1
|
Fernandes CL, Silva DJ, Mesquita A. Novel HER-2 Targeted Therapies in Breast Cancer. Cancers (Basel) 2023; 16:87. [PMID: 38201515 PMCID: PMC10778064 DOI: 10.3390/cancers16010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Human epidermal growth factor 2 (HER-2)-positive breast cancer represents 15-20% of all breast cancer subtypes and has an aggressive biological behavior with worse prognosis. The development of HER-2-targeted therapies has changed the disease's course, having a direct impact on survival rates and quality of life. Drug development of HER-2-targeting therapies is a prolific field, with numerous new therapeutic strategies showing survival benefits and gaining regulatory approval in recent years. Furthermore, the acknowledgement of the survival impact of HER-2-directed therapies on HER-2-low breast cancer has contributed even more to advances in the field. The present review aims to summarize the newly approved therapeutic strategies for HER-2-positive breast cancer and review the new and exploratory HER-2-targeted therapies currently under development.
Collapse
Affiliation(s)
- Catarina Lopes Fernandes
- Medical Oncology Department, Pedro Hispano Hospital, 4464-513 Matosinhos, Portugal; (D.J.S.); (A.M.)
| | - Diogo J. Silva
- Medical Oncology Department, Pedro Hispano Hospital, 4464-513 Matosinhos, Portugal; (D.J.S.); (A.M.)
| | - Alexandra Mesquita
- Medical Oncology Department, Pedro Hispano Hospital, 4464-513 Matosinhos, Portugal; (D.J.S.); (A.M.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
2
|
Mercogliano MF, Bruni S, Mauro FL, Schillaci R. Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15071987. [PMID: 37046648 PMCID: PMC10093019 DOI: 10.3390/cancers15071987] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and the leading cause of death. HER2 overexpression is found in approximately 20% of breast cancers and is associated with a poor prognosis and a shorter overall survival. Tratuzumab, a monoclonal antibody directed against the HER2 receptor, is the standard of care treatment. However, a third of the patients do not respond to therapy. Given the high rate of resistance, other HER2-targeted strategies have been developed, including monoclonal antibodies such as pertuzumab and margetuximab, trastuzumab-based antibody drug conjugates such as trastuzumab-emtansine (T-DM1) and trastuzumab-deruxtecan (T-DXd), and tyrosine kinase inhibitors like lapatinib and tucatinib, among others. Moreover, T-DXd has proven to be of use in the HER2-low subtype, which suggests that other HER2-targeted therapies could be successful in this recently defined new breast cancer subclassification. When patients progress to multiple strategies, there are several HER2-targeted therapies available; however, treatment options are limited, and the potential combination with other drugs, immune checkpoint inhibitors, CAR-T cells, CAR-NK, CAR-M, and vaccines is an interesting and appealing field that is still in development. In this review, we will discuss the highlights and pitfalls of the different HER2-targeted therapies and potential combinations to overcome metastatic disease and resistance to therapy.
Collapse
|
3
|
Li F, Liu S. Focusing on NK cells and ADCC: A promising immunotherapy approach in targeted therapy for HER2-positive breast cancer. Front Immunol 2022; 13:1083462. [PMID: 36601109 PMCID: PMC9806173 DOI: 10.3389/fimmu.2022.1083462] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer has a high metastatic potential. Monoclonal antibodies (mAbs) that target HER2, such as trastuzumab and pertuzumab, are the cornerstone of adjuvant therapy for HER2-positive breast cancer. A growing body of preclinical and clinical evidence points to the importance of innate immunity mediated by antibody-dependent cellular cytotoxicity (ADCC) in the clinical effect of mAbs on the resulting anti-tumor response. In this review, we provide an overview of the role of natural killer (NK) cells and ADCC in targeted therapy of HER2-positive breast cancer, including the biological functions of NK cells and the role of NK cells and ADCC in anti-HER2 targeted drugs. We then discuss regulatory mechanisms and recent strategies to leverage our knowledge of NK cells and ADCC as an immunotherapy approach for HER2-positive breast cancer.
