1
|
Fu YC, Liang SB, Luo M, Wang XP. Intratumoral heterogeneity and drug resistance in cancer. Cancer Cell Int 2025; 25:103. [PMID: 40102941 PMCID: PMC11917089 DOI: 10.1186/s12935-025-03734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Intratumoral heterogeneity is the main cause of tumor treatment failure, varying across disease sites (spatial heterogeneity) and polyclonal properties of tumors that evolve over time (temporal heterogeneity). As our understanding of intratumoral heterogeneity, the formation of which is mainly related to the genomic instability, epigenetic modifications, plastic gene expression, and different microenvironments, plays a substantial role in drug-resistant as far as tumor metastasis and recurrence. Understanding the role of intratumoral heterogeneity, it becomes clear that a single therapeutic agent or regimen may only be effective for subsets of cells with certain features, but not for others. This necessitates a shift from our current, unchanging treatment approach to one that is tailored against the killing patterns of cancer cells in different clones. In this review, we discuss recent evidence concerning global perturbations of intratumoral heterogeneity, associations of specific intratumoral heterogeneity in lung cancer, the underlying mechanisms of intratumoral heterogeneity potentially leading to formation, and how it drives drug resistance. Our findings highlight the most up-to-date progress in intratumoral heterogeneity and its role in mediating tumor drug resistance, which could support the development of future treatment strategies.
Collapse
Affiliation(s)
- Yue-Chun Fu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shao-Bo Liang
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Min Luo
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Xue-Ping Wang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
2
|
Pastò B, Buzzatti G, Schettino C, Malapelle U, Bergamini A, De Angelis C, Musacchio L, Dieci MV, Kuhn E, Lambertini M, Passarelli A, Toss A, Farolfi A, Roncato R, Capoluongo E, Vida R, Pignata S, Callari M, Baldassarre G, Bartoletti M, Gerratana L, Puglisi F. Unlocking the potential of Molecular Tumor Boards: from cutting-edge data interpretation to innovative clinical pathways. Crit Rev Oncol Hematol 2024; 199:104379. [PMID: 38718940 DOI: 10.1016/j.critrevonc.2024.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
The emerging era of precision medicine is characterized by an increasing availability of targeted anticancer therapies and by the parallel development of techniques to obtain more refined molecular data, whose interpretation may not always be straightforward. Molecular tumor boards gather various professional figures, in order to leverage the analysis of molecular data and provide prognostic and predictive insights for clinicians. In addition to healthcare development, they could also become a tool to promote knowledge and research spreading. A growing body of evidence on the application of molecular tumor boards to clinical practice is forming and positive signals are emerging, although a certain degree of heterogeneity exists. This work analyzes molecular tumor boards' potential workflows, figures involved, data sources, sample matrices and eligible patients, as well as available evidence and learning examples. The emerging concept of multi-institutional, disease-specific molecular tumor boards is also considered by presenting two ongoing nationwide experiences.
Collapse
Affiliation(s)
- Brenno Pastò
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Giulia Buzzatti
- Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy
| | - Clorinda Schettino
- Clinical Trials Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli 80131, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Napoli 80131, Italy
| | - Alice Bergamini
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milano 20132, Italy; Unit of Obstetrics and Gynaecology, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy
| | - Carmine De Angelis
- Oncology Unit - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli 80131, Italy
| | - Lucia Musacchio
- Department of Women and Child Health, Division of Gynaecologic Oncology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma 00168, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova 35122, Italy; Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova 35128, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milano 20122, Italy; Pathology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova 16132, Italy
| | - Anna Passarelli
- Department of Urology and Gynaecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli 80131, Italy
| | - Angela Toss
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena 41124, Italy; Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena 41124, Italy
| | - Alberto Farolfi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola 47014, Italy
| | - Rossana Roncato
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano 33081, Italy
| | - Ettore Capoluongo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli 80131, Italy; Clinical Pathology Unit, Azienda Ospedaliera San Giovanni Addolorata, Roma 00184, Italy
| | - Riccardo Vida
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Sandro Pignata
- Department of Urology and Gynaecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli 80131, Italy
| | | | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano 33081, Italy
| | - Michele Bartoletti
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Lorenzo Gerratana
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy.
