1
|
Ruse G, Jîjie AR, Moacă EA, Pătrașcu D, Ardelean F, Jojic AA, Ardelean S, Tchiakpe-Antal DS. Coffea arabica: An Emerging Active Ingredient in Dermato-Cosmetic Applications. Pharmaceuticals (Basel) 2025; 18:171. [PMID: 40005985 PMCID: PMC11858793 DOI: 10.3390/ph18020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Coffea arabica, commonly known as Arabica coffee, has garnered attention in recent years for its potential applications in dermato-cosmetic formulations. This review aims to critically evaluate the emerging role of Coffea arabica as an active ingredient in skin care products, focusing on its bioactive compounds derived from both the leaves and beans, mechanisms of action, and efficacy in dermatological applications. A comparative analysis between the bioactive profiles of the leaves and beans is also presented to elucidate their respective contributions to dermato-cosmetic efficacy. Results: This review synthesizes findings from various studies that highlight the presence of key bioactive compounds in Coffea arabica, including caffeine, chlorogenic acids, and flavonoids. Notably, the leaves exhibit a higher concentration of certain phenolic compounds compared to the beans, suggesting unique properties that may enhance skin health. These compounds have demonstrated significant anticellulite, anti-inflammatory, antioxidant, photoprotective, anti-aging, antibacterial, and moisturizing properties. Discussion: This article delves into the biochemical pathways through which bioactive compounds derived from both the leaves and beans of Coffea arabica exert their beneficial effects on skin and hair health. Furthermore, this review highlights the growing trend of incorporating natural ingredients in cosmetic formulations and the consumer demand for products with scientifically substantiated benefits. Conclusions: The findings of this review underscore the potential of Coffea arabica as a valuable active ingredient in dermato-cosmetic applications. Its multifaceted bioactivity suggests that it can contribute significantly to skin health and cosmetic efficacy. Future research should focus on clinical trials to further validate these benefits and explore optimal formulation strategies for enhanced delivery and stability in cosmetic products.
Collapse
Affiliation(s)
- Grațiana Ruse
- Discipline of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (G.R.); (F.A.); (A.-A.J.); (D.-S.T.-A.)
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (D.P.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (D.P.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Dalia Pătrașcu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (D.P.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Florina Ardelean
- Discipline of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (G.R.); (F.A.); (A.-A.J.); (D.-S.T.-A.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Alina-Arabela Jojic
- Discipline of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (G.R.); (F.A.); (A.-A.J.); (D.-S.T.-A.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Simona Ardelean
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, Revolutiei Bvd 94, 310130 Arad, Romania
| | - Diana-Simona Tchiakpe-Antal
- Discipline of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (G.R.); (F.A.); (A.-A.J.); (D.-S.T.-A.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| |
Collapse
|
2
|
Lashway SG, Worthen ADM, Abuasbeh JN, Harris RB, Farland LV, O'Rourke MK, Dennis LK. A meta-analysis of sunburn and basal cell carcinoma risk. Cancer Epidemiol 2023; 85:102379. [PMID: 37201363 DOI: 10.1016/j.canep.2023.102379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
Basal cell carcinoma (BCC) is the most common cancer in the United States. Sunburn is a modifiable risk factor for BCC. The objective of this project was to synthesize research on BCC and sunburn to quantify the impact and severity of sunburn at different life stages on BCC risk in the general population. A systematic literature search of four electronic databases was conducted and data were extracted by two independent reviewers using standardized forms. Data from 38 studies were pooled using both dichotomous and dose-response meta-analytic methods. BCC risk increased with ever experiencing a sunburn in childhood (OR=1.43, 95% CI: 1.19, 1.72) and with ever experiencing a sunburn in life (OR= 1.40, 95% CI: 1.02, 1.45). Every five sunburns experienced per decade in childhood increased BCC risk by 1.86 (95% CI: 1.73, 2.00) times. Every five sunburns experienced per decade in adulthood increased BCC risk by 2.12 (95% CI: 1.75, 2.57) times and every five sunburns per decade of life increased BCC risk by 1.91 (95% CI: 1.42, 2.58) times. The data on sunburn exposure and BCC show that an increase in number of sunburns at any age increased the risk of BCC. This may inform future prevention efforts.
Collapse
Affiliation(s)
- Stephanie G Lashway
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., Tucson, AZ 85724, USA.
| | - Aimee D M Worthen
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., Tucson, AZ 85724, USA
| | - Jumanah N Abuasbeh
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., Tucson, AZ 85724, USA
| | - Robin B Harris
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., Tucson, AZ 85724, USA
| | - Leslie V Farland
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., Tucson, AZ 85724, USA
| | - Mary Kay O'Rourke
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., Tucson, AZ 85724, USA
| | - Leslie K Dennis
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., Tucson, AZ 85724, USA
| |
Collapse
|
3
|
Molnar R, Szabo L, Tomesz A, Deutsch A, Darago R, Raposa BL, Ghodratollah N, Varjas T, Nemeth B, Orsos Z, Pozsgai E, Szentpeteri JL, Budan F, Kiss I. The Chemopreventive Effects of Polyphenols and Coffee, Based upon a DMBA Mouse Model with microRNA and mTOR Gene Expression Biomarkers. Cells 2022; 11:cells11081300. [PMID: 35455979 PMCID: PMC9029301 DOI: 10.3390/cells11081300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/11/2022] Open
Abstract
Polyphenols are capable of decreasing cancer risk. We examined the chemopreventive effects of a green tea (Camellia sinensis) extract, polyphenol extract (a mixture of blackberry (Rubus fruticosus), blackcurrants (Ribes nigrum), and added resveratrol phytoalexin), Chinese bayberry (Myrica rubra) extract, and a coffee (Coffea arabica) extract on 7,12-dimethylbenz[a]anthracene (DMBA) carcinogen-increased miR-134, miR-132, miR-124-1, miR-9-3, and mTOR gene expressions in the liver, spleen, and kidneys of CBA/Ca mice. The elevation was quenched significantly in the organs, except for miR-132 in the liver of the Chinese bayberry extract-consuming group, and miR-132 in the kidneys of the polyphenol-fed group. In the coffee extract-consuming group, only miR-9-3 and mTOR decreased significantly in the liver; also, miR-134 decreased significantly in the spleen, and, additionally, miR-124-1 decreased significantly in the kidney. Our results are supported by literature data, particularly the DMBA generated ROS-induced inflammatory and proliferative signal transducers, such as TNF, IL1, IL6, and NF-κB; as well as oncogenes, namely RAS and MYC. The examined chemopreventive agents, besides the obvious antioxidant and anti-inflammatory effects, mainly blocked the mentioned DMBA-activated factors and the mitogen-activated protein kinase (MAPK) as well, and, at the same time, induced PTEN as well as SIRT tumor suppressor genes.