Collapse
|
4
|
Awad RM, Meeus F, Ceuppens H, Ertveldt T, Hanssens H, Lecocq Q, Mateusiak L, Zeven K, Valenta H, De Groof TWM, De Vlaeminck Y, Krasniqi A, De Veirman K, Goyvaerts C, D'Huyvetter M, Hernot S, Devoogdt N, Breckpot K. Emerging applications of nanobodies in cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:143-199. [PMID: 35777863 DOI: 10.1016/bs.ircmb.2022.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer is a heterogeneous disease, requiring treatment tailored to the unique phenotype of the patient's tumor. Monoclonal antibodies (mAbs) and variants thereof have enabled targeted therapies to selectively target cancer cells. Cancer cell-specific mAbs have been used for image-guided surgery and targeted delivery of radionuclides or toxic agents, improving classical treatment strategies. Cancer cell-specific mAbs can further inhibit tumor cell growth or can stimulate immune-mediated destruction of cancer cells, a feature that has also been achieved through mAb-mediated manipulation of immune cells and pathways. Drawbacks of mAbs and their variants, together with the discovery of camelid heavy chain-only antibodies and the many advantageous features of their variable domains, referred to as VHHs, single domain antibodies or nanobodies (Nbs), resulted in the exploration of Nbs as an alternative targeting moiety. We therefore review the state-of-the-art as well as novel exploitation strategies of Nbs for targeted cancer therapy.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fien Meeus
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heleen Hanssens
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lukasz Mateusiak
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katty Zeven
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hana Valenta
- Lab for Nanobiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
5
|
Musolino A, Gradishar WJ, Rugo HS, Nordstrom JL, Rock EP, Arnaldez F, Pegram MD. Role of Fcγ receptors in HER2-targeted breast cancer therapy. J Immunother Cancer 2022; 10:jitc-2021-003171. [PMID: 34992090 PMCID: PMC8739678 DOI: 10.1136/jitc-2021-003171] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/03/2023] Open
Abstract
Several therapeutic monoclonal antibodies (mAbs), including those targeting epidermal growth factor receptor, human epidermal growth factor receptor 2 (HER2), and CD20, mediate fragment crystallizable gamma receptor (FcγR)–dependent activities as part of their mechanism of action. These activities include induction of antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP), which are innate immune mechanisms of cancer cell elimination. FcγRs are distinguished by their affinity for the Fc fragment, cell distribution, and type of immune response they induce. Activating FcγRIIIa (CD16A) on natural killer cells plays a crucial role in mediating ADCC, and activating FcγRIIa (CD32A) and FcγRIIIa on macrophages are important for mediating ADCP. Polymorphisms in FcγRIIIa and FcγRIIa generate variants that bind to the Fc portion of antibodies with different affinities. This results in differential FcγR-mediated activities associated with differential therapeutic outcomes across multiple clinical settings, from early stage to metastatic disease, in patients with HER2+ breast cancer treated with the anti-HER2 mAb trastuzumab. Trastuzumab has, nonetheless, revolutionized HER2+ breast cancer treatment, and several HER2-directed mAbs have been developed using Fc glyco-engineering or Fc protein-engineering to enhance FcγR-mediated functions. An example of an approved anti-HER2 Fc-engineered chimeric mAb is margetuximab, which targets the same epitope as trastuzumab, but features five amino acid substitutions in the IgG 1 Fc domain that were deliberately introduced to increase binding to activating FcγRIIIa and decrease binding to inhibitory FcγRIIb (CD32B). Margetuximab enhances Fc-dependent ADCC in vitro more potently than the combination of pertuzumab (another approved mAb directed against an alternate HER2 epitope) and trastuzumab. Margetuximab administration also enhances HER2-specific B cell and T cell–mediated responses ex vivo in samples from patients treated with prior lines of HER2 antibody-based therapies. Stemming from these observations, a worthwhile future goal in the treatment of HER2+ breast cancer is to promote combinatorial approaches that better eradicate HER2+ cancer cells via enhanced immunological mechanisms.
