1
|
de Matos MDLG, Pinto M, Gonçalves A, Canberk S, Bugalho MJM, Soares P. Insights in biomarkers complexity and routine clinical practice for the diagnosis of thyroid nodules and cancer. PeerJ 2025; 13:e18801. [PMID: 39850836 PMCID: PMC11756370 DOI: 10.7717/peerj.18801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
Background The differential diagnosis between benign and malignant thyroid nodules continues to be a major challenge in clinical practice. The rising incidence of thyroid neoplasm and the low incidence of aggressive thyroid carcinoma, urges the exploration of strategies to improve the diagnostic accuracy in a pre-surgical phase, particularly for indeterminate nodules, and to prevent unnecessary surgeries. Only in 2022, the 5th WHO Classification of Endocrine and Neuroendocrine Tumors, and in 2023, the 3rd Bethesda System for Reporting Thyroid Cytopathology and the European Thyroid Association included biomarkers in their guidelines. In this review, we discuss the integration of biomarkers within the routine clinical practice for diagnosis of thyroid nodules and cancer. Methodology The literature search for this review was performed through Pub Med, Science Direct, and Google Scholar. We selected 156 publications with significant contributions to this topic, with the majority (86, or 55.1%) published between January 2019 and March 2024, including some publications from our group during those periods. The inclusion criteria were based on articles published in recognized scientific journals with high contributions to the proposed topic. We excluded articles not emphasizing molecular biomarkers in refine the pre-surgical diagnosis of thyroid nodules. Results We explored genetic biomarkers, considering the division of thyroid neoplasm into BRAF-like tumor and RAS-like tumor. The specificity of BRAF mutation in the diagnosis of papillary thyroid carcinoma (PTC) is nearly 100% but its sensitivity is below 35%. RAS mutations are found in a broad spectrum of thyroid neoplasm, from benign to malignant follicular-patterned tumors, but do not increase the ability to distinguish benign from malignant lesions. The overexpression of miRNAs is correlated with tumor aggressiveness, high tumor node metastasis (TMN) stage, and recurrence, representing a real signature of thyroid cancer, particularly PTC. In addition, associations between the expression levels of selected miRNAs and the presence of specific genetic mutations have been related with aggressiveness and worse prognosis. Conclusions The knowledge of genetic and molecular biomarkers has achieved a high level of complexity, and the difficulties related to its applicability determine that their implementation in clinical practice is not yet a reality. More studies with larger series are needed to optimize their use in routine practice. Additionally, the improvement of new techniques, such as liquid biopsy and/or artificial intelligence, may be the future for a better understanding of molecular biomarkers in thyroid nodular disease.
Collapse
Affiliation(s)
- Maria de Lurdes Godinho de Matos
- Department of Endocrinology, Diabetes and Metabolism, Hospital Curry Cabral, Unidade Local de Saúde São José, Centro Clínico Académico de Lisboa, Lisbon, Portugal
| | - Mafalda Pinto
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), i3S—Institute for Research & Innovation in Health, Porto, Portugal
| | - Ana Gonçalves
- Department of Pathology, Unidade Local de Saúde São João, Porto, Portugal
| | - Sule Canberk
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), i3S—Institute for Research & Innovation in Health, Porto, Portugal
| | - Maria João Martins Bugalho
- Department of Endocrinology, Hospital de Santa Maria, Unidade Local de Saúde Santa Maria; Medical Faculty, University of Lisbon, Lisbon, Portugal
| | - Paula Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), i3S—Institute for Research & Innovation in Health, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Ahmed NM, Eddama MMR, Beatson K, Gurung R, Patel J, Iskandar G, Abdel-Salam A, Al-Omar A, Cohen R, Abdel-Aziz T, Clapp L. Circulating large extracellular vesicles as diagnostic biomarkers of indeterminate thyroid nodules: multi-platform omics analysis. BJS Open 2024; 9:zrae139. [PMID: 39787026 PMCID: PMC11683363 DOI: 10.1093/bjsopen/zrae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND While most thyroid nodules are benign, 7-15% are malignant. Patients with indeterminate thyroid nodules (specifically Bethesda IV/Thy3f) often undergo diagnostic hemithyroidectomy to reach a diagnosis on final histology. The aim of this study was to assess the feasibility of circulating large extracellular vesicles as diagnostic biomarkers in patients presenting with Thy3f thyroid nodules. METHODS This was a two-gate diagnostic accuracy study; patients with Thy3f thyroid nodules were age, sex and body mass index matched to healthy individuals. Final histology confirmed benign and malignant diagnoses. Plasma large extracellular vesicle counts were quantified using flow cytometry. Large