). Maximizing responses to both of these approaches requires an understanding of the oncogenic events present in a given patient's tumor and the nature of the tumor-immune microenvironment. Although these 2 modalities were developed and initially used independently, combination regimens are now being tested in clinical trials, underscoring the need to understand how targeted therapies influence immunologic events. Translational studies and preclinical models have demonstrated that targeted therapies can influence immune cell trafficking, the production of and response to chemokines and cytokines, antigen presentation, and other processes relevant to antitumor immunity and immune homeostasis. Moreover, because these and other effects of targeted therapies occur in nonmalignant cells, targeted therapies are being evaluated for use in applications outside of oncology.
Collapse
Affiliation(s)
- Anna E. Kersh
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Spencer Ng
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Min Chang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA
| | | | - Susan N. Thomas
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haydn T. Kissick
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gregory B. Lesinski
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ragini R. Kudchadkar
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Edmund K. Waller
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Brian P. Pollack
- Atlanta VA Medical Center, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
- Emory University Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
16
|
Jessurun CAC, Vos JAM, Limpens J, Luiten RM. Biomarkers for Response of Melanoma Patients to Immune Checkpoint Inhibitors: A Systematic Review. Front Oncol 2017; 7:233. [PMID: 29034210 PMCID: PMC5625582 DOI: 10.3389/fonc.2017.00233] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/11/2017] [Indexed: 01/08/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs), targeting CTLA-4 or PD-1 molecules, have shown impressive therapeutic results. However, only 20–40% of advanced melanoma patients have durable responses to ICI, and these positive effects must be balanced against severe off-target immune toxicity and high costs. This urges the development of predictive biomarkers for ICI response to select patients with likely clinical benefit from treatment. Although many candidate biomarkers exist, a systematic overview of biomarkers and their usefulness is lacking. Objectives Here, we systematically review the current literature of clinical data of ICI treatment to provide an overview of candidate predictive biomarkers for ICI in melanoma patients. Methods To identify studies on biomarkers for clinical response or survival to ICI therapy in melanoma patients, we performed a systematic search in OVID MEDLINE and retrieved 429 publications, of which 67 met the eligibility criteria. Results Blood and genomic biomarkers were mainly studied for CTLA-4 ICI, while tumor tissue markers were analyzed for both CTLA-4 and PD-1 ICI. Blood cytology and soluble factors correlated more frequently to overall survival (OS) than to response, indicating their prognostic rather than predictive nature. Systemic T-cell response and regulation markers correlated to response, but progression-free survival or OS were not analyzed. Tumor tissue analyses revealed response correlations with mutational load, neoantigen load, immune-related gene expression, and CD8+ T-cell infiltration at the invasive margin. The predictive value of PD-L1 varied, possibly due to the influence of T-cell infiltration on tumor PD-L1 expression. Genomic biomarker studies addressed CTLA-4 and other immune-related genes. Conclusion This review outlines all published biomarkers for ICI therapy and highlights potential candidate markers for future research. To date, PD-L1 is the best studied biomarker for PD-1 ICI response. The most promising candidate predictive biomarkers for ICI response have not yet been identified. Variations in outcome parameters, statistical power, and analyses hampered summary of the results. Further investigation of biomarkers in larger patient cohorts using standardized objectives and outcome measures is recommended.
Collapse
Affiliation(s)
- Charissa A C Jessurun
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Julien A M Vos
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jacqueline Limpens
- Medical Library, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rosalie M Luiten
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Viale G, Trapani D, Curigliano G. Mismatch Repair Deficiency as a Predictive Biomarker for Immunotherapy Efficacy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4719194. [PMID: 28770222 PMCID: PMC5523547 DOI: 10.1155/2017/4719194] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Immunotherapy has revolutionized cancer treatment. Immune-checkpoint inhibitors, on balance, showed a favorable efficacy/toxicity profile with durable response in different cancer types. No predictive biomarker has been validated thus far to select patients who would benefit from therapy. Among the candidate predictive biomarkers, mismatch repair status of the tumor is currently one of the most promising. Indeed, tumors displaying mismatch repair deficiency or microsatellite instability showed remarkable response to immunotherapy in clinical trials. This correlation has been first reported in colorectal cancers, but similar results have been observed also in other cancer types. The possible mechanism behind this correlation may be the higher mutational load observed in mismatch repair deficient tumors, leading to neoantigens formation, recruitment of immune cells, and release of proinflammatory factors in the microenvironment. These results support an approach to treatment based on assessment of the genomic stability of the tumor besides its biologic characteristics and may change our therapeutic decision making process. However, due to the small percentage of patients with tumors displaying mismatch repair deficiency, data from clinical trials should not be considered definitive and need further confirmation.