Collapse
Affiliation(s)
- Richard Molnar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Laszlo Szabo
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Andras Tomesz
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Arpad Deutsch
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Richard Darago
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Bence L. Raposa
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Nowrasteh Ghodratollah
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Balazs Nemeth
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Zsuzsanna Orsos
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Eva Pozsgai
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Jozsef L. Szentpeteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Ferenc Budan
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Istvan Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| |
Collapse
|
4
|
Hezaveh E, Jafari S, Jalilpiran Y, Zargarzadeh N, Mahdavi R, Gargari BP. Dietary components and the risk of non-melanoma skin cancer: A systematic review of epidemiological studies. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34933633 DOI: 10.1080/10408398.2021.2016600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer among white-skinned people. The main environmental risk factor for all types of skin cancer is ultraviolet (UV) exposure to the sun. However, significant modifiable risk factors, such as diet, have been studied about NMSC risk. Several original studies have been conducted on the link between various dietary components and the risk of NMSC in the past decade, but have not been systematically reviewed. This review focuses on the potential impact of dietary components in the prevention of NMSC and evaluates the findings of epidemiologic evidence for dietary factors. We conducted a systematic search of three databases, including Scopus, ISI Web of Science, and PubMed, to identify relevant epidemiological studies published between 2000 and July 6, 2021. Finally, forty-three articles were included. Because of the inherent limitations of epidemiological studies, no definitive conclusions can be drawn; however, the links between folate, citrus, caffeine, and alcohol with BCC are notable; thus, high dietary folate intake, as well as citrus and alcohol consumption, are associated with an increased risk of basal cell carcinoma (BCC), whereas caffeine is associated with a lower risk. More research is required to reach a definitive conclusion.
Collapse
Affiliation(s)
- Erfan Hezaveh
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Jafari
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yahya Jalilpiran
- Department of Clinical Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikan Zargarzadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mahdavi
- Nutrition Research Center, Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahram Pourghassem Gargari
- Nutrition Research Center, Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Sawada Y, Nakamura M. Daily Lifestyle and Cutaneous Malignancies. Int J Mol Sci 2021; 22:5227. [PMID: 34069297 PMCID: PMC8156459 DOI: 10.3390/ijms22105227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Daily lifestyle is a fundamental part of human life and its influence accumulates daily in the human body. We observe that a good daily lifestyle has a beneficial impact on our health; however, the actual effects of individual daily lifestyle factors on human skin diseases, especially skin cancers, have not been summarized. In this review, we focused on the influence of daily lifestyle on the development of skin cancer and described the detailed molecular mechanisms of the development or regulation of cutaneous malignancies. Several daily lifestyle factors, such as circadian rhythm disruption, smoking, alcohol, fatty acids, dietary fiber, obesity, and ultraviolet light, are known to be associated with the risk of cutaneous malignancies, malignant melanoma, squamous cell carcinoma, basal cell carcinoma, and Merkel cell carcinoma. Although the influence of some daily lifestyles on the risk of skin cancers is controversial, this review provides us a better understanding of the relationship between daily lifestyle factors and skin cancers.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan;
| | | |
Collapse
|
6
|
Filippini T, Malavolti M, Borrelli F, Izzo AA, Fairweather-Tait SJ, Horneber M, Vinceti M. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst Rev 2020; 3:CD005004. [PMID: 32118296 PMCID: PMC7059963 DOI: 10.1002/14651858.cd005004.pub3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND This review is an update of a previously published review in the Cochrane Database of Systematic Reviews (2009, Issue 3).Tea is one of the most commonly consumed beverages worldwide. Teas from the plant Camellia sinensis can be grouped into green, black and oolong tea, and drinking habits vary cross-culturally. C sinensis contains polyphenols, one subgroup being catechins. Catechins are powerful antioxidants, and laboratory studies have suggested that these compounds may inhibit cancer cell proliferation. Some experimental and nonexperimental epidemiological studies have suggested that green tea may have cancer-preventative effects. OBJECTIVES To assess possible associations between green tea consumption and the risk of cancer incidence and mortality as primary outcomes, and safety data and quality of life as secondary outcomes. SEARCH METHODS We searched eligible studies up to January 2019 in CENTRAL, MEDLINE, Embase, ClinicalTrials.gov, and reference lists of previous reviews and included studies. SELECTION CRITERIA We included all epidemiological studies, experimental (i.e. randomised controlled trials (RCTs)) and nonexperimental (non-randomised studies, i.e. observational studies with both cohort and case-control design) that investigated the association of green tea consumption with cancer risk or quality of life, or both. DATA COLLECTION AND ANALYSIS Two or more review authors independently applied the study criteria, extracted data and assessed methodological quality of studies. We summarised the results according to diagnosis of cancer type. MAIN RESULTS In this review update, we included in total 142 completed studies (11 experimental