| | - Fabio Puglisi
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| |
Collapse
|
3
|
Zhou J, Du Y, Lai Z, Chen T, Li Z. Intra-Individual Variation in Disease-Specific IgG Fc Glycoform Ratios to Monitor the Disease Progression of Lung Cancer. J Proteome Res 2023; 22:246-258. [PMID: 36503223 DOI: 10.1021/acs.jproteome.2c00680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aberrant protein glycosylation is an active pathological alteration related to the progression of cancers. The speed of progression varies among individuals, increasing the difficulties of prognosis assessment. Hence, evaluating variation in glycosylation using patients themselves as their own controls is a potential way to reduce the impact of individual differences on progression monitoring. Here, following a longitudinal follow-up study involving 125 lung cancer (LC) patients with progressive disease, we isolated disease-specific IgG from serum using polyacrylamide gel electrophoresis, obtained IgG glycoform ratios using mass spectrometry, and then set a fold-change cutoff of 1.5 to utilize the intra-individual variation in IgG glycosylation to monitor PD. We found that the serial monitoring of 15 types of glycoform ratios provided an effective way for monitoring LC progression. Over 1.5-fold changes in glycoform ratios relative to the first observed value were detected in 117 of 125 LC patients (93.6%). Our established method predicted LC progression 55.8 (IQR 31.1-90.1) weeks earlier than imaging examination did. In summary, intra-individual variation in IgG glycoform ratios is useful to monitor LC progression, expanding our knowledge about the relationship between IgG glycosylation and cancer prognosis. The raw data files are available via the ProteomeXchange Consortium with the identifier PXD037541.
Collapse
Affiliation(s)
- Jinyu Zhou
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Yuying Du
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Tianjing Chen
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| |
Collapse
|
4
|
Lee JH, Jung KH, Kim M, Lee KH. Cysteine-specific 89Zr-labeled anti-CD25 IgG allows immuno-PET imaging of interleukin-2 receptor-α on T cell lymphomas. Front Immunol 2022; 13:1017132. [PMID: 36591250 PMCID: PMC9797992 DOI: 10.3389/fimmu.2022.1017132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Positron emission tomography (PET) using radiolabeled Abs as imaging tracer is called immuno-PET. Immuno-PET can verify therapeutic Ab delivery and can noninvasively quantify global levels of target expression in tumors of living subjects. The interleukin-2 receptor α chain (IL-2Rα; CD25) is a promising target for immune therapy and radioimmunotherapy of lymphomas. Immuno-PET could facilitate this approach by visualizing CD25 expression in vivo. Methods We prepared 89Zr-anti-CD25 IgG specifically labeled to sulfhydryl moieties by maleimide-deferoxamine conjugation. Results and Discussion CD25(+) SUDHL1 human T-cell lymphoma cells showed high anti-human 89Zr-CD25 IgG binding that reached 32-fold of that of CD25(-) human lymphoma cells and was completely blocked by excess unlabeled Ab. In SUDHL1 tumor-bearing nude mice, pharmacokinetic studies demonstrated exponential reductions of whole blood and plasma activity following intravenous 89Zr-anti-CD25 IgG injection, with half-lives of 26.0 and 23.3 h, respectively. SUDHL1 tumor uptake of 89Zr-CD25 IgG was lower per weight in larger tumors, but blood activity did not correlate with tumor size or blood level of human CD25, indicating minimal influence by circulating soluble CD25 protein secreted from the lymphoma cells. 89Zr-CD25 IgG PET allowed high-contrast SUDHL1 lymphoma visualization at five days. Biodistribution studies confirmed high tumor 89Zr-CD25 IgG uptake (8.7 ± 0.9%ID/g) that was greater than blood (5.2 ± 1.6%ID/g) and organ uptakes (0.7 to 3.5%ID/g). Tumor CD25-specific targeting was confirmed by suppression of tumor uptake to 4.3 ± 0.2%ID by excess unlabeled CD25 IgG, as well as by low tumor uptake of 89Zr-labeled IgG2a isotype control Ab (3.6 ± 0.9%ID). Unlike CD25(+) lymphocytes from mouse thymus that showed specific uptake of anti-mouse 89Zr-CD25 IgG, EL4 mouse lymphoma cells had low CD25 expression and showed low uptake. In immunocompetent mice bearing EL4 tumors, anti-mouse 89Zr-CD25 IgG displayed low uptakes in normal organs as well as in the tumor. Furthermore, the biodistribution was not influenced by Ab blocking, indicating that specific uptake in nontumor tissues was minimal. 89Zr-CD25 IgG immuno-PET may thus be useful for imaging of T-cell lymphomas and noninvasive assessment of CD25 expression on target cells in vivo.