Collapse
Affiliation(s)
- Giulia Viale
- Division of Early Drug Development, European Institute of Oncology, Via Ripamonti 435, Milan, Italy
| | - Dario Trapani
- Division of Early Drug Development, European Institute of Oncology, Via Ripamonti 435, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, Via Ripamonti 435, Milan, Italy
| |
Collapse
|
18
|
Gnjatic S, Bronte V, Brunet LR, Butler MO, Disis ML, Galon J, Hakansson LG, Hanks BA, Karanikas V, Khleif SN, Kirkwood JM, Miller LD, Schendel DJ, Tanneau I, Wigginton JM, Butterfield LH. Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. J Immunother Cancer 2017; 5:44. [PMID: 28515944 PMCID: PMC5432988 DOI: 10.1186/s40425-017-0243-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/26/2017] [Indexed: 12/31/2022] Open
Abstract
As cancer strikes, individuals vary not only in terms of factors that contribute to its occurrence and development, but as importantly, in their capacity to respond to treatment. While exciting new therapeutic options that mobilize the immune system against cancer have led to breakthroughs for a variety of malignancies, success is limited to a subset of patients. Pre-existing immunological features of both the host and the tumor may contribute to how patients will eventually fare with immunotherapy. A broad understanding of baseline immunity, both in the periphery and in the tumor microenvironment, is needed in order to fully realize the potential of cancer immunotherapy. Such interrogation of the tumor, blood, and host immune parameters prior to treatment is expected to identify biomarkers predictive of clinical outcome as well as to elucidate why some patients fail to respond to immunotherapy. To approach these opportunities for progress, the Society for Immunotherapy of Cancer (SITC) reconvened the Immune Biomarkers Task Force. Comprised of an international multidisciplinary panel of experts, Working Group 4 sought to make recommendations that focus on the complexity of the tumor microenvironment, with its diversity of immune genes, proteins, cells, and pathways naturally present at baseline and in circulation, and novel tools to aid in such broad analyses.
Collapse
Affiliation(s)
- Sacha Gnjatic
- Department of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, S5-105, 1470 Madison Avenue, Box 1128, New York, NY 10029 USA
| | - Vincenzo Bronte
- Head of Immunology Section, University of Verona, Piazzale Le L. A. Scuro, 10, Verona, Italy
| | - Laura Rosa Brunet
- Immodulon Therapeutics Ltd, Stockley Park, 6-9 The Square, Uxbridge, UK
| | - Marcus O Butler
- Princess Margaret Hospital/Ontario Cancer Institute, RM 9-622, 610 University Ave, Toronto, ON Canada
| | - Mary L Disis
- University of Washington, Tumor Vaccine Group, 850 Mercer Street, Box 358050, Seattle, WA 98109 USA
| | - Jérôme Galon
- INSERM - Cordeliers Research Center, Integrative Cancer Immunology Laboratory, 15 rue de l'Ecole de Médecine, Paris, France
| | - Leif G Hakansson
- CanImGuide Therapeutics AB, Domkyrkovägen 23, Hoellviken, Sweden
| | - Brent A Hanks
- Duke University Medical Center, 308 Research Drive, LSRC, Room C203, Box 3819, Durham, NC 27708 USA
| | - Vaios Karanikas
- Roche Innovation Center Zurich, Wagistrasse 18, Schlieren, Switzerland
| | - Samir N Khleif
- Georgia Cancer Center, Augusta University, 1120 15th Street, CN-2101A, Augusta, GA 30912 USA
| | - John M Kirkwood
- University of Pittsburgh, Hillman Cancer Center-Research Pavilion, 5117 Centre Avenue, Suite 1.32, Pittsburg, PA 15213 USA
| | - Lance D Miller
- Wake Forest School of Medicine, 1 Medical Center Blvd, Winston Salem, NC 27157 USA
| | - Dolores J Schendel
- Medigene Immunotherapies GmbH, Lochhamer Strasse 11, Planegg-Martinsried, Germany
| | | | - Jon M Wigginton
- MacroGenics, Inc., 9704 Medical Center Drive, Rockville, MD 20850 USA
| | - Lisa H Butterfield
- Department of Medicine, Surgery and Immunology, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| |
Collapse
|
19
|