and 131 nonexperimental) and two ongoing studies. This is an additional 10 experimental and 85 nonexperimental studies from those included in the previous version of the review. Eleven experimental studies allocated a total of 1795 participants to either green tea extract or placebo, all demonstrating an overall high methodological quality based on 'Risk of bias' assessment. For incident prostate cancer, the summary risk ratio (RR) in the green tea-supplemented participants was 0.50 (95% confidence interval (CI) 0.18 to 1.36), based on three studies and involving 201 participants (low-certainty evidence). The summary RR for gynaecological cancer was 1.50 (95% CI 0.41 to 5.48; 2 studies, 1157 participants; low-certainty evidence). No evidence of effect of non-melanoma skin cancer emerged (summary RR 1.00, 95% CI 0.06 to 15.92; 1 study, 1075 participants; low-certainty evidence). In addition, adverse effects of green tea extract intake were reported, including gastrointestinal disorders, elevation of liver enzymes, and, more rarely, insomnia, raised blood pressure and skin/subcutaneous reactions. Consumption of green tea extracts induced a slight improvement in quality of life, compared with placebo, based on three experimental studies. In nonexperimental studies, we included over 1,100,000 participants from 46 cohort studies and 85 case-control studies, which were on average of intermediate to high methodological quality based on Newcastle-Ottawa Scale 'Risk of bias' assessment. When comparing the highest intake of green tea with the lowest, we found a lower overall cancer incidence (summary RR 0.83, 95% CI 0.65 to 1.07), based on three studies, involving 52,479 participants (low-certainty evidence). Conversely, we found no association between green tea consumption and cancer-related mortality (summary RR 0.99, 95% CI 0.91 to 1.07), based on eight studies and 504,366 participants (low-certainty evidence). For most of the site-specific cancers we observed a decreased RR in the highest category of green tea consumption compared with the lowest one. After stratifying the analysis according to study design, we found strongly conflicting results for some cancer sites: oesophageal, prostate and urinary tract cancer, and leukaemia showed an increased RR in cohort studies and a decreased RR or no difference in case-control studies. AUTHORS' CONCLUSIONS Overall, findings from experimental and nonexperimental epidemiological studies yielded inconsistent results, thus providing limited evidence for the beneficial effect of green tea consumption on the overall risk of cancer or on specific cancer sites. Some evidence of a beneficial effect of green tea at some cancer sites emerged from the RCTs and from case-control studies, but their methodological limitations, such as the low number and size of the studies, and the inconsistencies with the results of cohort studies, limit the interpretability of the RR estimates. The studies also indicated the occurrence of several side effects associated with high intakes of green tea. In addition, the majority of included studies were carried out in Asian populations characterised by a high intake of green tea, thus limiting the generalisability of the findings to other populations. Well conducted and adequately powered RCTs would be needed to draw conclusions on the possible beneficial effects of green tea consumption on cancer risk.
Collapse
Affiliation(s)
- Tommaso Filippini
- University of Modena and Reggio Emilia, Research Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, Modena, Italy, 41125
| | - Marcella Malavolti
- University of Modena and Reggio Emilia, Research Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, Modena, Italy, 41125
| | - Francesca Borrelli
- University of Naples 'Federico II', Department of Pharmacy, School of Medicine and Surgery, Via D Montesano 49, Naples, Italy, 80131
| | - Angelo A Izzo
- University of Naples 'Federico II', Department of Pharmacy, School of Medicine and Surgery, Via D Montesano 49, Naples, Italy, 80131
| | | | - Markus Horneber
- Paracelsus Medical University, Klinikum Nuremberg, Department of Internal Medicine, Division of Oncology and Hematology, Prof.-Ernst-Nathan-Str. 1, Nuremberg, Germany, D-90419
| | - Marco Vinceti
- University of Modena and Reggio Emilia, Research Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, Modena, Italy, 41125
- Boston University School of Public Health, Department of Epidemiology, 715 Albany Street, Boston, USA, MA 02118
| |
Collapse
|
7
|
Visser E, Geleijnse JM, de Roos B. Inter-Individual Variation in Cancer and Cardiometabolic Health Outcomes in Response to Coffee Consumption: A Critical Review. Mol Nutr Food Res 2020; 64:e1900479. [PMID: 32045503 DOI: 10.1002/mnfr.201900479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/29/2019] [Indexed: 12/11/2022]
Abstract
SCOPE Coffee is associated with a lower risk of cancer, cardiovascular disease, and type 2 diabetes at the population level. However, individual susceptibility to the effects of coffee consumption will cause heterogeneity in health responses between individuals. In this critical review determinants of inter-individual variability in cancer and cardiometabolic health outcomes in response to coffee and caffeine consumption are systematically evaluated. METHODS AND RESULTS Embase and MEDLINE are searched for observational studies and clinical trials that examined variation in the response to coffee consumption. A total of 74 studies meet the inclusion criteria, which report variation in cancer (n = 24) and cardiometabolic health (n = 50) outcomes. The qualitative analysis shows that sex, BMI, smoking, alcohol intake, menopausal status, and genetic polymorphisms are probable or possible determinants of inter-individual variability in cancer and cardiometabolic health outcomes in response to coffee and caffeine consumption, albeit the majority of studies have insufficient statistical power to detect significant interaction between these factors and coffee consumption. CONCLUSION Several genetic and non-genetic determinants of inter-individual variability in the responses to coffee and caffeine consumption are identified, indicating that some of the health benefits of coffee may only occur in a subgroup of subjects.