Collapse
Affiliation(s)
- Antonino Musolino
- Department of Medicine and Surgery, University Hospital of Parma, Medical Oncology and Breast Unit, Parma, Italy
| | - William J Gradishar
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | - Hope S Rugo
- Helen Diller Family Comprehensive Cancer Center, Breast Oncology and Clinical Trials Education, University of California San Francisco, San Francisco, California, USA
| | | | | | | | - Mark D Pegram
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
6
|
Koçer İ, Cox EC, DeLisa MP, Çelik E. Effects of variable domain orientation on anti-HER2 single-chain variable fragment antibody expressed in the Escherichia coli cytoplasm. Biotechnol Prog 2020; 37:e3102. [PMID: 33190426 DOI: 10.1002/btpr.3102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Single-chain variable fragment (scFv) antibodies have great potential for a range of applications including as diagnostic and therapeutic agents. However, production of scFvs is challenging because proper folding and activity depend on the formation of two intrachain disulfide bonds that do not readily form in the cytoplasm of living cells. Functional expression in bacteria therefore involves targeting to the more oxidizing periplasm, but yields in this compartment can be limiting due to secretion bottlenecks and the relatively small volume compared to the cytoplasm. In the present study, we evaluated an anti-HER2 scFv, which is specific for human epidermal growth receptor 2 (HER2) overexpressed in breast cancer, for functional expression in the cytoplasm of Escherichia coli strains BL21(DE3) and SHuffle T7 Express, the latter of which is genetically engineered for cytoplasmic disulfide bond formation. Specifically, we observed much greater solubility and binding activity with SHuffle T7 Express cells, which likely resulted from the more oxidative cytoplasm in this strain background. We also found that SHuffle T7 Express cells were capable of supporting high-level soluble production of anti-HER2 scFvs with intact disulfide bonds independent of variable domain orientation, providing further evidence that SHuffle T7 Express is a promising host for laboratory and preparative expression of functional scFv antibodies.
Collapse
Affiliation(s)
- İlkay Koçer
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey.,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Emily C Cox
- Biological and Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA.,Biological and Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey.,Institute of Science, Division of Bioengineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Yang EY, Shah K. Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics. Front Oncol 2020; 10:1182. [PMID: 32793488 PMCID: PMC7390931 DOI: 10.3389/fonc.2020.01182] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
The development of targeted medicine has greatly expanded treatment options and spurred new research avenues in cancer therapeutics, with monoclonal antibodies (mAbs) emerging as a prevalent treatment in recent years. With mixed clinical success, mAbs still hold significant shortcomings, as they possess limited tumor penetration, high manufacturing costs, and the potential to develop therapeutic resistance. However, the recent discovery of “nanobodies,” the smallest-known functional antibody fragment, has demonstrated significant translational potential in preclinical and clinical studies. This review highlights their various applications in cancer and analyzes their trajectory toward their translation into the clinic.
Collapse
Affiliation(s)
- Emily Y Yang
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
8
|
Role of innate and adaptive immunity in the efficacy of anti-HER2 monoclonal antibodies for HER2-positive breast cancer. Crit Rev Oncol Hematol 2020; 149:102927. [PMID: 32172224 DOI: 10.1016/j.critrevonc.2020.102927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 01/09/2023] Open
Abstract
Anti-HER2 monoclonal antibodies (mAbs) such as trastuzumab are effective for all stages of HER2-positive breast cancer (BC). However, intrinsic or acquired resistance to these drugs may occur in a significant number of patients (pts) and, except for HER2 status, no validated predictive factors of response/resistance have been identified to date. This lack is in part due to the not yet fully elucidated mechanism of action of mAbs in vivo. Increasing evidence suggests a significant contribution of both innate and adaptive immunity to the antitumor effects of mAbs. The aim of this review was to describe the role of innate and adaptive immunity in the efficacy of anti-HER2 mAbs and to report known and novel strategies to be used for optimizing immune effects of anti-HER2 therapies for HER2-positive BC.