extracellular vesicle microRNA and protein profiles were identified using next generation sequencing and mass spectrometry, respectively. RESULTS A total of 42 patients with Thy3f nodules (22 with cancer, 20 with non-cancer diagnosis) and 16 healthy controls were included. Total large extracellular vesicle concentrations and the concentrations of extracellular vesicles expressing epithelial cell adhesion molecule and the cancer markers atypical chemokine receptor type 7, extracellular matrix metalloproteinase inducer and syndecan-4 were significantly higher in patients with Thy3f nodules (cancer and non-cancer) compared with healthy individuals. In patients with cancerous versus non-cancer Thy3f nodules, one microRNA was upregulated: mir-195-3p (P < 0.001). Five were downregulated: mir-3176 (P < 0.001), mir-205-5p (P < 0.001), novel-hsa-mir-208-3p (P < 0.001), mir-3529-3p (P = 0.01) and let-7i-3p (P = 0.02). Furthermore, three large extracellular vesicle proteins (kallikrein-related peptidase11 (KLK11) (P = 0.001), alpha-1-acid glycoprotein 2 (A1AG2) (P <0.001) and small integral membrane protein 1 (SMIM1) (P = 0.04)) were significantly upregulated, while 20 large extracellular vesicle proteins were significantly downregulated (most downregulated: chemokine (C-X-C motif) ligand 7 (CXCL7), tubulin beta chain 1 (TBB1), binding immunoglobulin protein (BIP) and actinin alpha 1 (ACTN1) (P < 0.001)) in cancerous compared with non-cancer Thy3f nodules. CONCLUSION Circulating large extracellular vesicle miRNA and protein profiles have a high diagnostic value to discriminate between benign and malignant nodules for patients with Thy3f cytology. Further validation for clinical performance will be needed.
Collapse
Affiliation(s)
- Nada M Ahmed
- Institute of Cardiovascular Sciences, University College London, London, UK
- Pathology Department, Alexandria University, Alexandria, Egypt
| | - Mohammad M R Eddama
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | - Kevin Beatson
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | - Rijan Gurung
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | - Jigisha Patel
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | - Georges Iskandar
- Department of Anaesthesia and Perioperative Medicine, University College London Hospitals, London, UK
| | - Alaa Abdel-Salam
- Endocrine Surgery Unit, University College London Hospitals, London, UK
| | - Abdullah Al-Omar
- Endocrine Surgery Unit, University College London Hospitals, London, UK
| | - Richard Cohen
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | - Tarek Abdel-Aziz
- Endocrine Surgery Unit, University College London Hospitals, London, UK
| | - Lucie Clapp
- Institute of Cardiovascular Sciences, University College London, London, UK
| |
Collapse
|
3
|
Ma Y, Zhang X, Liu C, Zhao Y. Extracellular vesicles in cancers: mechanisms, biomarkers, and therapeutic strategies. MedComm (Beijing) 2024; 5:e70009. [PMID: 39611045 PMCID: PMC11604295 DOI: 10.1002/mco2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Extracellular vesicles (EVs) composed of various biologically active constituents, such as proteins, nucleic acids, lipids, and metabolites, have emerged as a noteworthy mode of intercellular communication. There are several categories of EVs, including exosomes, microvesicles, and apoptotic bodies, which largely differ in their mechanisms of formation and secretion. The amount of evidence indicated that changes in the EV quantity and composition play a role in multiple aspects of cancer development, such as the transfer of oncogenic signals, angiogenesis, metabolism remodeling, and immunosuppressive effects. As EV isolation technology and characteristics recognition improve, EVs are becoming more commonly used in the early diagnosis and evaluation of treatment effectiveness for cancers. Actually, EVs have sparked clinical interest in their potential use as delivery vehicles or vaccines for innovative antitumor techniques. This review will focus on the function of biological molecules contained in EVs linked to cancer progression and their participation in the intricate interrelationship within the tumor microenvironment. Furthermore, the potential efficacy of an EV-based liquid biopsy and delivery cargo for treatment will be explored. Finally, we explicitly delineate the limitations of EV-based anticancer therapies and provide an overview of the clinical trials aimed at improving EV development.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohui Zhang