Pathogenesis, clinical manifestations and management of immune checkpoint inhibitors toxicity. TUMORI JOURNAL 2017; 103:405-421. [PMID: 28497847 DOI: 10.5301/tj.5000625] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
Immune checkpoint inhibitors have emerged as an effective treatment for several tumor types and their use in clinical practice is expected to further increase in the immediate future. Although these agents are well tolerated, they are associated with a peculiar spectrum of toxicity, which is immune mediated and may potentially affect every organ. However, immune-related adverse events are mostly reversible if promptly diagnosed and adequately treated. Therefore, it is crucial that medical oncologists know how to diagnose and treat immune-related adverse events. This review focuses on the pathogenesis, clinical manifestations and management of immune-related toxicity of anti-CTLA-4 and anti-PD-1 antibodies.
Collapse
|
20
|
New developments in the biology and the treatment of metastatic Merkel cell carcinoma. Curr Opin Oncol 2017; 29:221-226. [PMID: 28282342 DOI: 10.1097/cco.0000000000000363] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Patients with stage IIIB und IV metastatic Merkel cell carcinoma (mMCC), who are not suitable candidates for surgery or radiotherapy, are unlikely to achieve lasting remission or tumor control by chemo or targeted therapy. In the majority of cases, the tumor arises from viral carcinogenesis associated with the Merkel cell polyomavirus (MCPyV). In MCPyV-negative tumors with a presumable ultraviolet carcinogenesis, a high mutational burden resulting in neoantigens was discovered. In two phase II clinical trials in either the first or second-line setting, a high response rate was observed for immunotherapies with antibodies blocking the programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) immune checkpoints. RECENT FINDINGS The response rate was 56% with the anti-PD-1 inhibitor pembrolizumab as a first-line and 32% with the anti-PD-L1 antibody avelumab used as second-line therapy. Both treatments were well tolerated. Treatment response was rapid and in most cases maintained during follow-up, which, however, is still rather short. Whether the MCPyV or the PD-L1 status is predictive for treatment response and progression-free survival is still ambiguous. Additionally, clinical criteria for patient selection for immunotherapy of mMCC have not yet been defined. SUMMARY PD-1/PD-L1 inhibition can be regarded as new first-line therapy for patients with mMCC not amendable by surgery and/or radiation.
Collapse
|
21
|
Montes de Oca M, Good MF, McCarthy JS, Engwerda CR. The Impact of Established Immunoregulatory Networks on Vaccine Efficacy and the Development of Immunity to Malaria. THE JOURNAL OF IMMUNOLOGY 2016; 197:4518-4526. [DOI: 10.4049/jimmunol.1600619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023]
|
22
|
Bupathi M, Wu C. Biomarkers for immune therapy in colorectal cancer: mismatch-repair deficiency and others. J Gastrointest Oncol 2016; 7:713-720. [PMID: 27747085 DOI: 10.21037/jgo.2016.07.03] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease for which the treatment backbone has primarily been cytotoxic chemotherapy. With better understanding of the involved molecular mechanisms, it is now known that there are a number of epigenetic and genetic events, which are involved in CRC pathogenesis. Specific biomarkers have been identified which can be used to determine the clinical outcome of patients beyond tumor staging and predict for treatment efficacy. Molecular testing is now routinely performed to select for patients that will benefit the most from targeted agents and immunotherapy. In addition to KRAS, NRAS, and BRAF mutation (MT), analysis of DNA mismatch repair (MMR) status, tumor infiltrating lymphocytes, and checkpoint protein expression may be helpful to determine whether patients are eligible for certain therapies. The focus of this article is to discuss present and upcoming biomarkers for immunotherapy in CRC.