Collapse
Affiliation(s)
- Jin Hee Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mina Kim
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,*Correspondence: Kyung-Han Lee,
| |
Collapse
|
5
|
Stankunaite R, Marshall LV, Carceller F, Chesler L, Hubank M, George SL. Liquid biopsy for children with central nervous system tumours: Clinical integration and technical considerations. Front Pediatr 2022; 10:957944. [PMID: 36467471 PMCID: PMC9709284 DOI: 10.3389/fped.2022.957944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) analysis has the potential to revolutionise the care of patients with cancer and is already moving towards standard of care in some adult malignancies. Evidence for the utility of cfDNA analysis in paediatric cancer patients is also accumulating. In this review we discuss the limitations of blood-based assays in patients with brain tumours and describe the evidence supporting cerebrospinal fluid (CSF) cfDNA analysis. We make recommendations for CSF cfDNA processing to aid the standardisation and technical validation of future assays. We discuss the considerations for interpretation of cfDNA analysis and highlight promising future directions. Overall, cfDNA profiling shows great potential as an adjunct to the analysis of biopsy tissue in paediatric cancer patients, with the potential to provide a genetic molecular profile of the tumour when tissue biopsy is not feasible. However, to fully realise the potential of cfDNA analysis for children with brain tumours larger prospective studies incorporating serial CSF sampling are required.
Collapse
Affiliation(s)
- Reda Stankunaite
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Clinical Genomics, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Evolutionary Genomics and Modelling, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Lynley V. Marshall
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Fernando Carceller
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Louis Chesler
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Michael Hubank
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Clinical Genomics, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Sally L. George
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Hypomethylation of RPTOR in peripheral blood is associated with very early-stage lung cancer. Clin Chim Acta 2022; 537:173-180. [DOI: 10.1016/j.cca.2022.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
7
|
Zhang W, Wang W, Wu J, Tian J, Yan W, Yuan Y, Yao Y, Shang A, Quan W. Immune cell-lipoprotein imbalance as a marker for early diagnosis of non-small cell lung cancer metastasis. Front Oncol 2022; 12:942964. [PMID: 36353553 PMCID: PMC9638068 DOI: 10.3389/fonc.2022.942964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/06/2022] [Indexed: 01/28/2023] Open
Abstract
The underlying molecular mechanisms and evolutionary patterns of lung cancer metastasis remain unclear, resulting in a lack of effective indicators for early diagnosis of metastasis. We retrospectively analyzed 117 patients with primary non-small cell lung cancer (NSCLC) admitted to Tongji Hospital of Tongji University in 2021, of which 93 patients with tumor metastasis were set as the metastasis group. 