Collapse
Affiliation(s)
- Edith Visser
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Johanna M Geleijnse
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Baukje de Roos
- Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
| |
Collapse
|
8
|
Basen-Engquist K, Brown P, Coletta AM, Savage M, Maresso KC, Hawk E. Lifestyle and Cancer Prevention. ABELOFF'S CLINICAL ONCOLOGY 2020:337-374.e12. [DOI: 10.1016/b978-0-323-47674-4.00022-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Visconti M, Haidari W, Feldman S. Therapeutic use of caffeine in dermatology: A literature review. JOURNAL OF DERMATOLOGY & DERMATOLOGIC SURGERY 2020. [DOI: 10.4103/jdds.jdds_52_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Coffee consumption and risk of nonmelanoma skin cancer: a dose-response meta-analysis. Eur J Cancer Prev 2019; 27:164-170. [PMID: 27902644 DOI: 10.1097/cej.0000000000000322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several epidemiological studies have evaluated the associations between coffee consumption and the risk of skin cancer; however, the results were not conclusive. This systematic review and meta-analysis of the cohort and case-control studies was carried out to determine the association between coffee intake and the risk of nonmelanoma skin cancer. Studies were identified by searching the PubMed and MEDLINE databases (to November 2015). Study-specific risk estimates were pooled under the random-effects model. We separately estimated the relative risk of the three conditions, for exposure to different doses of coffee consumption, kind of study design, and analysis restricted to the basal cell carcinoma type. The summary relative risks for nonmelanoma skin cancer were 0.96 [95% confidence interval (CI): 0.92-0.99] for one cup of coffee, 0.92 (95% CI: 0.88-0.97) for one to two cups of coffee, 0.89 (95% CI: 0.86-0.93) for two to three cups of coffee, and 0.81 (95% CI: 0.77-0.85) for more than three cups of coffee per day, respectively. This meta-analysis suggested that caffeinated coffee might have chemopreventive effects against basal cell carcinoma dose dependently. However, other prospective studies are warranted to confirm these effects.
Collapse
|
11
|
Abstract
Tea is the most widely used beverage worldwide. Japanese and Chinese people have been drinking tea for centuries and in Asia, it is the most consumed beverage besides water. It is a rich source of pharmacologically active molecules which have been implicated to provide diverse health benefits. The three major forms of tea are green, black and oolong tea based on the degree of fermentation. The composition of tea differs with the species, season, leaves, climate, and horticultural practices. Polyphenols are the major active compounds present in teas. The catechins are the major polyphenolic compounds in green tea, which include epigallocatechin-3-gallate (EGCG), epigallocatechin, epicatechin-3-gallate and epicatechin, gallocatechins and gallocatechin gallate. EGCG is the predominant and most studied catechin in green tea. There are numerous evidences from cell culture and animal studies that tea polyphenols have beneficial effects against several pathological diseases including cancer, diabetes and cardiovascular diseases. The polyphenolic compounds present in black tea include theaflavins and thearubigins. In this review article, we will summarize recent studies documenting the role of tea polyphenols in the prevention of cancer, diabetes, cardiovascular and neurological diseases.
Collapse
Affiliation(s)
- Naghma Khan
- 4385 Medical Sciences Center, 1300 University Ave, Dept. of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hasan Mukhtar
- 4385 Medical Sciences Center, 1300 University Ave, Dept. of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
12
|
Khan N, Mukhtar H. Tea Polyphenols in Promotion of Human Health. Nutrients 2018; 11:nu11010039. [PMID: 30585192 PMCID: PMC6356332 DOI: 10.3390/nu11010039] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Tea is the most widely used beverage worldwide. Japanese and Chinese people have been drinking tea for centuries and in Asia, it is the most consumed beverage besides water. It is a rich source of pharmacologically active molecules which have been implicated to provide diverse health benefits. The three major forms of tea are green, black and oolong tea based on the degree of fermentation. The composition of tea differs with the species, season, leaves, climate, and horticultural practices. Polyphenols are the major active compounds present in teas. The catechins are the major polyphenolic compounds in green tea, which include epigallocatechin-3-gallate (EGCG), epigallocatechin, epicatechin-3-gallate and epicatechin, gallocatechins and gallocatechin gallate. EGCG is the predominant and most studied catechin in green tea. There are numerous evidences from cell culture and animal studies that tea polyphenols have beneficial effects against several pathological diseases including cancer, diabetes and cardiovascular diseases. The polyphenolic compounds present in black tea include theaflavins and thearubigins. In this review article, we will summarize recent studies documenting the role of tea polyphenols in the prevention of cancer, diabetes, cardiovascular and neurological diseases.
Collapse
Affiliation(s)
- Naghma Khan
- 4385 Medical Sciences Center, 1300 University Ave, Dept. of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hasan Mukhtar
- 4385 Medical Sciences Center, 1300 University Ave, Dept. of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
13
|
Loftfield E, Freedman ND, Dodd KW, Vogtmann E, Xiao Q, Sinha R, Graubard BI. Coffee Drinking Is Widespread in the United States, but Usual Intake Varies by Key Demographic and Lifestyle Factors. J Nutr 2016; 146:1762-8. [PMID: 27489008 PMCID: PMC4997286 DOI: 10.3945/jn.116.233940] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/06/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Despite widespread popularity and possible health effects, the prevalence and distribution of coffee consumption in US adults are poorly characterized. OBJECTIVE We sought to estimate usual daily coffee intakes from all coffee-containing beverages, including decaffeinated and regular coffee, among US adults according to demographic, socioeconomic, and health-related factors. METHODS Dietary intake data from ≤2 nonconsecutive 24-h dietary recalls and a food-frequency questionnaire administered during the NHANES 2003-2006 were used to estimate the person-specific probability of consuming coffee on a particular day and the usual amount consumed on consumption days. Trends in population mean coffee consumption over time were evaluated by using multiple linear regression and 1-d 24-h recall data from NHANES 2003-2012. Analyses were weighted to be representative of the US adult population aged ≥20 y. RESULTS An estimated 154 million adults, or 75% of the US population, aged ≥20 y reported drinking coffee; 49% reported drinking coffee daily. Prevalence did not vary by sex, education, income, or self-reported general health (all P ≥ 0.05) but did vary by age, race/ethnicity, smoking status, and alcohol drinking (all P < 0.05). Among coffee drinkers, the mean ± SE usual intake was 14.1 ± 0.5 fluid ounces/d (417 ± 15 mL/d). Mean usual intakes were higher in men than women, in older age groups than in those aged 20 to <30 y, in non-Hispanic whites than in non-Hispanic blacks or Hispanic/other races, in smokers than in never smokers, and in daily alcohol consumers than in nonconsumers (all P < 0.05). Population mean coffee consumption was stable from 2003 to 2012 (P-trend = 0.09). CONCLUSIONS Coffee is widely consumed in the United States, with usual intakes varying by lifestyle and demographic factors, most notably by age. Longitudinal studies are needed to determine whether observed differences by age reflect birth cohort effects or changes in drinking patterns over the lifetime.