Collapse
|
9
|
Liu J, Wu X, Lin L, Pan H, Wang Y, Li Y, Zhao Y, Wang Z. Bp-Bs, a Novel T-cell Engaging Bispecific Antibody with Biparatopic Her2 Binding, Has Potent Anti-tumor Activities. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:66-73. [PMID: 31020038 PMCID: PMC6475711 DOI: 10.1016/j.omto.2019.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Patients with Human epidermal growth factor receptor type 2 (Her2) overexpression are associated with aggressive tumor growth and poor clinical outcomes. Bispecific antibodies targeting Her2 have recently exhibited potent effects on Her2 signal inhibition. In this study, a novel biparatopic anti-Her2 bispecific antibody (Bp-Bs) was constructed by linking a single anti-CD3 Fab with two different anti-Her2 single-domain antibodies targeting non-overlapping epitopes of Her2. The Bp-Bs demonstrated strong binding on Her2-positive cells and potent cytotoxicity on Her2-positive tumor cells, even Her2-low expression cells, suggesting that biparatopic bispecific antibodies may have improved therapeutic benefits on broad Her2 patient populations.
Collapse
Affiliation(s)
- Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoqiong Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Limin Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haitao Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanlan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yumei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yining Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Nami B, Maadi H, Wang Z. The Effects of Pertuzumab and Its Combination with Trastuzumab on HER2 Homodimerization and Phosphorylation. Cancers (Basel) 2019; 11:cancers11030375. [PMID: 30884851 PMCID: PMC6468664 DOI: 10.3390/cancers11030375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/18/2023] Open
Abstract
Pertuzumab (Perjeta) is an anti-HER2 monoclonal antibody that is used for treatment of HER2-positive breast cancers in combination with trastuzumab (Herceptin) and docetaxel and showed promising clinical outcomes. Pertuzumab is suggested to block heterodimerization of HER2 with EGFR and HER3 that abolishes canonical function of HER2. However, evidence on the exact mode of action of pertuzumab in homodimerization of HER2 are limited. In this study, we investigated the effect of pertuzumab and its combination with trastuzumab on HER2 homodimerization, phosphorylation and whole gene expression profile in Chinese hamster ovary (CHO) cells stably overexpressing human HER2 (CHO-K6). CHO-K6 cells were treated with pertuzumab, trastuzumab, and their combination, and then HER2 homodimerization and phosphorylation at seven pY sites were investigated. The effects of the monoclonal antibodies on whole gene expression and the expression of cell cycle stages, apoptosis, autophagy, and necrosis were studied by cDNA microarray. Results showed that pertuzumab had no significant effect on HER2 homodimerization, however, trastuzumab increased HER2 homodimerization. Interestingly, pertuzumab increased HER2 phosphorylation at Y1127, Y1139, and Y1196 residues, while trastuzumab increased HER2 phosphorylation at Y1196. More surprisingly, combination of pertuzumab and trastuzumab blocked the phosphorylation of Y1005 and Y1127 of HER2. Our results also showed that pertuzumab, but not trastuzumab, abrogated the effect of HER2 overexpression on cell cycle in particular G1/S transition, G2/M transition, and M phase, whereas trastuzumab abolished the inhibitory effect of HER2 on apoptosis. Our findings confirm that pertuzumab is unable to inhibit HER2 homodimerization but induces HER2 phosphorylation at some pY sites that abolishes HER2 effects on cell cycle progress. These data suggest that the clinical effects of pertuzumab may mostly through the inhibition of HER2 heterodimers, rather than HER2 homodimers and that pertuzumab binding to HER2 may inhibit non-canonical HER2 activation and function in non-HER-mediated and dimerization-independent pathway(s).
