1
|
Tu J, Chen X, Li C, Liu C, Huang Y, Wang X, Liang H, Yuan X. Nintedanib Mitigates Radiation-Induced Pulmonary Fibrosis by Suppressing Epithelial Cell Inflammatory Response and Inhibiting Fibroblast-to-Myofibroblast Transition. Int J Biol Sci 2024; 20:3353-3371. [PMID: 38993568 PMCID: PMC11234214 DOI: 10.7150/ijbs.92620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) represents a serious complication observed in individuals undergoing thoracic radiation therapy. Currently, effective interventions for RIPF are unavailable. Prior research has demonstrated that nintedanib, a Food and Drug Administration (FDA)-approved anti-fibrotic agent for idiopathic pulmonary fibrosis, exerts therapeutic effects on chronic fibrosing interstitial lung disease. This research aimed to investigate the anti-fibrotic influences of nintedanib on RIPF and reveal the fundamental mechanisms. To assess its therapeutic impact, a mouse model of RIPF was established. The process involved nintedanib administration at various time points, both prior to and following thoracic radiation. In the RIPF mouse model, an assessment was conducted on survival rates, body weight, computed tomography features, histological parameters, and changes in gene expression. In vitro experiments were performed to discover the mechanism underlying the therapeutic impact of nintedanib on RIPF. Treatment with nintedanib, administered either two days prior or four weeks after thoracic radiation, significantly alleviated lung pathological changes, suppressed collagen deposition, and improved the overall health status of the mice. Additionally, nintedanib demonstrated significant mitigation of radiation-induced inflammatory responses in epithelial cells by inhibiting the PI3K/AKT and MAPK signaling pathways. Furthermore, nintedanib substantially inhibited fibroblast-to-myofibroblast transition by suppressing the TGF-β/Smad and PI3K/AKT/mTOR signaling pathways. These findings suggest that nintedanib exerts preventive and therapeutic effects on RIPF by modulating multiple targets instead of a single anti-fibrotic pathway and encourage the further clinical trials to determine the efficacy of nintedanib in patients with RIPF.
Collapse
Affiliation(s)
- Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunya Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Liang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Gao X, Niu S, Li L, Zhang X, Cao X, Zhang X, Pan W, Sun M, Zhao G, Zheng X, Song G, Zhang Y. Hydrogen therapy promotes macrophage polarization to the M2 subtype in radiation lung injury by inhibiting the NF-κB signalling pathway. Heliyon 2024; 10:e30902. [PMID: 38826750 PMCID: PMC11141264 DOI: 10.1016/j.heliyon.2024.e30902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024] Open
Abstract
Background Radiotherapy has become a standard treatment for chest tumors, but a common complication of radiotherapy is radiation lung injury. Currently, there is still a lack of effective treatment for radiation lung injury. Methods A mouse model of radioactive lung injury (RILI) was constructed and then treated with different cycles of hydrogen inhalation. Lung function tests were performed to detect changes in lung function.HE staining was used to detect pathological changes in lung tissue. Immunofluorescence staining was used to detect the polarization of macrophages in lung tissue. Immunohistochemistry was used to detect changes in cytokine expression in lung tissues. Western Blot was used to detect the expression of proteins related to the NF-κB signalling pathway. Results Lung function test results showed that lung function decreased in the model group and improved in the treatment group.HE staining showed that inflammatory response was evident in the model group and decreased in the treatment group. Immunohistochemistry results showed that the expression of pro-inflammatory factors was significantly higher in the model group, and the expression of pro-inflammatory factors was significantly higher in the treatment group. The expression of pro-inflammatory factors in the treatment group was significantly lower than that in the model group, and the expression of anti-inflammatory factors in the treatment group was higher than that in the model group. Immunofluorescence showed that the expression of M1 subtype macrophages was up-regulated in the model group and down-regulated in the treatment group. The expression of M2 subtype macrophages was up-regulated in the treatment group relative to the model group. Western Blot showed that P-NF-κB p65/NF-κB p65 was significantly increased in the model group, and P-NF-κB p65/NF-κB p65 was decreased in the treatment group. Conclusion Hydrogen therapy promotes macrophage polarization from M1 to M2 subtypes by inhibiting the NF-κB signalling pathway, thereby attenuating the inflammatory response to radiation lung injury.