24 patients without metastasis were set as the non-metastasis group. The differences of each index in the two groups of patients and the expression levels in different TNM stages were compared. This study intends to evaluate the diagnostic value and net clinical benefit of common blood-related indicators Neutrophil/lymphocyte (NLR), lymphocyte/monocyte (LMR), High density lipoprotein/neutrophil (HNR), High density lipoprotein/monocyte (HMR) and combined assays in NSCLC metastasis for the early diagnosis of patients with NSCLC metastasis. It was found that the level of NLR was higher in metastatic NSCLC than non-metastatic, but the level of LMR, HNR and HMR was lower. The levels of NLR, LMR, HNR and HMR in patients with different TNM stages showed that NLR levels increased with TNM stage, while LMR, HNR and HMR levels decreased. The threshold probability range of the 4 combined tests was greater and the overall clinical benefit rate was higher compared to the individual tests. Our findings suggest that NLR, LMR, HNR and HMR have better diagnostic value for NSCLC metastasis. This study provides a clinical basis for investigating the mechanisms by which immune cells and lipid metabolism-related proteins remodel the microenvironment prior to NSCLC metastasis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weiwei Wang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Pathology, Tinghu People’s Hospital, Yancheng, China
| | - Junlu Wu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiale Tian
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenhui Yan
- Department of Laboratory Medicine, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji Univeirsity School of Medicine, Shanghai, China
| | - Yi Yuan
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Anquan Shang, ; Wenqiang Quan,
| | - Wenqiang Quan
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Anquan Shang, ; Wenqiang Quan,
| |
Collapse
|
8
|
Ben X, Tian D, Zhuang W, Chen R, Wang S, Zhou Z, Deng C, Shi R, Liu S, Zhang D, Tang J, Xie L, Zhou H, Zhang Z, Li M, Zhang X, Qiao G. Accuracy of next-generation sequencing for molecular profiling of small specimen of lung cancer: a prospective pilot study of side-by-side comparison. Diagn Pathol 2022; 17:78. [PMID: 36224661 PMCID: PMC9554964 DOI: 10.1186/s13000-022-01255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Background Successful practice of precision medicine in advanced lung cancers relies on therapeutic regimens tailored to individual molecular characteristics. The aim of this study was to investigate the accuracy of small specimens for molecular profiling using next-generation sequencing (NGS). Methods Genetic alternations, tumor mutational burden (TMB), status of microsatellite instability (MSI), and expression of programmed death ligand 1 (PD-L1) were compared side-by-side between the concurrently obtained core needle biopsy (CNB) and resection specimens in 17 patients with resectable non-small cell lung cancers. Results DNA yield and library complexity were significantly lower in CNB specimens (both p < 0.01), whereas the insert size, sequencing depth, and Q30 ratio were similar between the matched specimens (all p > 0.05). The total numbers of genetic alternations detected in resection and CNB specimens were 186 and 211, respectively, with 156 alternations in common, yielding a specific concordance rate of 83.9%. The prevalence of mutations in 8 major driver genes was 100% identical between surgical and CNB specimens, though the allele frequency was lower in CNB specimens, with a median underestimation of 57%. Results of TMB were similar (p = 0.547) and MSI status was 100% matched in all paired specimens. Conclusions Pulmonary CNB specimens were suitable for NGS given the satisfactory accuracy when compared to corresponding surgical specimens. NGS results yielding from CNB specimens should be deemed reliable to provide instructive information for the treatment of advanced lung cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-022-01255-y.
