2
|
Moura AA, Bezerra MJB, Martins AMA, Borges DP, Oliveira RTG, Oliveira RM, Farias KM, Viana AG, Carvalho GGC, Paier CRK, Sousa MV, Fontes W, Ricart CAO, Moraes MEA, Magalhães SMM, Furtado CLM, Moraes-Filho MO, Pessoa C, Pinheiro RF. Global Proteomics Analysis of Bone Marrow: Establishing Talin-1 and Centrosomal Protein of 55 kDa as Potential Molecular Signatures for Myelodysplastic Syndromes. Front Oncol 2022; 12:833068. [PMID: 35814389 PMCID: PMC9257025 DOI: 10.3389/fonc.2022.833068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a hematological disorder characterized by abnormal stem cell differentiation and a high risk of acute myeloid leukemia transformation. Treatment options for MDS are still limited, making the identification of molecular signatures for MDS progression a vital task. Thus, we evaluated the proteome of bone marrow plasma from patients (n = 28) diagnosed with MDS with ring sideroblasts (MDS-RS) and MDS with blasts in the bone marrow (MDS-EB) using label-free mass spectrometry. This strategy allowed the identification of 1,194 proteins in the bone marrow plasma samples. Polyubiquitin-C (UBC), moesin (MSN), and Talin-1 (TLN1) showed the highest abundances in MDS-EB, and centrosomal protein of 55 kDa (CEP55) showed the highest relative abundance in the bone marrow plasma of MDS-RS patients. In a follow-up, in the second phase of the study, expressions of UBC, MSN, TLN1, and CEP55 genes were evaluated in bone marrow mononuclear cells from 45 patients by using qPCR. This second cohort included only seven patients from the first study. CEP55, MSN, and UBC expressions were similar in mononuclear cells from MDS-RS and MDS-EB individuals. However, TLN1 gene expression was greater in mononuclear cells from MDS-RS (p = 0.049) as compared to MDS-EB patients. Irrespective of the MDS subtype, CEP55 expression was higher (p = 0.045) in MDS patients with abnormal karyotypes, while MSN, UBC, and TALIN1 transcripts were similar in MDS with normal vs. abnormal karyotypes. In conclusion, proteomic and gene expression approaches brought evidence of altered TLN1 and CEP55 expressions in cellular and non-cellular bone marrow compartments of patients with low-risk (MDS-RS) and high-risk (MDS-EB) MDSs and with normal vs. abnormal karyotypes. As MDS is characterized by disrupted apoptosis and chromosomal alterations, leading to mitotic slippage, TLN1 and CEP55 represent potential markers for MDS prognosis and/or targeted therapy.
Collapse
Affiliation(s)
- Arlindo A. Moura
- Graduate Program in Animal Science, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Biotechnology (Renorbio), Federal University of Ceará, Fortaleza, Brazil
- *Correspondence: Arlindo A. Moura, ; Claudia Pessoa, ; Ronald F. Pinheiro,
| | - Maria Julia B. Bezerra
- Graduate Program in Animal Science, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Aline M. A. Martins
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Daniela P. Borges
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Medical Sciences, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Roberta T. G. Oliveira
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Medical Sciences, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Raphaela M. Oliveira
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Kaio M. Farias
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Biotechnology (Renorbio), Federal University of Ceará, Fortaleza, Brazil
| | - Arabela G. Viana
- Graduate Program in Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Guilherme G. C. Carvalho
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Carlos R. K. Paier
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Translational Medicine, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Marcelo V. Sousa
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Carlos A. O. Ricart
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Maria Elisabete A. Moraes
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Translational Medicine, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Silvia M. M. Magalhães
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Medical Sciences, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiana L. M. Furtado
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Translational Medicine, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Experimental Biology Center, NUBEX, The University of Fortaleza (Unifor), Fortaleza, Brazil
| | - Manoel O. Moraes-Filho
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Translational Medicine, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Pessoa
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Biotechnology (Renorbio), Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- *Correspondence: Arlindo A. Moura, ; Claudia Pessoa, ; Ronald F. Pinheiro,
| | - Ronald F. Pinheiro
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Medical Sciences, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- *Correspondence: Arlindo A. Moura, ; Claudia Pessoa, ; Ronald F. Pinheiro,
| |
Collapse
|
4
|
Banerjee T, Calvi LM, Becker MW, Liesveld JL. Flaming and fanning: The Spectrum of inflammatory influences in myelodysplastic syndromes. Blood Rev 2019; 36:57-69. [PMID: 31036385 PMCID: PMC6711159 DOI: 10.1016/j.blre.2019.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
Abstract
The myelodysplastic syndromes (MDS) represent neoplasms derived from the expansion of mutated clonal hematopoietic cells which often demonstrate aberrant differentiation potential with resultant cytopenias and a propensity to evolve into acute myelogenous leukemia. While multiple mutations have been identified which may serve as drivers of the MDS clone, there is accumulating evidence that MDS clones and subclones are subject to modulation by the marrow microenvironment and its inflammatory milieu. There is also a strong link between autoimmune disorders and MDS. In this review, we examine the role of inflammatory cytokines, toll like receptors, pyroptosis, stromal cells, and cellular inflammatory mediators in MDS initiation, propagation, and progression. These contributions in a background of mutational, epigenetic, and aging changes in the marrow are also reviewed. Such inflammatory mediators may be subject to therapeutic agents which will enhance suppression of the MDS clone with potential to improve therapeutic outcomes in this disease which is usually incurable in aged patients not eligible for stem cell transplantation.