Collapse
Affiliation(s)
- Xue Gao
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University, China
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, China
| | - Shiying Niu
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University, China
- Department of Pathology, Linfen Central Hospital, China
| | - Lulu Li
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University, China
| | - Xiaoyue Zhang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, China
| | - Xuetao Cao
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University, China
| | - Xinhui Zhang
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University, China
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, China
| | - Wentao Pan
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University, China
| | - Meili Sun
- Department of Pathology, Linfen Central Hospital, China
- Department of Oncology, Affiliated Central Hospital of Shandong First Medical University, China
| | - Guoli Zhao
- Department of Pathology, Liaocheng Infectious Disease Hospital, China
| | - Xuezhen Zheng
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University, China
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, China
| | - Guohua Song
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University, China
| | - Yueying Zhang
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University, China
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, China
| |
Collapse
|
3
|
Zhang Z, Peng Y, Peng X, Xiao D, Shi Y, Tao Y. Effects of radiation therapy on tumor microenvironment: an updated review. Chin Med J (Engl) 2023; 136:2802-2811. [PMID: 37442768 PMCID: PMC10686612 DOI: 10.1097/cm9.0000000000002535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Cancer is a major threat to human health and causes death worldwide. Research on the role of radiotherapy (RT) in the treatment of cancer is progressing; however, RT not only causes fatal DNA damage to tumor cells, but also affects the interactions between tumor cells and different components of the tumor microenvironment (TME), including immune cells, fibroblasts, macrophages, extracellular matrix, and some soluble products. Some cancer cells can survive radiation and have shown strong resistance to radiation through interaction with the TME. Currently, the complex relationships between the tumor cells and cellular components that play major roles in various TMEs are poorly understood. This review explores the relationship between RT and cell-cell communication in the TME from the perspective of immunity and hypoxia and aims to identify new RT biomarkers and treatment methods in lung cancer to improve the current status of unstable RT effect and provide a theoretical basis for further lung cancer RT sensitization research in the future.
Collapse
Affiliation(s)
- Zewen Zhang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Yuanhao Peng
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xin Peng
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Desheng Xiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Ying Shi
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
4
|
Yan Y, Wu L, Li X, Zhao L, Xu Y. Immunomodulatory role of azithromycin: Potential applications to radiation-induced lung injury. Front Oncol 2023; 13:966060. [PMID: 36969016 PMCID: PMC10030824 DOI: 10.3389/fonc.2023.966060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Radiation-induced lung injury (RILI) including radiation-induced pneumonitis and radiation-induced pulmonary fibrosis is a side effect of radiotherapy for thoracic tumors. Azithromycin is a macrolide with immunomodulatory properties and anti-inflammatory effects. The immunopathology of RILI that results from irradiation is robust pro-inflammatory responses with high levels of chemokine and cytokine expression. In some patients, pulmonary interstitial fibrosis results usually due to an overactive immune response. Growing clinical studies recently proposed that the anti-inflammatory and immunomodulatory effects of azithromycin may benefit patients with acute lung injury. It has been shown potential benefits for patients with RILI in preclinical studies. Azithromycin has a variety of immunomodulatory effect to improve the process of disease, including inhibition of pro-inflammatory cytokines production participating in the regulatory function of macrophages, changes in autophagy, and inhibition of neutrophil influx. We review the published evidence of mechanisms of azithromycin, and focus on the potential effect of azithromycin on the immune response to RILI.