Collapse
Affiliation(s)
- Manojkumar Bupathi
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Richard Solove Research Institute and James Cancer Hospital, Columbus, Ohio, USA
| | - Christina Wu
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Richard Solove Research Institute and James Cancer Hospital, Columbus, Ohio, USA
| |
Collapse
|
23
|
Antineoplastic Treatment and Renal Injury: An Update on Renal Pathology Due to Cytotoxic and Targeted Therapies. Adv Anat Pathol 2016; 23:310-29. [PMID: 27403615 DOI: 10.1097/pap.0000000000000122] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer patients experience kidney injury from multiple sources, including the tumor itself, diagnostic procedures, hypovolemia, infection, and drug exposure, superimposed upon baseline chronic damage. This review will focus on cytotoxic or targeted chemotherapy-associated renal injury. In this setting, tubulointerstitial injury and thrombotic microangiopathy (vascular injury) are more common than other forms of kidney injury including glomerular. Cisplatin, pemetrexed, and ifosfamide are well-known causes of acute tubular injury/necrosis. Acute interstitial nephritis seems underrecognized in this clinical setting. Interstitial nephritis is emerging as an "immune-related adverse effect" (irAE's) with immune checkpoint inhibitors in small numbers of patients. Acute kidney injury is rarely reported with targeted therapies such as BRAF inhibitors (vemurafinib, dabrafenib), ALK inhibitors (crizotinib), and mTOR inhibitors (everolimus, temsirolimus), but additional biopsy data are needed. Tyrosine kinase inhibitors and monoclonal antibodies that block the vascular endothelial growth factor pathway are most commonly associated with thrombotic microangiopathy. Other causes of thrombotic microangiopathy in the cancer patients include cytotoxic chemotherapies such as gemcitabine and mitomycin C, hematopoietic stem cell transplant, and cancer itself (usually high-stage adenocarcinoma with marrow and vascular invasion). Cancer patients are historically underbiopsied, but biopsy can reveal type, acuity, and chronicity of renal injury, and facilitate decisions concerning continuation of chemotherapy and/or initiation of renoprotective therapy. Biopsy may also reveal unrelated and unanticipated findings in need of treatment.
Collapse
|
24
|
Cagnoni AJ, Pérez Sáez JM, Rabinovich GA, Mariño KV. Turning-Off Signaling by Siglecs, Selectins, and Galectins: Chemical Inhibition of Glycan-Dependent Interactions in Cancer. Front Oncol 2016; 6:109. [PMID: 27242953 PMCID: PMC4865499 DOI: 10.3389/fonc.2016.00109] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022] Open
Abstract
Aberrant glycosylation, a common feature associated with malignancy, has been implicated in important events during cancer progression. Our understanding of the role of glycans in cancer has grown exponentially in the last few years, concurrent with important advances in glycomics and glycoproteomic technologies, paving the way for the validation of a number of glycan structures as potential glycobiomarkers. However, the molecular bases underlying cancer-associated glycan modifications are still far from understood. Glycans exhibit a natural heterogeneity, crucial for their diverse functional roles as specific carriers of biologically relevant information. This information is decoded by families of proteins named lectins, including sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), C-type lectin receptors (CLRs), and galectins. Siglecs are primarily expressed on the surface of immune cells and differentially control innate and adaptive immune responses. Among CLRs, selectins are a family of cell adhesion molecules that mediate interactions between cancer cells and platelets, leukocytes, and endothelial cells, thus facilitating tumor cell invasion and metastasis. Galectins, a family of soluble proteins that bind β-galactoside-containing glycans, have been implicated in diverse events associated with cancer biology such as apoptosis, homotypic cell aggregation, angiogenesis, cell migration, and tumor-immune escape. Consequently, individual members of these lectin families have become promising targets for the design of novel anticancer therapies. During the past decade, a number of inhibitors of lectin–glycan interactions have been developed including small-molecule inhibitors, multivalent saccharide ligands, and more recently peptides and peptidomimetics have offered alternatives for tackling tumor progression. In this article, we review the current status of the discovery and development of chemical lectin inhibitors and discuss novel strategies to limit cancer progression by targeting lectin–glycan interactions.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan M Pérez Sáez
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| |
Collapse
|