Collapse
Affiliation(s)
- Xiaosong Ben
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, China
| | - Dan Tian
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, China
| | - Weitao Zhuang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Rixin Chen
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Sichao Wang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, China
| | - Zihao Zhou
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, China
| | - Cheng Deng
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, China
| | - Ruiqing Shi
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, China
| | - Songlin Liu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, China
| | - Dongkun Zhang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, China
| | - Jiming Tang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, China
| | - Liang Xie
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, China
| | - Haiyu Zhou
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, China
| | - Zhou Zhang
- Department of Data Science, Burning Rock Biotech, Guangzhou, China
| | - Min Li
- Department of Medicine, Burning Rock Biotech, Guangzhou, China
| | - Xuanye Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Wang D, Zhang X, Liu H, Qiu B, Liu S, Zheng C, Fu J, Mo Y, Chen N, Zhou R, Chu C, Liu F, Guo J, Zhou Y, Zhou Y, Fan W, Liu H. Assessing dynamic metabolic heterogeneity in non-small cell lung cancer patients via ultra-high sensitivity total-body [ 18F]FDG PET/CT imaging: quantitative analysis of [ 18F]FDG uptake in primary tumors and metastatic lymph nodes. Eur J Nucl Med Mol Imaging 2022; 49:4692-4704. [PMID: 35819498 DOI: 10.1007/s00259-022-05904-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/03/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE This study aimed to quantitatively assess [18F]FDG uptake in primary tumor (PT) and metastatic lymph node (mLN) in newly diagnosed non-small cell lung cancer (NSCLC) using the total-body [18F]FDG PET/CT and to characterize the dynamic metabolic heterogeneity of NSCLC. METHODS The 60-min dynamic total-body [18F]FDG PET/CT was performed before treatment. The PTs and mLNs were manually delineated. An unsupervised K-means classification method was used to cluster patients based on the imaging features of PTs. The metabolic features, including Patlak-Ki, Patlak-Intercept, SUVmean, metabolic tumor volume (MTV), total lesion glycolysis (TLG), and textural features, were extracted from PTs and mLNs. The targeted next-generation sequencing of tumor-associated genes was performed. The expression of Ki67, CD3, CD8, CD34, CD68, and CD163 in PTs was determined by immunohistochemistry. RESULTS A total of 30 patients with stage IIIA-IV NSCLC were enrolled. Patients were divided into fast dynamic FDG metabolic group (F-DFM) and slow dynamic FDG metabolic group (S-DFM) by the unsupervised K-means classification of PTs. The F-DFM group showed significantly higher Patlak-Ki (P < 0.001) and SUVmean (P < 0.001) of PTs compared with the S-DFM group, while no significant difference was observed in Patlak-Ki and SUVmean of mLNs between the two groups. The texture analysis indicated that PTs in the S-DFM group were more heterogeneous in FDG uptake than those in the F-DFM group. Higher T cells (CD3+/CD8+) and macrophages (CD68+/CD163+) infiltration in the PTs were observed in the F-DFM group. No significant difference was observed in tumor mutational burden between the two groups. CONCLUSION The dynamic total-body [18F]FDG PET/CT stratified NSCLC patients into the F-DFM and S-DFM groups, based on Patlak-Ki and SUVmean of PTs. PTs in the F-DFM group seemed to be more homogenous in terms of [18F]FDG uptake than those in the S-DFM group. The higher infiltrations of T cells and macrophages were observed in the F-DFM group, which suggested a potential benefit from immunotherapy.
Collapse
Affiliation(s)
- DaQuan Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xu Zhang
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hui Liu
- United Imaging Healthcare, Shanghai, China
| | - Bo Qiu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - SongRan Liu
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | | | - Jia Fu
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - YiWen Mo
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - NaiBin Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Zhou
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chu Chu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - FangJie Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - JinYu Guo
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yin Zhou
- SuZhou TongDiao Company, Suzhou, China
| | - Yun Zhou
- United Imaging Healthcare, Shanghai, China
| | - Wei Fan