Collapse
Affiliation(s)
- Babak Nami
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Hamid Maadi
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
11
|
Nayyar G, Chu Y, Cairo MS. Overcoming Resistance to Natural Killer Cell Based Immunotherapies for Solid Tumors. Front Oncol 2019; 9:51. [PMID: 30805309 PMCID: PMC6378304 DOI: 10.3389/fonc.2019.00051] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
Despite advances in the diagnostic and therapeutic modalities, the prognosis of several solid tumor malignancies remains poor. Different factors associated with solid tumors including a varied genetic signature, complex molecular signaling pathways, defective cross talk between the tumor cells and immune cells, hypoxic and immunosuppressive effects of tumor microenvironment result in a treatment resistant and metastatic phenotype. Over the past several years, immunotherapy has emerged as an attractive therapeutic option against multiple malignancies. The unique ability of natural killer (NK) cells to target cancer cells without antigen specificity makes them an ideal candidate for use against solid tumors. However, the outcomes of adoptive NK cell infusions into patients with solid tumors have been disappointing. Extensive studies have been done to investigate different strategies to improve the NK cell function, trafficking and tumor targeting. Use of cytokines and cytokine analogs has been well described and utilized to enhance the proliferation, stimulation and persistence of NK cells. Other techniques like blocking the human leukocyte antigen-killer cell receptors (KIR) interactions with anti-KIR monoclonal antibodies, preventing CD16 receptor shedding, increasing the expression of activating NK cell receptors like NKG2D, and use of immunocytokines and immune checkpoint inhibitors can enhance NK cell mediated cytotoxicity. Using genetically modified NK cells with chimeric antigen receptors and bispecific and trispecific NK cell engagers, NK cells can be effectively redirected to the tumor cells improving their cytotoxic potential. In this review, we have described these strategies and highlighted the need to further optimize these strategies to improve the clinical outcome of NK cell based immunotherapy against solid tumors.
Collapse
Affiliation(s)
- Gaurav Nayyar
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, United States.,Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, United States.,Department of Medicine, New York Medical College, Valhalla, NY, United States.,Department of Pathology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
12
|
Chanier T, Chames P. Nanobody Engineering: Toward Next Generation Immunotherapies and Immunoimaging of Cancer. Antibodies (Basel) 2019; 8:E13. [PMID: 31544819 PMCID: PMC6640690 DOI: 10.3390/antib8010013] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
In the last decade, cancer immunotherapies have produced impressive therapeutic results. However, the potency of immunotherapy is tightly linked to immune cell infiltration within the tumor and varies from patient to patient. Thus, it is becoming increasingly important to monitor and modulate the tumor immune infiltrate for an efficient diagnosis and therapy. Various bispecific approaches are being developed to favor immune cell infiltration through specific tumor targeting. The discovery of antibodies devoid of light chains in camelids has spurred the development of single domain antibodies (also called VHH or nanobody), allowing for an increased diversity of multispecific and/or multivalent formats of relatively small sizes endowed with high tissue penetration. The small size of nanobodies is also an asset leading to high contrasts for non-invasive imaging. The approval of the first therapeutic nanobody directed against the von Willebrand factor for the treatment of acquired thrombotic thrombocypenic purpura (Caplacizumab, Ablynx), is expected to bolster the rise of these innovative molecules. In this review, we discuss the latest advances in the development of nanobodies and nanobody-derived molecules for use in cancer immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Timothée Chanier
- Aix Marseille University, CNRS, INSERM, Institute Paoli-Calmettes, CRCM, 13009 Marseille, France.
| | - Patrick Chames
- Aix Marseille University, CNRS, INSERM, Institute Paoli-Calmettes, CRCM, 13009 Marseille, France.
| |
Collapse
|
13
|
Reduction of non-specific toxicity of immunotoxin by intein mediated reconstitution on target cells. Int Immunopharmacol 2019; 66:288-295. [DOI: 10.1016/j.intimp.2018.11.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022]
|