Collapse
Affiliation(s)
| | | | - Kevin W Dodd
- Cancer Prevention, National Cancer Institute, Rockville, MD
| | | | - Qian Xiao
- Divisions of Cancer Epidemiology and Genetics and
| | - Rashmi Sinha
- Divisions of Cancer Epidemiology and Genetics and
| | | |
Collapse
|
14
|
Caini S, Cattaruzza MS, Bendinelli B, Tosti G, Masala G, Gnagnarella P, Assedi M, Stanganelli I, Palli D, Gandini S. Coffee, tea and caffeine intake and the risk of non-melanoma skin cancer: a review of the literature and meta-analysis. Eur J Nutr 2016; 56:1-12. [PMID: 27388462 DOI: 10.1007/s00394-016-1253-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Laboratory studies suggested that caffeine and other nutrients contained in coffee and tea may protect against non-melanoma skin cancer (NMSC). However, epidemiological studies conducted so far have produced conflicting results. METHODS We performed a literature review and meta-analysis of observational studies published until February 2016 that investigated the association between coffee and tea intake and NMSC risk. We calculated summary relative risk (SRR) and corresponding 95 % confidence intervals (95 % CI) by using random effects with maximum likelihood estimation. RESULTS Overall, 37,627 NMSC cases from 13 papers were available for analysis. Intake of caffeinated coffee was inversely associated with NMSC risk (SRR for those in the highest vs. lowest category of intake: 0.82, 95 % CI 0.75-0.89, I 2 = 48 %), as well as intake of caffeine (SRR 0.86, 95 % CI 0.80-0.91, I 2 = 48 %). In subgroup analysis, these associations were limited to the basal cell cancer (BCC) histotype. There was no association between intake of decaffeinated coffee (SRR 1.01, 95 % CI 0.85-1.21, I 2 = 0) and tea (0.88, 95 % CI 0.72-1.07, I 2 = 0 %) and NMSC risk. There was no evidence of publication bias affecting the results. The available evidence was not sufficient to draw conclusions on the association between green tea intake and NMSC risk. CONCLUSIONS Coffee intake appears to exert a moderate protective effect against BCC development, probably through the biological effect of caffeine. However, the observational nature of studies included, subject to bias and confounding, suggests taking with caution these results that should be verified in randomized clinical trials.
Collapse
Affiliation(s)
- Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Via delle Oblate 2, 50139, Florence, Italy.
| | - Maria Sofia Cattaruzza
- Department of Public Health and Infectious Diseases, Faculty of Medicine, Policlinico Umberto I, "Sapienza" University, Rome, Italy
| | - Benedetta Bendinelli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Via delle Oblate 2, 50139, Florence, Italy
| | - Giulio Tosti
- Division of Dermatoncological Surgery, European Institute of Oncology, Milan, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Via delle Oblate 2, 50139, Florence, Italy
| | - Patrizia Gnagnarella
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Melania Assedi
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Via delle Oblate 2, 50139, Florence, Italy
| | - Ignazio Stanganelli
- Skin Cancer Unit, Scientific Institute of Romagna for the Study and Treatment of Cancer, IRCSS, IRST, Meldola, Italy
| | - Domenico Palli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Via delle Oblate 2, 50139, Florence, Italy
| | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| |
Collapse
|
15
|
Coffee Consumption and Melanoma: A Systematic Review and Meta-Analysis of Observational Studies. Am J Clin Dermatol 2016; 17:113-23. [PMID: 26547919 DOI: 10.1007/s40257-015-0165-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Laboratory and animals studies have suggested a possible protective effect of coffee consumption on the development of melanoma. However, the results of epidemiological studies investigating this association have been inconclusive. OBJECTIVE A systematic review and meta-analysis of published studies was conducted to evaluate any association between coffee consumption and melanoma. METHODS Observational studies were searched for in MEDLINE, EMBASE, and the Cochrane Central Register from inception to September 1, 2015. The Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines were followed in conducting this study. RESULTS We identified nine observational studies with a total of 927,173 study participants, of which 3787 had melanoma. With random-effects modeling, the pooled relative risks (RR) for melanoma among regular coffee drinkers was 0.75 (95 % confidence interval [CI] 0.63-0.89, p = 0.001) compared with controls. Visual inspection of a funnel plot suggested publication bias, although Egger's test (p = 0.981) delineated no small-study effects. The pooled relative risks for melanoma among decaffeinated coffee drinkers was, however, not statistically significant at 0.92 (95 % CI 0.82-1.05, p = 0.215). CONCLUSION There is some evidence for the beneficial effects of regular coffee consumption on melanoma. More prospective cohort studies with systematic quantification of coffee consumption would be necessary to further elucidate this association.