- Cancer CenterHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Cuiwei Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanxia Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Ghosh S, Rajendran RL, Mahajan AA, Chowdhury A, Bera A, Guha S, Chakraborty K, Chowdhury R, Paul A, Jha S, Dey A, Dubey A, Gorai S, Das P, Hong CM, Krishnan A, Gangadaran P, Ahn BC. Harnessing exosomes as cancer biomarkers in clinical oncology. Cancer Cell Int 2024; 24:278. [PMID: 39113040 PMCID: PMC11308730 DOI: 10.1186/s12935-024-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Exosomes are extracellular vesicles well known for facilitating cell-to-cell communication by distributing essential macromolecules like proteins, DNA, mRNA, lipids, and miRNA. These vesicles are abundant in fluids distributed throughout the body, including urine, blood, saliva, and even bile. They are important diagnostic tools for breast, lung, gastrointestinal cancers, etc. However, their application as cancer biomarkers has not yet been implemented in most parts of the world. In this review, we discuss how OMICs profiling of exosomes can be practiced by substituting traditional imaging or biopsy methods for cancer detection. Previous methods like extensive imaging and biopsy used for screening were expensive, mostly invasive, and could not easily provide early detection for various types of cancer. Exosomal biomarkers can be utilized for routine screening by simply collecting body fluids from the individual. We anticipate that the use of exosomes will be brought to light by the success of clinical trials investigating their potential to enhance cancer detection and treatment in the upcoming years.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Atharva A Mahajan
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, 410210, India
| | - Ankita Chowdhury
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Delhi, 110016, India
| | - Aishi Bera
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Sudeepta Guha
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Kashmira Chakraborty
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Rajanyaa Chowdhury
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Aritra Paul
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Shreya Jha
- Department of Biomedical Engineering, National Institute of Technology, Rourkela, Orissa, 769008, India
| | - Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Anand Krishnan
- Department of Chemical Pathology, Office of the Dean, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, Free State, South Africa.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
5
|
Wang Y, Li Q, Yang X, Guo H, Ren T, Zhang T, Ghadakpour P, Ren F. Exosome-Mediated Communication in Thyroid Cancer: Implications for Prognosis and Therapeutic Targets. Biochem Genet 2024:10.1007/s10528-024-10833-2. [PMID: 38839646 DOI: 10.1007/s10528-024-10833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Thyroid cancer (THCA) is one of the most common malignancies of the endocrine system. Exosomes have significant value in performing molecular treatments, evaluating the diagnosis and determining tumor prognosis. Thus, the identification of exosome-related genes could be valuable for the diagnosis and potential treatment of THCA. In this study, we examined a set of exosome-related differentially expressed genes (DEGs) (BIRC5, POSTN, TGFBR1, DUSP1, BID, and FGFR2) by taking the intersection between the DEGs of the TCGA-THCA and GeneCards datasets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the exosome-related DEGs indicated that these genes were involved in certain biological functions and pathways. Protein‒protein interaction (PPI), mRNA‒miRNA, and mRNA-TF interaction networks were constructed using the 6 exosome-related DEGs as hub genes. Furthermore, we analyzed the correlation between the 6 exosome-related DEGs and immune infiltration. The Genomics of Drug Sensitivity in Cancer (GDSC), the Cancer Cell Line Encyclopedia (CCLE), and the CellMiner database were used to elucidate the relationship between the exosome-related DEGs and drug sensitivity. In addition, we verified that both POSTN and BID were upregulated in papillary thyroid cancer (PTC) patients and that their expression was correlated with cancer progression. The POSTN and BID protein expression levels were further examined in THCA cell lines. These findings provide insights into exosome-related clinical trials and drug development.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Anatomy, College of Basic Medical Sciences of Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
- Molecular Morphology Laboratory, College of Basic Medical Sciences, Liaoning, Shenyang Medical College, Shenyang, People's Republic of China
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Qiang Li
- Department of Orthopedics, Liaoning, Fuxin Central Hospital, Fuxin, People's Republic of China
| | - Xinrui Yang
- Molecular Morphology Laboratory, College of Basic Medical Sciences, Liaoning, Shenyang Medical College, Shenyang, People's Republic of China
| | - Hanyu Guo
- Department of Anatomy, College of Basic Medical Sciences of Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Tian Ren
- Emergency Medical Center, Liaoning, Affiliated Central Hospital of Shenyang Medical College, Shenyang, People's Republic of China
| | - Tianchi Zhang
- Department of Computer and Information Technology, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Fu Ren
- Department of Anatomy, College of Basic Medical Sciences of Shenyang Medical College, Shenyang, Liaoning, People's Republic of China.
