1
|
Xu X, Yang Y, Tan X, Zhang Z, Wang B, Yang X, Weng C, Yu R, Zhao Q, Quan S. Hepatic encephalopathy post-TIPS: Current status and prospects in predictive assessment. Comput Struct Biotechnol J 2024; 24:493-506. [PMID: 39076168 PMCID: PMC11284497 DOI: 10.1016/j.csbj.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024] Open
Abstract
Transjugular intrahepatic portosystemic shunt (TIPS) is an essential procedure for the treatment of portal hypertension but can result in hepatic encephalopathy (HE), a serious complication that worsens patient outcomes. Investigating predictors of HE after TIPS is essential to improve prognosis. This review analyzes risk factors and compares predictive models, weighing traditional scores such as Child-Pugh, Model for End-Stage Liver Disease (MELD), and albumin-bilirubin (ALBI) against emerging artificial intelligence (AI) techniques. While traditional scores provide initial insights into HE risk, they have limitations in dealing with clinical complexity. Advances in machine learning (ML), particularly when integrated with imaging and clinical data, offer refined assessments. These innovations suggest the potential for AI to significantly improve the prediction of post-TIPS HE. The study provides clinicians with a comprehensive overview of current prediction methods, while advocating for the integration of AI to increase the accuracy of post-TIPS HE assessments. By harnessing the power of AI, clinicians can better manage the risks associated with TIPS and tailor interventions to individual patient needs. Future research should therefore prioritize the development of advanced AI frameworks that can assimilate diverse data streams to support clinical decision-making. The goal is not only to more accurately predict HE, but also to improve overall patient care and quality of life.
Collapse
Affiliation(s)
- Xiaowei Xu
- Department of Gastroenterology Nursing Unit, Ward 192, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yun Yang
- School of Nursing, Wenzhou Medical University, Wenzhou 325001, China
| | - Xinru Tan
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Ziyang Zhang
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Boxiang Wang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Xiaojie Yang
- Wenzhou Medical University Renji College, Wenzhou 325000, China
| | - Chujun Weng
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu 322000, China
| | - Rongwen Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Shichao Quan
- Department of Big Data in Health Science, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
2
|
Huang W, Peng Y, Kang L. Advancements of non‐invasive imaging technologies for the diagnosis and staging of liver fibrosis: Present and future. VIEW 2024; 5. [DOI: 10.1002/viw.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/28/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractLiver fibrosis is a reparative response triggered by liver injury. Non‐invasive assessment and staging of liver fibrosis in patients with chronic liver disease are of paramount importance, as treatment strategies and prognoses depend significantly on the degree of fibrosis. Although liver fibrosis has traditionally been staged through invasive liver biopsy, this method is prone to sampling errors, particularly when biopsy sizes are inadequate. Consequently, there is an urgent clinical need for an alternative to biopsy, one that ensures precise, sensitive, and non‐invasive diagnosis and staging of liver fibrosis. Non‐invasive imaging assessments have assumed a pivotal role in clinical practice, enjoying growing popularity and acceptance due to their potential for diagnosing, staging, and monitoring liver fibrosis. In this comprehensive review, we first delved into the current landscape of non‐invasive imaging technologies, assessing their accuracy and the transformative impact they have had on the diagnosis and management of liver fibrosis in both clinical practice and animal models. Additionally, we provided an in‐depth exploration of recent advancements in ultrasound imaging, computed tomography imaging, magnetic resonance imaging, nuclear medicine imaging, radiomics, and artificial intelligence within the field of liver fibrosis research. We summarized the key concepts, advantages, limitations, and diagnostic performance of each technique. Finally, we discussed the challenges associated with clinical implementation and offer our perspective on advancing the field, hoping to provide alternative directions for the future research.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Yushuo Peng