Collapse
|
16
|
Liu J, Shen B, Shi M, Cai J. Higher Caffeinated Coffee Intake Is Associated with Reduced Malignant Melanoma Risk: A Meta-Analysis Study. PLoS One 2016; 11:e0147056. [PMID: 26816289 PMCID: PMC4729676 DOI: 10.1371/journal.pone.0147056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/28/2015] [Indexed: 12/30/2022] Open
Abstract
Background Several epidemiological studies have determined the associations between coffee intake level and skin cancer risk; however, the results were not yet conclusive. Herein, we conducted a systematic review and meta-analysis of the cohort and case-control studies for the association between coffee intake level and malignant melanoma (MM) risk. Methods Studies were identified through searching the PubMed and MEDLINE databases (to November, 2015). Study-specific risk estimates were pooled under the random-effects model. Results Two case-control studies (846 MM patients and 843 controls) and five cohort studies (including 844,246 participants and 5,737 MM cases) were identified. For caffeinated coffee, the pooled relative risk (RR) of MM was 0.81 [95% confidential interval (95% CI) = 0.68–0.97; P-value for Q-test = 0.003; I2 = 63.5%] for those with highest versus lowest quantity of intake. In the dose-response analysis, the RR of MM was 0.955 (95% CI = 0.912–0.999) for per 1 cup/day increment of caffeinated coffee consumption and linearity dose-response association was found (P-value for nonlinearity = 0.326). Strikingly, no significant association was found between the decaffeinated coffee intake level and MM risk (pooled RR = 0.92, 95% CI = 0.81–1.05; P-value for Q-test = 0.967; I2 = 0%; highest versus lowest quantity of intake). Conclusions This meta-analysis suggested that caffeinated coffee might have chemo-preventive effects against MM but not decaffeinated coffee. However, larger prospective studies and the intervention studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Jibin Liu
- Nantong Tumor Hospital, Nantong Pingchao town, Tong yang Rd. 30, 226361, Jiangsu province, China
| | - Biao Shen
- Nantong Tumor Hospital, Nantong Pingchao town, Tong yang Rd. 30, 226361, Jiangsu province, China
| | - Minxin Shi
- Nantong Tumor Hospital, Nantong Pingchao town, Tong yang Rd. 30, 226361, Jiangsu province, China
| | - Jing Cai
- Nantong Tumor Hospital, Nantong Pingchao town, Tong yang Rd. 30, 226361, Jiangsu province, China
- * E-mail:
| |
Collapse
|
17
|
Coffee provides a natural multitarget pharmacopeia against the hallmarks of cancer. GENES AND NUTRITION 2015; 10:51. [PMID: 26577824 DOI: 10.1007/s12263-015-0501-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
Abstract
Coffee is the second most popular beverage in the world after water with a consumption of approximately two billion cups per day. Due to its low cost and ease of preparation, it is consumed in almost all countries and by all social classes of the population through different modes of preparation. Despites its simple appearance, a cup of coffee is in fact a complex mixture that contains hundreds of molecules, the composition and concentration of which vary widely and depend on factors including the origin of the coffee tree or its metabolism. Although an excessive consumption of coffee can be harmful, many molecules that are present in this black decoction exert anticancer properties. This review aims to describe the different primary coffee-containing substances that exert chemopreventive and bioactive activities against the different hallmarks and enabling characteristics of cancer, thus explaining the anticancer health benefit of black coffee.
Collapse
|
18
|
Miura K, Hughes MCB, Arovah NI, van der Pols JC, Green AC. Black Tea Consumption and Risk of Skin Cancer: An 11-Year Prospective Study. Nutr Cancer 2015; 67:1049-55. [DOI: 10.1080/01635581.2015.1073759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kyoko Miura
- QIMR Berghofer Medical Research Institute, Cancer and Population Studies Group, Brisbane, Queensland, Australia
| | - Maria Celia B. Hughes
- QIMR Berghofer Medical Research Institute, Cancer and Population Studies Group, Brisbane, Queensland, Australia
| | - Novita Intan Arovah
- QIMR Berghofer Medical Research Institute, Cancer and Population Studies Group, Brisbane, Queensland, Australia
| | | | - Adèle C. Green
- QIMR Berghofer Medical Research Institute, Cancer and Population Studies Group, Brisbane, Queensland, Australia and Manchester Academic Health Sciences Centre, Cancer Research UK Manchester Institute and University, Manchester, UK
| |
Collapse
|
19
|
Guertin KA, Loftfield E, Boca SM, Sampson JN, Moore SC, Xiao Q, Huang WY, Xiong X, Freedman ND, Cross AJ, Sinha R. Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer. Am J Clin Nutr 2015; 101:1000-11. [PMID: 25762808 PMCID: PMC4409687 DOI: 10.3945/ajcn.114.096099] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/26/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Coffee intake may be inversely associated with colorectal cancer; however, previous studies have been inconsistent. Serum coffee metabolites are integrated exposure measures that may clarify associations with cancer and elucidate underlying mechanisms. OBJECTIVES Our aims were 2-fold as follows: 1) to identify serum metabolites associated with coffee intake and 2) to examine these metabolites in relation to colorectal cancer. DESIGN In a nested case-control study of 251 colorectal cancer cases and 247 matched control subjects from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, we conducted untargeted metabolomics analyses of baseline serum by using ultrahigh-performance liquid-phase chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Usual coffee intake was self-reported in a food-frequency questionnaire. We used partial Pearson correlations and linear regression to identify serum metabolites associated with coffee intake and conditional logistic regression to evaluate associations between coffee metabolites and colorectal cancer. RESULTS After Bonferroni correction for multiple comparisons (P = 0.05 ÷ 657 metabolites), 29 serum metabolites were positively correlated with coffee intake (partial correlation coefficients: 0.18-0.61; P < 7.61 × 10(-5)); serum metabolites most highly correlated with coffee intake (partial correlation coefficients >0.40) included trigonelline (N'-methylnicotinate), quinate, and 7 unknown metabolites. Of 29 serum metabolites, 8 metabolites were directly related to caffeine metabolism, and 3 of these metabolites, theophylline (OR for 90th compared with 10th percentiles: 0.44; 95% CI: 0.25, 0.79; P-linear trend = 0.006), caffeine (OR for 90th compared with 10th percentiles: 0.56; 95% CI: 0.35, 0.89; P-linear trend = 0.015), and paraxanthine (OR for 90th compared with 10th percentiles: 0.58; 95% CI: 0.36, 0.94; P-linear trend = 0.027), were inversely associated with colorectal cancer. CONCLUSIONS Serum metabolites can distinguish coffee drinkers from nondrinkers; some caffeine-related metabolites were inversely associated with colorectal cancer and should be studied further to clarify the role of coffee in the cause of colorectal cancer. The Prostate, Lung, Colorectal, and Ovarian trial was registered at clinicaltrials.gov as NCT00002540.