Collapse
Affiliation(s)
- Yujie Yan
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Leilei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yaping Xu, ; Xuefei Li, ; Lan Zhao,
| | - Lan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yaping Xu, ; Xuefei Li, ; Lan Zhao,
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yaping Xu, ; Xuefei Li, ; Lan Zhao,
| |
Collapse
|
5
|
Wang VA, Koutrakis P, Li L, Liu M, Vieira CLZ, Coull BA, Maher EF, Kang CM, Garshick E. Particle radioactivity from radon decay products and reduced pulmonary function among chronic obstructive pulmonary disease patients. ENVIRONMENTAL RESEARCH 2023; 216:114492. [PMID: 36209792 PMCID: PMC9701170 DOI: 10.1016/j.envres.2022.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Radon (222Rn) decay products can attach to particles in the air, be inhaled, and potentially cause airway damage. RESEARCH QUESTION Is short-term exposure to particle radioactivity (PR) attributable to radon decay products emitted from particulate matter ≤2.5 μm in diameter (PM2.5) associated with pulmonary function in chronic obstructive pulmonary disease (COPD) patients? STUDY DESIGN AND METHODS In this cohort study, 142 elderly, predominantly male patients with COPD from Eastern Massachusetts each had up to 4 one-week long seasonal assessments of indoor (home) and ambient (central site) PR and PM2.5 over the course of a year (467 assessments). Ambient and indoor PR were measured as α-activity on archived PM2.5 filter samples. Ratios of indoor/ambient PR were calculated, with higher ratios representing PR from an indoor source of radon decay. We also considered a measure of outside air infiltration that could dilute the concentrations of indoor radon decay products, the indoor/ambient ratio of sulfur concentrations in PM2.5 filter samples. Spirometry pre- and post-bronchodilator (BD) forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were conducted following sampling. Generalized additive mixed models were adjusted for meteorologic variables, seasonality, and individual-level determinants of pulmonary function. We additionally adjusted for indoor PM2.5 and black carbon (BC). RESULTS PR exposure metrics indicating radon decay product exposure from an indoor source were associated with a reduction in FEV1 and FVC. Patients in homes with high indoor PR (≥median) and low air infiltration ( INTERPRETATION Our findings raise concern about the harmful effects of PR exposures attributable to residential radon on pulmonary function in patients with COPD.
Collapse
Affiliation(s)
- Veronica A Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Longxiang Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Man Liu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carolina L Z Vieira
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward F Maher
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Choong-Min Kang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric Garshick
- Pulmonary, Allergy, Sleep and Critical Care Medicine Section, Veterans Affairs Boston Healthcare System, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Chen C, Zeng B, Xue D, Cao R, Liao S, Yang Y, Li Z, Kang M, Chen C, Xu B. Pirfenidone for the prevention of radiation-induced lung injury in patients with locally advanced oesophageal squamous cell carcinoma: a protocol for a randomised controlled trial. BMJ Open 2022; 12:e060619. [PMID: 36302570 PMCID: PMC9621153 DOI: 10.1136/bmjopen-2021-060619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Radiation-induced lung injury (RILI) is one of the most clinically-challenging toxicities and dose-limiting factors during and/or after thoracic radiation therapy for oesophageal squamous cell carcinoma (ESCC). With limited effective protective drugs against RILI, the main strategy to reduce the injury is strict adherence to dose-volume restrictions of normal lungs. RILI can manifest as acute radiation pneumonitis with cellular injury, cytokine release and cytokine recruitment to inflammatory infiltrate, and subsequent chronic radiation pulmonary fibrosis. Pirfenidone inhibits the production of inflammatory cytokines, scavenges-free radicals and reduces hydroxyproline and collagen formation. Hence, pirfenidone might be a promising drug for RILI prevention. This study aims to evaluate the efficacy and safety of pirfenidone in preventing RILI in patients with locally advanced ESCC receiving chemoradiotherapy. METHODS AND ANALYSIS This study is designed as a randomised, placebo-controlled, double-blinded, single-centre phase 2 trial and will explore whether the addition of pirfenidone during concurrent chemoradiation therapy (CCRT) could prevent RILI in patients with locally advanced ESCC unsuitable for surgery. Eligible participants will be randomised at 1:1 to pirfenidone and placebo groups. The primary endpoint is the incidence of grade >2 RILI. Secondary endpoints include the incidence of any grade other than grade >2 RILI, time to RILI occurrence, changes in pulmonary function after CCRT, completion rate of CCRT, disease-free survival and overall survival. The follow-up period will be 1 year. In case the results meet the primary endpoint of this trial, a phase 3 multicentre trial with a larger sample size will be required to substantiate the evidence of the benefit of pirfenidone in RILI prevention. ETHICS AND DISSEMINATION This study was approved by the Ethics Committee of Fujian Union Hospital (No. 2021YF001-02). The findings of the trial will be disseminated through peer-reviewed journals, and national and international conference presentations. TRIAL REGISTRATION NUMBER ChiCTR2100043032.