1
|
Lei J, Zhao J, Long MYC, Cao XW, Wang FJ. In addition to its endosomal escape effect, platycodin D also synergizes with ribosomal inactivation protein to induce apoptosis in hepatoma cells through AKT and MAPK signaling pathways. Chem Biol Interact 2022; 364:110058. [PMID: 35872048 DOI: 10.1016/j.cbi.2022.110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
Efficient endosomal escape after cellular uptake is a major challenge for the clinical application of therapeutic proteins. To overcome this obstacle, several strategies have been used to help protein drugs escape from endosomes without affecting the integrity of the cell membrane. Among them, some triterpenoid saponins with special structures were used to greatly enhance the anti-tumor therapeutic effect of protein toxins. Herein, we demonstrated that platycodin D (PD), polygalacin D (PGD) and platycodin D2 (PD2) from Platycodonis Radix significantly enhanced the ability of MHBP (a type I ribosome-inactivating protein toxin MAP30 fused with a cell-penetrating peptide HBP) to induce apoptosis in hepatoma cells. Based on the results of co-localization of endocytosed EGFP-HBP with a lysosomal probe and Galectin-9 vesicle membrane damage sensor, we demonstrated that PD, PGD and PD2 have the ability to promote endosomal escape of endocytic proteins without affecting the integrity of the plasma membrane. Meanwhile, we observed that cholesterol metabolism plays an important role in the activity of PD by RNA-seq analysis and KEGG pathway enrichment analysis, and confirm that PD, PGD and PD2 enhance the anti-tumor activity of MHBP by inducing the redistribution of free cholesterol and inhibiting the activity of cathepsin B and cathepsin D. Finally, we found that PD synergized with MHBP to induce caspase-dependent apoptosis through inhibiting Akt and ERK1/2 signaling pathways and activating JNK and p38 MAPK signaling pathways. This study provides new insights into the application of PD in cancer therapy and provides efficient and promising strategies for the cytosolic delivery of therapeutic proteins.
Collapse
Affiliation(s)
- Jin Lei
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Meng-Yi-Chen Long
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xue-Wei Cao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Fu-Jun Wang
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd. 209 West Hulian Road, Dongyang, 322100, Zhejiang, China; Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Duan Q, Shen X, He D, Xu Y, Zheng Z, Zheng Z, Jiang X, Ren M, Chen L, Zhang T, Lu Y, Ye L, Xie X. Role and Mechanism of Epithelial-Mesenchymal Transition Mediated by Inflammatory Stress-Induced TGF- β1 in Promoting Arteriovenous Fistula Stenosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9454843. [PMID: 37671238 PMCID: PMC10477026 DOI: 10.1155/2022/9454843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/27/2022] [Indexed: 09/07/2023]
Abstract
Objective To explore the role and mechanism of epithelial-mesenchymal transition (EMT) mediated by inflammatory stress-induced TGF-β1 in promoting arteriovenous fistula stenosis. Methods The inflammatory cells HK-2 were cultured by adding TGF-β1. The optimal stimulation time was determined after TGF-β1 was added. HK-2 cells were divided into two groups, DMEM/F12 medium was added to one group (the control group), and the other group was treated with TGF-β1 (10 ng/ml) in serum-free DMEM/F12 medium to stimulate cell differentiation to mesenchymal. Results TGF-β1 was stably expressed after being transfected into EMT. The expression of TGF-β1 in the experimental group was higher than that in the control group (P < 0.05) 7 days after transfection. Western blot showed that TGF-β1 protein expression was higher in the experimental group 7 days after transfection, and no TGF-β1 protein expression was detected in the control group. The smooth muscle cells showed α-SMA expression in the control group, but no cells with expression of SMA and CD31/vWF were found at the same time; α-SMA expression was shown in smooth muscle cells and proliferative myofibroblasts, but no cells with expressions of SMA and CD31/vWF were found at the same time. The observation group showed that the expression of α-SMA was detected in smooth muscle cells and proliferative myofibroblasts, CD31/vWF was also expressed in endothelial cells, and α-SMA and vWF were also observed in endothelial cells, but no CD31 expression was found. Conclusion The inflammatory stress-induced TGF-β1 could act on epithelial-mesenchymal transition and promote the degree of arteriovenous fistula stenosis.