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Hui Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Kroschke J, von Stackelberg O, Heußel CP, Wielpütz MO, Kauczor HU. Imaging Biomarkers in Thoracic Oncology: Current Advances in the Use of Radiomics in Lung Cancer Patients and its Potential Use for Therapy Response Prediction and Monitoring. ROFO-FORTSCHR RONTG 2022; 194:720-727. [PMID: 35211928 DOI: 10.1055/a-1729-1516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths. The development of therapies targeting molecular alterations has significantly improved the treatment of NSCLC patients. To identify these targets, tumor phenotyping is required, with tissue biopsies and molecular pathology being the gold standard. Some patients do not respond to targeted therapies and many patients suffer from tumor recurrence, which can in part be explained by tumor heterogeneity. This points out the need for new biomarkers allowing for better tumor phenotyping and monitoring during treatment to assess patient outcome. METHOD The contents of this review are based on a literature search conducted using the PubMed database in March 2021 and the authors' experience. RESULTS AND CONCLUSION The use of radiomics and artificial intelligence-based approaches allows for the identification of imaging biomarkers in NSCLC patients for tumor phenotyping. Several studies show promising results for models predicting molecular alterations, with the best results being achieved by combining structural and functional imaging. Radiomics could help solve the pressing clinical need for assessing and predicting therapy response. To reach this goal, advanced tumor phenotyping, considering tumor heterogeneity, is required. This could be achieved by integrating structural and functional imaging biomarkers with clinical data sources, such as liquid biopsy results. However, to allow for radiomics-based approaches to be introduced into clinical practice, further standardization using large, multi-center datasets is required. KEY POINTS · Some NSCLC patients do not benefit from targeted therapies, and many patients suffer from tumor recurrence, pointing out the need for new biomarkers allowing for better tumor phenotyping and monitoring during treatment.. · The use of radiomics-based approaches allows for the identification of imaging biomarkers in NSCLC patients for tumor phenotyping.. · A multi-omics approach integrating not only structural and functional imaging biomarkers but also clinical data sources, such as liquid biopsy results, could further enhance the prediction and assessment of therapy response.. CITATION FORMAT · Kroschke J, von Stackelberg O, Heußel CP et al. Imaging Biomarkers in Thoracic Oncology: Current Advances in the Use of Radiomics in Lung Cancer Patients and its Potential Use for Therapy Response Prediction and Monitoring. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1729-1516.
Collapse
Affiliation(s)
- Jonas Kroschke
- Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Center for Lung Research, Giessen, Germany.,Department for Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Germany
| | - Oyunbileg von Stackelberg
- Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Center for Lung Research, Giessen, Germany.,Department for Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Germany
| | - Claus Peter Heußel
- Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Center for Lung Research, Giessen, Germany.,Department for Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Germany
| | - Mark Oliver Wielpütz
- Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Center for Lung Research, Giessen, Germany.,Department for Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Center for Lung Research, Giessen, Germany.,Department for Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Germany
| |
Collapse
|
11
|
Pasini L, Notarangelo M, Vagheggini A, Burgio MA, Crinò L, Chiadini E, Prochowski AI, Delmonte A, Ulivi P, D'Agostino VG. Unveiling mutational dynamics in non-small cell lung cancer patients by quantitative EGFR profiling in vesicular RNA. Mol Oncol 2021; 15:2423-2438. [PMID: 33942501 PMCID: PMC8410558 DOI: 10.1002/1878-0261.12976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
The mutational status of the epidermal growth factor receptor (EGFR) guides the stratification of non‐small cell lung cancer (NSCLC) patients for treatment with tyrosine kinase inhibitors (TKIs). A liquid biopsy test on cell‐free DNA is recommended as a clinical decision‐supporting tool, although it has limited sensitivity. Here, we comparatively investigated the extracellular vesicle (EV)‐RNA as an independent source for multidimensional and longitudinal EGFR profiling in a cohort of 27 NSCLC patients. We introduced and validated a new rapid, highly specific EV‐RNA test with wild‐type (WT) and mutant‐sensitive probes (E746‐A750del, L858R, and T790M). We included a cohort of 20 NSCLC patients with EGFR WT tumor tissues and systematically performed molecular EV‐RNA and circulating tumor DNA analyses with clinical data statistics and biophysical profiles of EVs. At the single‐patient level, we detected variegated tumor heterogeneity dynamics supported by combinations of driver EGFR mutations. EV‐RNA‐based mutation analysis showed an unprecedented sensitivity of over 90%. The resistance‐associated mutation T790M frequently pre‐existed at baseline with a gained EV‐transcript copy number at progression, while the general mutational burden was mostly decreasing during the intermediate follow‐up. The biophysical profile of EVs and the quantitative assessment of T790M revealed an association with tumor size determined by the sum of the longest diameters in target lesions. Vesicular RNA provides a validated tool suitable for use in clinical practice to investigate the dynamics of common driver EGFR mutations in NSCLC patients receiving TKIs.