Collapse
Affiliation(s)
- Titas Banerjee
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| | - Laura M Calvi
- Division of Endocrinology and Metabolism, Department of Medicine, and the James P Wilmot Cancer Institute, USA.
| | - Michael W Becker
- Division of Hematology/Oncology, Department of Medicine, James P Wilmot Cancer Institute, USA.
| | - Jane L Liesveld
- Division of Hematology/Oncology, Department of Medicine, James P Wilmot Cancer Institute, USA.
| |
Collapse
|
5
|
Piazzi M, Bavelloni A, Gallo A, Faenza I, Blalock WL. Signal Transduction in Ribosome Biogenesis: A Recipe to Avoid Disaster. Int J Mol Sci 2019; 20:ijms20112718. [PMID: 31163577 PMCID: PMC6600399 DOI: 10.3390/ijms20112718] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
Energetically speaking, ribosome biogenesis is by far the most costly process of the cell and, therefore, must be highly regulated in order to avoid unnecessary energy expenditure. Not only must ribosomal RNA (rRNA) synthesis, ribosomal protein (RP) transcription, translation, and nuclear import, as well as ribosome assembly, be tightly controlled, these events must be coordinated with other cellular events, such as cell division and differentiation. In addition, ribosome biogenesis must respond rapidly to environmental cues mediated by internal and cell surface receptors, or stress (oxidative stress, DNA damage, amino acid depletion, etc.). This review examines some of the well-studied pathways known to control ribosome biogenesis (PI3K-AKT-mTOR, RB-p53, MYC) and how they may interact with some of the less well studied pathways (eIF2α kinase and RNA editing/splicing) in higher eukaryotes to regulate ribosome biogenesis, assembly, and protein translation in a dynamic manner.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | | | - Angela Gallo
- RNA Editing Laboratory, Dipartimento di Oncoematologia, IRCCS, Ospedale Pediatrica Bambino Gesù, 00146 Rome, Italy.
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40126 Bologna, Italy.
| | - William L Blalock
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
7
|
Dobrowolski SF, Lyons-Weiler J, Spridik K, Vockley J, Skvorak K, Biery A. DNA methylation in the pathophysiology of hyperphenylalaninemia in the PAH(enu2) mouse model of phenylketonuria. Mol Genet Metab 2016; 119:1-7. [PMID: 26822703 PMCID: PMC8958364 DOI: 10.1016/j.ymgme.2016.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/31/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
Abstract
Phenylalanine hydroxylase deficient phenylketonuria (PKU) is the paradigm for a treatable inborn error of metabolism where maintaining plasma phenylalanine (Phe) in the therapeutic range relates to improved clinical outcomes. While Phe is the presumed intoxicating analyte causal in neurologic damage, the mechanism(s) of Phe toxicity has remained elusive. Altered DNA methylation is a recognized response associated with exposure to numerous small molecule toxic agents. Paralleling this effect, we hypothesized that chronic Phe over-exposure in the brain would lead to aberrant DNA methylation with secondary influence upon gene regulation that would ultimately contribute to PKU neuropathology. The PAH(enu2) mouse models human PKU with intrinsic hyperphenylalaninemia, abnormal response to Phe challenge, and neurologic deficit. To examine this hypothesis, we assessed DNA methylation patterns in brain tissues using methylated DNA immunoprecipitation and paired end sequencing in adult PAH(enu2) animals maintained under either continuous dietary Phe restriction or chronic hyperphenylalaninemia. Heterozygous PAH(enu2/WT) litter mates served as controls for normal Phe exposure. Extensive repatterning of DNA methylation was observed in brain tissue of hyperphenylalaninemic animals while Phe restricted animals displayed an attenuated pattern of aberrant DNA methylation. Affected gene coding regions displayed aberrant hypermethylation and hypomethylation. Gene body methylation of noncoding RNA genes was observed and among these microRNA genes were prominent. Of particular note, observed only in hyperphenylalaninemic animals, was hypomethylation of miRNA genes within the imprinted Dlk1-Dio3 locus on chromosome 12. Aberrant methylation of microRNA genes influenced their expression which has secondary effects upon the expression of targeted protein coding genes. Differential hypermethylation of gene promoters was exclusive to hyperphenylalaninemic PAH(enu2) animals. Genes with synaptic involvement were targets of promoter hypermethylation that resulted in down-regulation of their expression. Gene dysregulation secondary to abnormal DNA methylation may be contributing to PKU neuropathology. These results suggest drugs that prevent or correct aberrant DNA methylation may offer a novel therapeutic option to management of neurological symptoms in PKU patients.
Collapse
Affiliation(s)
- S F Dobrowolski
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States.
| | - J Lyons-Weiler
- Genomics and Proteomics Core Laboratories, University of Pittsburgh, 3343 Forbes Avenue, Pittsburgh, PA 15260, United States
| | - K Spridik
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - J Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - K Skvorak
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - A Biery
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| |
Collapse
|