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Lei Kang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| |
Collapse
|
3
|
Wang XM, Zhang XJ. Role of radiomics in staging liver fibrosis: a meta-analysis. BMC Med Imaging 2024; 24:87. [PMID: 38609843 PMCID: PMC11010385 DOI: 10.1186/s12880-024-01272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/10/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Fibrosis has important pathoetiological and prognostic roles in chronic liver disease. This study evaluates the role of radiomics in staging liver fibrosis. METHOD After literature search in electronic databases (Embase, Ovid, Science Direct, Springer, and Web of Science), studies were selected by following precise eligibility criteria. The quality of included studies was assessed, and meta-analyses were performed to achieve pooled estimates of area under receiver-operator curve (AUROC), accuracy, sensitivity, and specificity of radiomics in staging liver fibrosis compared to histopathology. RESULTS Fifteen studies (3718 patients; age 47 years [95% confidence interval (CI): 42, 53]; 69% [95% CI: 65, 73] males) were included. AUROC values of radiomics for detecting significant fibrosis (F2-4), advanced fibrosis (F3-4), and cirrhosis (F4) were 0.91 [95%CI: 0.89, 0.94], 0.92 [95%CI: 0.90, 0.95], and 0.94 [95%CI: 0.93, 0.96] in training cohorts and 0.89 [95%CI: 0.83, 0.91], 0.89 [95%CI: 0.83, 0.94], and 0.93 [95%CI: 0.91, 0.95] in validation cohorts, respectively. For diagnosing significant fibrosis, advanced fibrosis, and cirrhosis the sensitivity of radiomics was 84.0% [95%CI: 76.1, 91.9], 86.9% [95%CI: 76.8, 97.0], and 92.7% [95%CI: 89.7, 95.7] in training cohorts, and 75.6% [95%CI: 67.7, 83.5], 80.0% [95%CI: 70.7, 89.3], and 92.0% [95%CI: 87.8, 96.1] in validation cohorts, respectively. Respective specificity was 88.6% [95% CI: 83.0, 94.2], 88.4% [95% CI: 81.9, 94.8], and 91.1% [95% CI: 86.8, 95.5] in training cohorts, and 86.8% [95% CI: 83.3, 90.3], 94.0% [95% CI: 89.5, 98.4], and 88.3% [95% CI: 84.4, 92.2] in validation cohorts. Limitations included use of several methods for feature selection and classification, less availability of studies evaluating a particular radiological modality, lack of a direct comparison between radiology and radiomics, and lack of external validation. CONCLUSION Although radiomics offers good diagnostic accuracy in detecting liver fibrosis, its role in clinical practice is not as clear at present due to comparability and validation constraints.
Collapse
Affiliation(s)
- Xiao-Min Wang
- School of Medical Imaging, Tianjin Medical University, No.1, Guangdong Road, Hexi District, Tianjin, 300203, China.
| | - Xiao-Jing Zhang
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
4
|
Hu J, Wang X, Prince M, Wang F, Sun J, Yang X, Wang W, Ye J, Chen L, Luo X. Gd-EOB-DTPA enhanced MRI based radiomics combined with clinical variables in stratifying hepatic functional reserve in HBV infected patients. Abdom Radiol (NY) 2024; 49:1051-1062. [PMID: 38294541 DOI: 10.1007/s00261-023-04176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
PURPOSES To evaluate radiomics from Gd-EOB-DTPA enhanced MR combined with clinical variables for stratifying hepatic functional reserve in hepatitis B virus (HBV) patients. METHODS Our study included 279 chronic HBV patients divided 8:2 for training and test cohorts. Radiomics features were extracted from the hepatobiliary phase (HBP) MR images. Radiomics features were selected to construct a Rad-score which was combined with clinical parameters in two models differentiating hepatitis vs. Child-Pugh A and Child-Pugh A vs. B/C. Performances of these stratifying models were compared using area under curve (AUC). RESULTS Rad-score alone discriminated hepatitis vs. Child-Pugh A with AUC = 0.890, 0.914 and Child-Pugh A vs. B/C with AUC = 0.862, 0.865 for the training and test cohorts, respectively. Model 1 [Rad-score + clinical parameters for hepatitis vs. Child-Pugh A] showed AUC = 0.978 for the test cohort, which was higher than ALBI [albumin-bilirubin] and MELD [model for end-stage liver disease], with AUCs of 0.716, 0.799, respectively (p < 0.001, < 0.001). Model 2 [Rad-score + clinical parameters for Child-Pugh A vs. B/C] showed AUC of 0.890 in the test cohort, which was similar to ALBI (AUC = 0.908, p = 0.760), and higher than MELD (AUC = 0.709, p = 0.018). CONCLUSION Rad-score combined with clinical variables stratifies hepatic functional reserve in HBV patients.