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
6
|
Ruiz-Pozo VA, Cadena-Ullauri S, Guevara-Ramírez P, Paz-Cruz E, Tamayo-Trujillo R, Zambrano AK. Differential microRNA expression for diagnosis and prognosis of papillary thyroid cancer. Front Med (Lausanne) 2023; 10:1139362. [PMID: 37089590 PMCID: PMC10113479 DOI: 10.3389/fmed.2023.1139362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Papillary thyroid cancer accounts for 85% of thyroid cancer. The diagnosis is based on ultrasound methods and tumor biopsies (FNA). In recent years, research has revealed the importance of miRNAs, non-coding RNA molecules that regulate gene expression and are involved in many diseases. The present mini review describes upregulated and downregulated miRNAs expression in papillary thyroid cancer patient samples (tissue, serum, plasma) and the genes regulated by these non-coding molecules. In addition, a bibliographic search was performed to identify the expression of miRNAs that are common in tumor tissue and blood. The miRNAs miR-146b, miR-221-3p, miRNA 222, miR-21, miR-296-5p, and miR-145 are common in both tissue and bloodstream of PTC patient samples. Furthermore, these miRNAs regulate genes involved in biological processes such as cell differentiation, proliferation, migration, invasion, and apoptosis. In conclusion, miRNAs could potentially become valuable biomarkers, which could help in the early diagnosis and prognosis of papillary thyroid cancer.
Collapse
|
7
|
Photoelectrochemical biosensor based on FTO modified with BiVO4 film and gold nanoparticles for detection of miRNA-25 biomarker and single-base mismatch. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
The expression profiling of serum miR-92a, miR-134 and miR-375 in acute ischemic stroke. Future Sci OA 2022; 8:FSO829. [PMID: 36874371 PMCID: PMC9979103 DOI: 10.2144/fsoa-2022-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 02/22/2023] Open
Abstract
Aim To investigate the expression profile and diagnostic potentials of serum miR-92a, 134, and 375 in acute ischemic stroke (AIS) patients. Materials & methods Serum miRs-92a, 134, and 375 expression profiles were estimated by qRT-PCR for 70 AIS patients, age-matched with 25 control subjects. Their diagnostic potential was estimated by ROC analysis. Results Down-expression of miR-92a and miR-375 was found (56; 96.5%; -1.86 ± 1.36; and 53; 91.4%; -1.63 ± 1.38, respectively), while miR-134 showed a predominant upregulation (46; 79.3%; 0.853 ± 1.34). The diagnostic accuracy was the highest for miR-92a and miR-375 (area under the curve = 0.9183 and 0.898, respectively), with greater specificity for miR-375 (Sp = 96%). Conclusion Serum miR-92a and miR-375 could be promising early detective biomarkers of AIS.