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Radiation Oncology, Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological, and Breast Malignancies), Fujian Medical University Union Hospital, Fuzhou, China
- Department of Medical Imaging Technology, School of Medical Imaging, Union Clinical Medical College, Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, Fujian, China
| | - Bangwei Zeng
- Nosocomial Infection Control Branch, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dan Xue
- Pulmonary Department, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rongxiang Cao
- Pulmonary Department, Fujian Medical University Union Hospital, Fuzhou, China
| | - Siqin Liao
- Department of PET/CT Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yong Yang
- Department of Radiation Oncology, Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological, and Breast Malignancies), Fujian Medical University Union Hospital, Fuzhou, China
- Department of Medical Imaging Technology, School of Medical Imaging, Union Clinical Medical College, Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhihua Li
- Department of Oncology Department, The Second Hospital of Zhangzhou, Zhangzhou, People's Republic of China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Benhua Xu
- Department of Radiation Oncology, Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological, and Breast Malignancies), Fujian Medical University Union Hospital, Fuzhou, China
- Department of Medical Imaging Technology, School of Medical Imaging, Union Clinical Medical College, Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Ding Y, Ma L, He L, Xu Q, Zhang Z, Zhang Z, Zhang X, Fan R, Ma W, Sun Y, Zhang B, Li W, Zhai Y, Zhang J. A strategy for attenuation of acute radiation-induced lung injury using crocetin from gardenia fruit. Biomed Pharmacother 2022; 149:112899. [PMID: 35366531 DOI: 10.1016/j.biopha.2022.112899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Radiation-induced lung injury limits the implementation of radiotherapy plans and severely impairs the quality of life. Crocetin has the capability to protect against radiation. This study is aimed at estimate the preventive effect and mechanism of crocetin on acute radiation induced lung injury. METHODS AND MATERIALS In this study, we offer a strategy for radiation-induced lung injury by using crocetin, an extract of gardenia fruit. Histopathology, transcriptomics, flow cytometry, and other methods have served to examine the effect and mechanism of crocetin on acute radiation-induced lung injury. RESULTS Crocetin effectively alleviates radiation-induced alveolar wall thickening and alveolar destruction. The number of normal alveoli and lung structure of mice is well protected by the prevention of crocetin. It is found that crocetin inhibits necroptosis to achieve effective radioprotection by down regulating the Tnfrsf10b gene in vitro. CONCLUSION Crocetin inhibits necroptosis through transcriptional regulation of the Tnfrsf10b gene, thereby preventing radiation-induced lung injury. This work may provide a new strategy for the prevention of lung radiation injury by the extract from Chinese herbal medicine.
Collapse
Affiliation(s)
- Yan Ding
- Department of Radiation Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Lei Ma
- Cancer Center, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Limin He
- Cancer Center, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Quanxiao Xu
- Cancer Center, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Zhuang Zhang
- Department of Clinical Medicine, Xinjiang Medical University, Urumqi 830000, China
| | - Zhen Zhang
- Second Ward, Department of Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Xinping Zhang
- Department of Obstetrics and Gynecology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Rui Fan
- Department of Pathology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Wenjun Ma
- Department of Radiation Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Ya'nan Sun
- Department of Radiation Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Baile Zhang
- Department of Radiation Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Wentai Li
- Department of Radiation Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Yao Zhai
- Department of Radiation Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Jiandong Zhang
- Department of Radiation Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China.