Collapse
Affiliation(s)
- Kristin A Guertin
- From the Nutritional Epidemiology Branch (KAG, EL, SCM, QX, NDF, and RS), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD; the Innovation Center for Biomedical Informatics and Department of Oncology, Georgetown University Medical Center, Washington, DC (SMB); Information Management Services Inc., Silver Spring, MD (XX); and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London, United Kingdom (AJC)
| | - Erikka Loftfield
- From the Nutritional Epidemiology Branch (KAG, EL, SCM, QX, NDF, and RS), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD; the Innovation Center for Biomedical Informatics and Department of Oncology, Georgetown University Medical Center, Washington, DC (SMB); Information Management Services Inc., Silver Spring, MD (XX); and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London, United Kingdom (AJC)
| | - Simina M Boca
- From the Nutritional Epidemiology Branch (KAG, EL, SCM, QX, NDF, and RS), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD; the Innovation Center for Biomedical Informatics and Department of Oncology, Georgetown University Medical Center, Washington, DC (SMB); Information Management Services Inc., Silver Spring, MD (XX); and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London, United Kingdom (AJC)
| | - Joshua N Sampson
- From the Nutritional Epidemiology Branch (KAG, EL, SCM, QX, NDF, and RS), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD; the Innovation Center for Biomedical Informatics and Department of Oncology, Georgetown University Medical Center, Washington, DC (SMB); Information Management Services Inc., Silver Spring, MD (XX); and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London, United Kingdom (AJC)
| | - Steven C Moore
- From the Nutritional Epidemiology Branch (KAG, EL, SCM, QX, NDF, and RS), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD; the Innovation Center for Biomedical Informatics and Department of Oncology, Georgetown University Medical Center, Washington, DC (SMB); Information Management Services Inc., Silver Spring, MD (XX); and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London, United Kingdom (AJC)
| | - Qian Xiao
- From the Nutritional Epidemiology Branch (KAG, EL, SCM, QX, NDF, and RS), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD; the Innovation Center for Biomedical Informatics and Department of Oncology, Georgetown University Medical Center, Washington, DC (SMB); Information Management Services Inc., Silver Spring, MD (XX); and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London, United Kingdom (AJC)
| | - Wen-Yi Huang
- From the Nutritional Epidemiology Branch (KAG, EL, SCM, QX, NDF, and RS), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD; the Innovation Center for Biomedical Informatics and Department of Oncology, Georgetown University Medical Center, Washington, DC (SMB); Information Management Services Inc., Silver Spring, MD (XX); and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London, United Kingdom (AJC)
| | - Xiaoqin Xiong
- From the Nutritional Epidemiology Branch (KAG, EL, SCM, QX, NDF, and RS), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD; the Innovation Center for Biomedical Informatics and Department of Oncology, Georgetown University Medical Center, Washington, DC (SMB); Information Management Services Inc., Silver Spring, MD (XX); and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London, United Kingdom (AJC)
| | - Neal D Freedman
- From the Nutritional Epidemiology Branch (KAG, EL, SCM, QX, NDF, and RS), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD; the Innovation Center for Biomedical Informatics and Department of Oncology, Georgetown University Medical Center, Washington, DC (SMB); Information Management Services Inc., Silver Spring, MD (XX); and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London, United Kingdom (AJC)
| | - Amanda J Cross
- From the Nutritional Epidemiology Branch (KAG, EL, SCM, QX, NDF, and RS), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD; the Innovation Center for Biomedical Informatics and Department of Oncology, Georgetown University Medical Center, Washington, DC (SMB); Information Management Services Inc., Silver Spring, MD (XX); and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London, United Kingdom (AJC)
| | - Rashmi Sinha
- From the Nutritional Epidemiology Branch (KAG, EL, SCM, QX, NDF, and RS), the Biostatistics Branch (JNS), and the Occupational and Environmental Epidemiology Branch (W-YH), Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD; the Innovation Center for Biomedical Informatics and Department of Oncology, Georgetown University Medical Center, Washington, DC (SMB); Information Management Services Inc., Silver Spring, MD (XX); and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London, United Kingdom (AJC)
| |
Collapse
|
20
|
Zeng YW, Du J, Pu XY, Yang JZ, Yang T, Yang SM, Yang XM. Coevolution between Human's Anticancer Activities and Functional Foods from Crop Origin Center in the World. Asian Pac J Cancer Prev 2015; 16:2119-28. [DOI: 10.7314/apjcp.2015.16.6.2119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Loftfield E, Freedman ND, Graubard BI, Hollenbeck AR, Shebl FM, Mayne ST, Sinha R. Coffee drinking and cutaneous melanoma risk in the NIH-AARP diet and health study. J Natl Cancer Inst 2015; 107:dju421. [PMID: 25604135 PMCID: PMC4311176 DOI: 10.1093/jnci/dju421] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/09/2014] [Accepted: 11/25/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cutaneous melanoma is the fifth most common cancer in the United States. Modifiable risk factors, with the exception of exposure to ultraviolet radiation (UVR), are poorly understood. Coffee contains numerous bioactive compounds and may be associated inversely with melanoma. However, previous epidemiological evidence is limited. METHODS Coffee intake was assessed at baseline with a food frequency questionnaire in the National Institutes of Health-AARP prospective cohort study. Among 447 357 non-Hispanic whites who were cancer-free at baseline, 2904 incident cases of malignant melanoma were identified during 4 329 044 person-years of follow-up, with a median of 10.5 years of follow-up. Multivariable-adjusted Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for coffee intake and subsequent melanoma risk with non-coffee drinkers as the reference group. Statistical tests were two-sided, and P values less than .05 were interpreted as statistically significant. RESULTS The highest category of coffee intake was inversely associated with malignant melanoma (≥4 cups/day: HR = 0.80, 95% CI = 0.68 to 0.93, P trend = .01). This association was statistically significant for caffeinated (≥4 cups/day: HR = 0.75, 95% CI = 0.64 to 0.89, P trend = .01) but not for decaffeinated coffee (P trend = .55). CONCLUSIONS Higher coffee intake was associated with a modest decrease in risk of melanoma in this large US cohort study. Additional investigations of coffee intake and its constituents, particularly caffeine, with melanoma are warranted.