Collapse
|
9
|
Li D, Li N, Ding Y. Epithelial‑to‑mesenchymal transition of circulating tumor cells and CD133 expression on predicting prognosis of thyroid cancer patients. Mol Clin Oncol 2022; 17:141. [DOI: 10.3892/mco.2022.2574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/21/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Deyu Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Na Li
- Operating Room, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ying Ding
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
10
|
Geropoulos G, Psarras K, Papaioannou M, Giannis D, Meitanidou M, Kapriniotis K, Symeonidis N, Pavlidis ET, Pavlidis TE, Sapalidis K, Ahmed NM, Abdel-Aziz TE, Eddama MMR. Circulating microRNAs and Clinicopathological Findings of Papillary Thyroid Cancer: A Systematic Review. In Vivo 2022; 36:1551-1569. [PMID: 35738604 PMCID: PMC9301440 DOI: 10.21873/invivo.12866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIM Papillary thyroid cancer (PTC) is the most common endocrine malignancy with a rising incidence. There is a need for a non-invasive preoperative test to enable better patient counselling. The aim of this systematic review was to investigate the potential role of circulating microRNAs (miRNAs) in the diagnosis and prognosis of PTC. MATERIALS AND METHODS A systematic literature search was performed using MEDLINE, Cochrane, and Scopus databases (last search date was December 1, 2021). Studies investigating the expression of miRNAs in the serum or plasma of patients with PTC were deemed eligible for inclusion. RESULTS Among the 1,533 screened studies, 39 studies met the inclusion criteria. In total, 108 miRNAs candidates were identified in the serum, plasma, or exosomes of patients suffering from PTC. Furthermore, association of circulating miRNAs with thyroid cancer-specific clinicopathological features, such as tumor size (13 miRNAs), location (3 miRNAs), extrathyroidal extension (9 miRNAs), pre- vs. postoperative period (31 miRNAs), lymph node metastasis (17 miRNAs), TNM stage (9 miRNAs), BRAF V600E mutation (6 miRNAs), serum thyroglobulin levels (2 miRNAs), 131I avid metastases (13 miRNAs), and tumor recurrence (2 miRNAs) was also depicted in this study. CONCLUSION MiRNAs provide a potentially promising role in the diagnosis and prognosis of PTC. There is a correlation between miRNA expression profiles and specific clinicopathological features of PTC. However, to enable their use in clinical practice, further clinical studies are required to validate the predictive value and utility of miRNAs as biomarkers.
Collapse
Affiliation(s)
- Georgios Geropoulos
- Department of General and Endocrine Surgery, University College London Hospitals, London, U.K.;
- 2 Propedeutical Department of Surgery, Hippokration Hospital, School of Medicine,Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriakos Psarras
- 2 Propedeutical Department of Surgery, Hippokration Hospital, School of Medicine,Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Papaioannou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece
| | - Dimitrios Giannis
- Department of Surgery, North Shore University Hospital, Manhasset, NY, U.S.A
| | - Maria Meitanidou
- 2 Propedeutical Department of Surgery, Hippokration Hospital, School of Medicine,Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nikolaos Symeonidis
- 2 Propedeutical Department of Surgery, Hippokration Hospital, School of Medicine,Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efstathios T Pavlidis
- 2 Propedeutical Department of Surgery, Hippokration Hospital, School of Medicine,Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros E Pavlidis
- 2 Propedeutical Department of Surgery, Hippokration Hospital, School of Medicine,Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Sapalidis
- 3 General Surgery Department, "AHEPA" University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nada Mabrouk Ahmed
- Department of General and Endocrine Surgery, University College London Hospitals, London, U.K
- Department of Pathology, University of Alexandria, Alexandria, Egypt
| | - Tarek Ezzat Abdel-Aziz
- Department of General and Endocrine Surgery, University College London Hospitals, London, U.K
| | - Mohammad M R Eddama
- Department of General and Endocrine Surgery, University College London Hospitals, London, U.K
- Research Department of Surgical Biotechnology, University College London, London, U.K
| |
Collapse
|
11
|
Maggisano V, Capriglione F, Verrienti A, Celano M, Gagliardi A, Bulotta S, Sponziello M, Mio C, Pecce V, Durante C, Damante G, Russo D. Identification of Exosomal microRNAs and Their Targets in Papillary Thyroid Cancer Cells. Biomedicines 2022; 10:biomedicines10050961. [PMID: 35625697 PMCID: PMC9138952 DOI: 10.3390/biomedicines10050961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
The release of molecules in exosomal cargoes is involved in tumor development and progression. We compared the profiles of exosomal microRNAs released by two thyroid cancer cell lines (TPC-1 and K1) with that of non-tumorigenic thyroid cells (Nthy-ori-3-1), and we explored the network of miRNA–target interaction. After extraction and characterization of exosomes, expression levels of microRNAs were investigated using custom TaqMan Advanced array cards, and compared with those expressed in the total cell extracts. The functional enrichment and network-based analysis of the miRNAs’ targets was also performed. Five microRNAs (miR-21-5p, miR-31-5p, miR-221-3p, miR-222-3p, and let-7i-3p) were significantly deregulated in the exosomes of tumor cells vs. non-tumorigenic cells, and three of them (miR-31-5p, miR-222-3p, and let-7i-3p) in the more aggressive K1 compared to TPC-1 cells. The network analysis of the five miRNAs identified some genes as targets of more than one miRNAs. These findings permitted the identification of exosomal microRNAs secreted by aggressive PTC cells, and indicated that their main targets are regulators of the tumor microenvironment. A deeper analysis of the functional role of the targets of exosomal miRNAs will provide further information on novel targets of molecular treatments for these neoplasms.