Collapse
Affiliation(s)
- Luigi Pasini
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Notarangelo
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Italy
| | - Alessandro Vagheggini
- Unit of Biostatistics, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Marco Angelo Burgio
- Medical Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Lucio Crinò
- Medical Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elisa Chiadini
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Andrea Iamurri Prochowski
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Angelo Delmonte
- Medical Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Italy
| |
Collapse
|
12
|
Le P, Romano G, Nana-Sinkam P, Acunzo M. Non-Coding RNAs in Cancer Diagnosis and Therapy: Focus on Lung Cancer. Cancers (Basel) 2021; 13:cancers13061372. [PMID: 33803619 PMCID: PMC8003033 DOI: 10.3390/cancers13061372] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last several decades, clinical evaluation and treatment of lung cancers have largely improved with the classification of genetic drivers of the disease, such as EGFR, ALK, and ROS1. There are numerous regulatory factors that exert cellular control over key oncogenic pathways involved in lung cancers. In particular, non-coding RNAs (ncRNAs) have a diversity of regulatory roles in lung cancers such that they have been shown to be involved in inducing proliferation, suppressing apoptotic pathways, increasing metastatic potential of cancer cells, and acquiring drug resistance. The dysregulation of various ncRNAs in human cancers has prompted preclinical studies examining the therapeutic potential of restoring and/or inhibiting these ncRNAs. Furthermore, ncRNAs demonstrate tissue-specific expression in addition to high stability within biological fluids. This makes them excellent candidates as cancer biomarkers. This review aims to discuss the relevance of ncRNAs in cancer pathology, diagnosis, and therapy, with a focus on lung cancer.
Collapse
|
13
|
Zhu X, Li S, Xu B, Luo H. Cancer evolution: A means by which tumors evade treatment. Biomed Pharmacother 2020; 133:111016. [PMID: 33246226 DOI: 10.1016/j.biopha.2020.111016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Although various methods have been tried to study and treat cancer, the cancer remains a major challenge for human medicine today. One important reason for this is the presence of cancer evolution. Cancer evolution is a process in which tumor cells adapt to the external environment, which can suppress the human immune system's ability to recognize and attack tumors, and also reduce the reproducibility of cancer research. Among them, heterogeneity of the tumor provides intrinsic motivation for this process. Recently, with the development of related technologies such as liquid biopsy, more and more knowledge about cancer evolution has been gained and interest in this topic has also increased. Therefore, starting from the causes of tumorigenesis, this paper introduces several tumorigenesis processes and pathways, as well as treatment options for different targets.
Collapse
Affiliation(s)
- Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
| | - Shi Li
- Guangdong Key Laboratory of Urogenital Tumor Systems and Synthetic Biology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, China; Shenzhen Key Laboratory of Genitourinary Tumor, Translational Medicine Institute of Shenzhen, The Second People's Hospital of Shenzhen, Shenzhen, China; College of Bioengineering, Chongqing University, Chongqing, China
| | - Bairui Xu
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, China
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, China.
| |
Collapse
|
14
|
Yan M, Wang W. Development of a Radiomics Prediction Model for Histological Type Diagnosis in Solitary Pulmonary Nodules: The Combination of CT and FDG PET. Front Oncol 2020; 10:555514. [PMID: 33042839 PMCID: PMC7523028 DOI: 10.3389/fonc.2020.555514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To develop a diagnostic model for histological subtypes in lung cancer combined CT and FDG PET. METHODS Machine learning binary and four class classification of a cohort of 445 lung cancer patients who have CT and PET simultaneously. The outcomes to be predicted were primary, metastases (Mts), adenocarcinoma (Adc), and squamous cell carcinoma (Sqc). The classification method is a combination of machine learning and feature selection that is a Partition-Membership. The performance metrics include accuracy (Acc), precision (Pre), area under curve (AUC) and kappa statistics. RESULTS The combination of CT and PET radiomics (CPR) binary model showed more than 98% Acc and AUC on predicting Adc, Sqc, primary, and metastases, CPR four-class classification model showed 91% Acc and 0.89 Kappa. CONCLUSION The proposed CPR models can be used to obtain valid predictions of histological subtypes in lung cancer patients, assisting in diagnosis and shortening the time to diagnostic.