Collapse
Affiliation(s)
- Qingqing Duan
- Nephrology Department, Zhejiang Hospital, Hangzhou 310012, China
| | - Xiaogang Shen
- Nephrology Department, Zhejiang Provincial Peoples' Hospital, Hangzhou 310014, China
| | - Dongyuan He
- Nephrology Department, Zhejiang Hospital, Hangzhou 310012, China
| | - Yuankai Xu
- Nephrology Department, Zhejiang Hospital, Hangzhou 310012, China
| | - Zhigui Zheng
- Nephrology Department, Zhejiang Hospital, Hangzhou 310012, China
| | - Zhibo Zheng
- Nephrology Department, Zhejiang Hospital, Hangzhou 310012, China
| | - Xinxin Jiang
- Nephrology Department, Zhejiang Hospital, Hangzhou 310012, China
| | - Min Ren
- The Department of Obstetrics and Gynecology, Zhejiang Hospital, Hangzhou 310012, China
| | - Lili Chen
- Nephrology Department, Zhejiang Hospital, Hangzhou 310012, China
| | - Ting Zhang
- Nephrology Department, Zhejiang Hospital, Hangzhou 310012, China
| | - Yunan Lu
- Nephrology Department, Zhejiang Hospital, Hangzhou 310012, China
| | - Luxi Ye
- Nephrology Department, Zhejiang Hospital, Hangzhou 310012, China
| | - Xiaohui Xie
- Nephrology Department, Zhejiang Hospital, Hangzhou 310012, China
| |
Collapse
|
3
|
Xu W, Li K, Song C, Wang X, Li Y, Xu B, Liang X, Deng W, Wang J, Liu J. Knockdown of lncRNA LINC01234 Suppresses the Tumorigenesis of Liver Cancer via Sponging miR-513a-5p. Front Oncol 2020; 10:571565. [PMID: 33178601 PMCID: PMC7597595 DOI: 10.3389/fonc.2020.571565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background Liver cancer is a frequent malignancy with poor prognosis and high mortality all over the world. It has been reported many lncRNAs could modulate the tumorigenesis of liver cancer. To identify novel potential targets for liver cancer, the differential expressed lncRNAs between liver cancer and adjacent normal tissues was analyzed with bioinformatics tool. Methods The differential expressed lncRNAs between liver cancer and adjacent normal tissues were analyzed with bioinformatics tool. Cell viability and proliferation was tested by CCK8 and Ki67, respectively. Apoptosis of liver cancer cells was tested by flow cytometry. Gene and protein expressions in liver cancer cells were measured by qRT-PCR and western blot, respectively. In vivo model of liver cancer was established to detect the effect of LINC01234 on liver cancer in vivo. Results LINC01234 was found to be negatively correlated with the survival rate of patients with liver cancer. Moreover, knockdown of LINC01234 significantly suppressed the proliferation and invasion of liver cancer cells via inducing the apoptosis. Meanwhile, miR-513a-5p was sponged by LINC01234, and USP4 was found to be a direct target of miR-513a-5p. In addition, LINC01234 knockdown inhibited the tumorigenesis of liver cancer via inactivating TGF-β signaling. Furthermore, silencing of LINC01234 notably inhibited the tumor growth of liver cancer in vivo. Conclusion Downregulation of LINC01234 could inhibit the tumorigenesis of liver cancer via mediation of miR-513a-5p/USP4/TGF-β axis. Thus, LINC01234 might serve as a new target for the treatment of liver cancer.
Collapse
Affiliation(s)
- Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Kesang Li
- Department of Hematology and Oncology, Hwa Mei Hospital, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Changfeng Song
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaotong Wang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yueqi Li
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Baixue Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wanli Deng
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|