Collapse
Affiliation(s)
- Valentina Maggisano
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (F.C.); (M.C.); (A.G.); (S.B.)
| | - Francesca Capriglione
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (F.C.); (M.C.); (A.G.); (S.B.)
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.V.); (M.S.); (V.P.); (C.D.)
| | - Marilena Celano
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (F.C.); (M.C.); (A.G.); (S.B.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (F.C.); (M.C.); (A.G.); (S.B.)
| | - Stefania Bulotta
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (F.C.); (M.C.); (A.G.); (S.B.)
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.V.); (M.S.); (V.P.); (C.D.)
| | - Catia Mio
- Institute of Medical Genetics, Academic Hospital of Udine, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy; (C.M.); (G.D.)
| | - Valeria Pecce
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.V.); (M.S.); (V.P.); (C.D.)
| | - Cosimo Durante
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.V.); (M.S.); (V.P.); (C.D.)
| | - Giuseppe Damante
- Institute of Medical Genetics, Academic Hospital of Udine, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy; (C.M.); (G.D.)
| | - Diego Russo
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (F.C.); (M.C.); (A.G.); (S.B.)
- Correspondence: ; Tel.: +39-096-136-94-124
| |
Collapse
|
12
|
Clinical Significance of Circulating Tumor Cells (CTCs) and Survivin on Predicting Prognosis in Thyroid Cancer Patients. DISEASE MARKERS 2022; 2022:5188006. [PMID: 35140820 PMCID: PMC8820893 DOI: 10.1155/2022/5188006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Background. Clinical significance of circulating tumor cell (CTC) count, mesenchymal CTCs (MCTCs), and survivin in patients with thyroid cancer remains unclear. We evaluated the relationship between the expression of different CTC subtypes or survivin and the prognosis in patients with thyroid cancer. Patients and Methods. This study enrolled 164 patients with thyroid cancer who were diagnosed from January 2013 to September 2020 in our hospital. Among these patients, there were 73 cases with papillary thyroid cancer (PTC), 60 cases with follicular thyroid cancer (FTC), 12 medullary thyroid cancers (MTC), 10 poorly differentiated thyroid cancers (PDTC), 9 anaplastic thyroid cancers, and 10 control patients with nonmalignant thyroid nodules based on their histopathological characteristics. Only 5 milliliters (mL) of peripheral blood from the patients with thyroid cancer and control was used to detect the CTC cell number via CanPatrol capture technique before treatments. We also isolated mononuclear cells (MNC) from the peripheral blood and performed quantity reverse transcriptase polymerase chain reaction (qPCR) for survivin gene expression among these patients. Results. The overall positive rates of CTC at diagnosis were 56.1%. The relapse and metastasis rates in PTC and FTC patients with more than 6 CTCs and positive MCTCs were significantly higher than those in the patients with 6 or less than 6 CTCs and MCTCs. It was also found that these patients with >6 CTCs and MCTCs had shorter progression-free survival (PFS). Additionally, the survivin level of the patients with thyroid cancer was strongly relative to differentiation grades of thyroid cancers. Conclusions. The detection of more than six of total CTCs and positive MCTCs in the patients with differentiated thyroid cancer is an excellent biomarker for predicting the prognosis of patients. Survivin also is a good biomarker for thyroid cancer differentiation.