Collapse
Affiliation(s)
- Mengmeng Yan
- Urban Vocational College of Sichuan, Chengdu, China
- Sichuan Cancer Hospital & Institute, Chengdu, China
| | - Weidong Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| |
Collapse
|
15
|
Resolving Metabolic Heterogeneity in Experimental Models of the Tumor Microenvironment from a Stable Isotope Resolved Metabolomics Perspective. Metabolites 2020; 10:metabo10060249. [PMID: 32549391 PMCID: PMC7345423 DOI: 10.3390/metabo10060249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) comprises complex interactions of multiple cell types that determines cell behavior and metabolism such as nutrient competition and immune suppression. We discuss the various types of heterogeneity that exist in solid tumors, and the complications this invokes for studies of TME. As human subjects and in vivo model systems are complex and difficult to manipulate, simpler 3D model systems that are compatible with flexible experimental control are necessary for studying metabolic regulation in TME. Stable Isotope Resolved Metabolomics (SIRM) is a valuable tool for tracing metabolic networks in complex systems, but at present does not directly address heterogeneous metabolism at the individual cell level. We compare the advantages and disadvantages of different model systems for SIRM experiments, with a focus on lung cancer cells, their interactions with macrophages and T cells, and their response to modulators in the immune microenvironment. We describe the experimental set up, illustrate results from 3D cultures and co-cultures of lung cancer cells with human macrophages, and outline strategies to address the heterogeneous TME.
Collapse
|
16
|
Yan M, Wang W. A Non-invasive Method to Diagnose Lung Adenocarcinoma. Front Oncol 2020; 10:602. [PMID: 32411600 PMCID: PMC7200977 DOI: 10.3389/fonc.2020.00602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: To find out the CT radiomics features of differentiating lung adenocarcinoma from another lung cancer histological type. Methods: This was a historical cohort study, three independent lung cancer cohorts included. One cohort was used to evaluate the stability of radiomics features, one cohort was used to feature selection, and the last was used to construct and evaluate classification models. The research is divided into four steps: region of interest segmentation, feature extraction, feature selection, and model building and validation. The feature selection methods included the intraclass correlation coefficient, ReliefF coefficient, and Partition-Membership filter. The performance metrics of the classification model included accuracy (Acc), precision (Pre), area under curve (AUC), and kappa statistics. Results: The 10 features (First order shape features: Sphericity and Compacity, Gray-Level Run Length Matrix: Short-Run Emphasis, Low Gray-level Run Emphasis, and High Gray-level Run Emphasis, Gray Level Co-occurrence Matrix: Homogeneity, Energy, Contrast, Correlation, and Dissimilarity) showed the most stable and classification capability. The 6 classifiers, Logistic regression classifier (LR), Sequence Minimum Optimization algorithm, Random Forest, KStar, Naive Bayes and Random Committee, have great performance both on the train and the test sets, and especially LR has the best performance on the test set (Acc = 98.72, Pre = 0.988, AUC = 1, and kappa = 0.974). Conclusion: Lung adenocarcinoma can be identified based on CT radiomics features. We can diagnose lung adenocarcinoma with CT non-invasively.
Collapse
Affiliation(s)
- Mengmeng Yan
- Urban Vocational College of Sichuan, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weidong Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
17
|
Editorial: Individualizing treatment of nonsmall cell lung cancer. Curr Opin Oncol 2019; 32:35-36. [PMID: 31652144 DOI: 10.1097/cco.0000000000000597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|