| |
Collapse
|
8
|
Geng Y, Su S, Cao L, Yang T, Ouyang W, Liu L, Wu B, Zhang Q, Lu B, Wang X. Effect of PD-1 Inhibitor Combined with X-Ray Irradiation on the Inflammatory Microenvironment and Lung Tissue Injury in Mice. J Inflamm Res 2022; 15:545-556. [PMID: 35115804 PMCID: PMC8803086 DOI: 10.2147/jir.s350112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 01/22/2023] Open
Abstract
Purpose This study was designed to evaluate the effects of PD-1 inhibitor on lung tissue morphology and the immune system in a mouse model of radiation-induced lung injury (RILI) and to assess interactions between radiation therapy and PD-1 inhibition. Methods Twenty C57BL/6 mice were divided randomly into four groups of five mice each. Mice were treated with an anti-mouse PD-1 monoclonal antibody, whole thorax irradiation, both or neither. Lung tissue morphology and pathological changes were assessed by hematoxylin-eosin staining; lung fibrosis was assessed by Masson staining and analysis of hydroxyproline; CD3+, CD4+, and CD8+ T lymphocytes in lung tissues were detected immunohistochemically; and the concentrations of transforming growth factor-β1 (TGF-β1) and interleukin-6 (IL-6) in lung tissue were evaluated by cytokine multiplex analysis. Results Lung injury scores and indicators of pulmonary fibrosis were higher in mice administration whole thorax irradiation than in control mice. Inflammatory infiltrate scores, alveoli deformation scores, collagen volume fractions and hydroxyproline contents in lung tissues were all significantly higher in mice administered PD-1 inhibitor plus irradiation than in the other three groups. Similarly, the percentages of CD3+ and CD8+T cells and the concentrations of IL-6 and TGF-β1 in lung tissue were significantly higher in mice treated with radiation and PD-1 inhibitor than in the other groups. However, PD-1 inhibitor and irradiation interacted significantly only in the elevation of TGF-β1 level. Conclusion Whole thorax X-ray irradiation in mice can cause pulmonary injury and fibrosis, which could be exacerbated by PD-1 inhibitors. Radiotherapy combined with PD-1 inhibitors may aggravate RILI by synergistically upregulating TGF-β1 expression, thereby affecting the immune-inflammatory microenvironment in the lungs.
Collapse
Affiliation(s)
- Yichao Geng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Shengfa Su
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Li Cao
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Ting Yang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Weiwei Ouyang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Lingfeng Liu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Bibo Wu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Bing Lu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Correspondence: Xiaohu Wang, The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China, Tel +8613909407551, Fax +86 931 5196196, Email ; Bing Lu, Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China, Tel +8613809432527, Fax +86 851 6513076, Email
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Correspondence: Xiaohu Wang, The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China, Tel +8613909407551, Fax +86 931 5196196, Email ; Bing Lu, Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China, Tel +8613809432527, Fax +86 851 6513076, Email
| |
Collapse
|
9
|
Chen Z, Chen G. Interleukin-16 rs4072111 Polymorphism is Associated with the Risk of Peri-Implantitis in the Chinese Population. Pharmgenomics Pers Med 2021; 14:1629-1635. [PMID: 34938097 PMCID: PMC8686223 DOI: 10.2147/pgpm.s336857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Peri-implantitis (PI) is a major contributor to dental implant failure. Genetic predisposition plays an essential role in the development of PI. The purpose of this study was to investigate the correlation of IL-16 gene single nucleotide polymorphisms (SNPs), rs11556218 and rs4072111, with PI at the gene level. Patients and Methods A total of 162 patients with PI and 162 cases with healthy implants were recruited as the case and control groups, respectively. The genotypes were analysed using direct sequencing. The genotype and allele proportion between the case and control groups were compared using the chi-square test. The periodontal status of patients carrying different genotypes was analysed, including gingival index, plaque index, calculus index, peri-implant pocket depth (PPD), and clinical attachment level (CAL). Results The case and control groups were age- and gender-matched. In the case group, the rs4072111 CT genotype was majorly observed, and the T allele carriers showed a high PI risk. Patients with the rs4072111 CT genotype had worse periodontal status, which was reflected by the higher levels of the gingival index, plaque index, calculus index, PPD and CAL. The distribution of the rs11556218 genotype and T allele showed no significant difference between the case and control groups (P > 0.05). Conclusion The CT genotype of IL-16 gene rs4072111 SNP can be used as a factor assessing PI risk. Therefore, IL-16 genetic variation may be related to PI susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
- Zongfei Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Guanhua Chen
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|