Collapse
Affiliation(s)
- Erikka Loftfield
- Yale School of Public Health, New Haven, CT (EL, FMS, STM); Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD (EL, NDF, BIG, RS); AARP (retired), Washington, D.C. (ARH); Yale Cancer Center, New Haven, CT (FMS, STM).
| | - Neal D Freedman
- Yale School of Public Health, New Haven, CT (EL, FMS, STM); Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD (EL, NDF, BIG, RS); AARP (retired), Washington, D.C. (ARH); Yale Cancer Center, New Haven, CT (FMS, STM)
| | - Barry I Graubard
- Yale School of Public Health, New Haven, CT (EL, FMS, STM); Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD (EL, NDF, BIG, RS); AARP (retired), Washington, D.C. (ARH); Yale Cancer Center, New Haven, CT (FMS, STM)
| | - Albert R Hollenbeck
- Yale School of Public Health, New Haven, CT (EL, FMS, STM); Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD (EL, NDF, BIG, RS); AARP (retired), Washington, D.C. (ARH); Yale Cancer Center, New Haven, CT (FMS, STM)
| | - Fatma M Shebl
- Yale School of Public Health, New Haven, CT (EL, FMS, STM); Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD (EL, NDF, BIG, RS); AARP (retired), Washington, D.C. (ARH); Yale Cancer Center, New Haven, CT (FMS, STM)
| | - Susan T Mayne
- Yale School of Public Health, New Haven, CT (EL, FMS, STM); Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD (EL, NDF, BIG, RS); AARP (retired), Washington, D.C. (ARH); Yale Cancer Center, New Haven, CT (FMS, STM)
| | - Rashmi Sinha
- Yale School of Public Health, New Haven, CT (EL, FMS, STM); Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD (EL, NDF, BIG, RS); AARP (retired), Washington, D.C. (ARH); Yale Cancer Center, New Haven, CT (FMS, STM)
| |
Collapse
|
22
|
Hughes MCB, Olsen CM, Williams GM, Green AC. A prospective study of cigarette smoking and basal cell carcinoma. Arch Dermatol Res 2014; 306:851-6. [PMID: 25234270 DOI: 10.1007/s00403-014-1503-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/08/2014] [Accepted: 09/15/2014] [Indexed: 12/17/2022]
Abstract
To investigate the relationship between smoking and primary basal cell carcinoma (BCC), we analyzed data from a 16 year prospective study among randomly selected adults in Nambour, Queensland, Australia. Participants underwent a skin examination in 1992 and took part in an intervention study and follow-up. Information about complexion type and smoking habits including duration and number of cigarettes smoked per day and sun exposure behavior were collected at baseline in 1992, with updates to end of follow-up in 2007. Newly-diagnosed BCCs were ascertained from regional pathology laboratories. Relative risks (RR) of BCC among former and current smokers were estimated using generalized linear models specifying a Poisson distribution with robust error variance and (log) person-years at-risk as offset, adjusting for BCC risk factors. From 1992 to 2007, 281 BCCs were diagnosed in 1,277 participants with available smoking history and no past BCC. Relative to non-smokers, a non-significant inverse association between current smoking and BCC was seen (RR 0.69; 95 % CI 0.45-1.05) but not for former smokers (RR 1.05; 95 % CI 0.84-1.31). Amongst current smokers, inverse associations with BCC were found in those who smoked for up to 18 years (RR 0.44) but not more and those who smoked up to 15 cigarettes per day but not more. The associations with both current and former smoking varied by degree of sunburn propensity. The modest inverse association between current smoking and BCC is considered unlikely to be causal given lack of clear relation with duration or intensity of smoking.
Collapse
Affiliation(s)
- M C B Hughes
- Population Health Department, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane, QLD, 4006, Australia,
| | | | | | | |
Collapse
|
23
|
Selected Literature Watch. JOURNAL OF CAFFEINE RESEARCH 2014. [DOI: 10.1089/jcr.2014.1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Selected Literature Watch. JOURNAL OF CAFFEINE RESEARCH 2014. [DOI: 10.1089/jcr.2014.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|