Collapse
|
13
|
Diagnostic and Prognostic Performance of Liquid Biopsy-Derived Exosomal MicroRNAs in Thyroid Cancer Patients: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13174295. [PMID: 34503104 PMCID: PMC8428356 DOI: 10.3390/cancers13174295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023] Open
Abstract
Circulatory tumor-derived exosomal microRNAs (miRNAs) play key roles in cancer development/progression. We aimed to assess the diagnostic/prognostic value of circulating exosomal miRNA in thyroid cancer (TC). A search in PubMed, Scopus, Web of Science, and Science Direct up to 22 May 2021 was performed. The true/false positive (TP/FP) and true/false negative (TN/FN) rates were extracted from each eligible study to obtain the pooled sensitivity, specificity, positive/negative likelihood ratios (PLR/NLR), diagnostic odds ratio (DOR), and their 95% confidence intervals (95%CIs). The meta-analysis included 12 articles consisting of 1164 Asian patients and 540 controls. All miRNAs were quantified using qRT-PCR assays. The pooled sensitivity was 82% (95%CI = 77-86%), pooled specificity was 76% (95%CI = 71-80%), and pooled DOR was 13.6 (95%CI = 8.8-21.8). The best biomarkers with high sensitivity were miR-16-2-3p (94%), miR-223-5p (91%), miR-130a-3p (90%), and miR182-5p (94%). Similarly, they showed high specificity, in addition to miR-34c-5p. Six panels of two to four exosomal miRNAs showed higher diagnostic values with an area under the curve (AUC) ranging from 0.906 to 0.981. The best discriminative ability to differentiate between cancer and non-cancer individuals was observed for miR-146b-5p + miR-223-5p + miR-182-5p (AUC = 0.981, sensitivity = 93.8% (84.9-98.3), specificity = 92.9% (76.5-99.1)). In conclusion, the expression levels of exosomal miRNAs could predict TC.
Collapse
|
14
|
Translational Utility of Liquid Biopsies in Thyroid Cancer Management. Cancers (Basel) 2021; 13:cancers13143443. [PMID: 34298656 PMCID: PMC8306718 DOI: 10.3390/cancers13143443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/21/2022] Open
Abstract
Liquid biopsies are a novel technique to assess for either circulating tumor cells (CTC) or circulating tumor DNA (ctDNA and microRNA (miRNA)) in peripheral blood samples of cancer patients. The diagnostic role of liquid biopsy in oncology has expanded in recent years, particularly in lung, colorectal and breast cancer. In thyroid cancer, the role of liquid biopsy in either diagnosis or prognosis is beginning to translate from the lab to the clinic. In this review, we describe the evolution of liquid biopsies in detecting CTC, ctDNA and miRNA in thyroid cancer patients, together with its limitations and future directions in clinical practice.
Collapse
|
15
|
Epigenetic signature associated with thyroid cancer progression and metastasis. Semin Cancer Biol 2021; 83:261-268. [PMID: 33785448 DOI: 10.1016/j.semcancer.2021.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
Thyroid cancer is not among the top cancers in terms of diagnosis or mortality but it still ranks fifth among the cancers diagnosed in women. Infact, women are more likely to be diagnosed with thyroid cancer than the males. The burden of thyroid cancer has dramatically increased in last two decades in China and, in the United States, it is the most diagnosed cancer in young adults under the age of twenty-nine. All these factors make it worthwhile to fully understand the pathogenesis of thyroid cancer. Towards this end, microRNAs (miRNAs) have constantly emerged as the non-coding RNAs of interest in various thyroid cancer subtypes on which there have been numerous investigations over the last decade and half. This comprehensive review takes a look at the current knowledge on the topic with cataloging of miRNAs known so far, particularly related to their utility as epigenetic signatures of thyroid cancer progression and metastasis. Such information could be of immense use for the eventual development of miRNAs as therapeutic targets or even therapeutic agents for thyroid cancer therapy.
Collapse
|