Collapse
Affiliation(s)
- Jinghui Hu
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Xiaoxiao Wang
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Martin Prince
- Department of Radiology, Weill Medical College of Cornell University, 407 E61st Street, New York, NY, 10065, USA
| | - Fang Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Yunjin Road 701, Xuhui District, Shanghai, 200232, China
| | - Jun Sun
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Xin Yang
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Wenjian Wang
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Jing Ye
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Lei Chen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Yunjin Road 701, Xuhui District, Shanghai, 200232, China
| | - Xianfu Luo
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China.
| |
Collapse
|
5
|
Lu F, Meng Y, Song X, Li X, Liu Z, Gu C, Zheng X, Jing Y, Cai W, Pinyopornpanish K, Mancuso A, Romeiro FG, Méndez-Sánchez N, Qi X. Artificial Intelligence in Liver Diseases: Recent Advances. Adv Ther 2024; 41:967-990. [PMID: 38286960 DOI: 10.1007/s12325-024-02781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Liver diseases cause a significant burden on public health worldwide. In spite of great advances during recent years, there are still many challenges in the diagnosis and treatment of liver diseases. During recent years, artificial intelligence (AI) has been widely used for the diagnosis, risk stratification, and prognostic prediction of various diseases based on clinical datasets and medical images. Accumulative studies have shown its performance for diagnosing patients with nonalcoholic fatty liver disease and liver fibrosis and assessing their severity, and for predicting treatment response and recurrence of hepatocellular carcinoma, outcomes of liver transplantation recipients, and risk of drug-induced liver injury. Herein, we aim to comprehensively summarize the current evidence regarding diagnostic, prognostic, and/or therapeutic role of AI in these common liver diseases.
Collapse
Affiliation(s)
- Feifei Lu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
| | - Yao Meng
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaoting Song
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaotong Li
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Zhuang Liu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Chunru Gu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Xiaojie Zheng
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Yi Jing
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China
| | - Wei Cai
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China
| | - Kanokwan Pinyopornpanish
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Andrea Mancuso
- Medicina Interna 1, Azienda di Rilievo Nazionale Ad Alta Specializzazione Civico-Di Cristina-Benfratelli, Palermo, Italy.
| | | | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation, National Autonomous University of Mexico, Mexico City, Mexico.
| | - Xingshun Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China.
- Postgraduate College, Dalian Medical University, Dalian, China.
- Postgraduate College, China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Popa SL, Ismaiel A, Abenavoli L, Padureanu AM, Dita MO, Bolchis R, Munteanu MA, Brata VD, Pop C, Bosneag A, Dumitrascu DI, Barsan M, David L. Diagnosis of Liver Fibrosis Using Artificial Intelligence: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050992. [PMID: 37241224 DOI: 10.3390/medicina59050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: The development of liver fibrosis as a consequence of continuous inflammation represents a turning point in the evolution of chronic liver diseases. The recent developments of artificial intelligence (AI) applications show a high potential for improving the accuracy of diagnosis, involving large sets of clinical data. For this reason, the aim of this systematic review is to provide a comprehensive overview of current AI applications and analyze the accuracy of these systems to perform an automated diagnosis of liver fibrosis. Materials and Methods: We searched PubMed, Cochrane Library, EMBASE, and WILEY databases using predefined keywords. Articles were screened for relevant publications about AI applications capable of diagnosing liver fibrosis. Exclusion criteria were animal studies, case reports, abstracts, letters to the editor, conference presentations, pediatric studies, studies written in languages other than English, and editorials. Results: Our search identified a total of 24 articles analyzing the automated imagistic diagnosis of liver fibrosis, out of which six studies analyze liver ultrasound images, seven studies analyze computer tomography images, five studies analyze magnetic resonance images, and six studies analyze liver biopsies. The studies included in our systematic review showed that AI-assisted non-invasive techniques performed as accurately as human experts in detecting and staging liver fibrosis. Nevertheless, the findings of these studies need to be confirmed through clinical trials to be implemented into clinical practice. Conclusions: The current systematic review provides a comprehensive analysis of the performance of AI systems in diagnosing liver fibrosis. Automatic diagnosis, staging, and risk stratification for liver fibrosis is currently possible considering the accuracy of the AI systems, which can overcome the limitations of non-invasive diagnosis methods.
Collapse
Affiliation(s)
- Stefan Lucian Popa
- 2nd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Abdulrahman Ismaiel
- 2nd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | | | - Miruna Oana Dita
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Roxana Bolchis
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Vlad Dumitru Brata
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Cristina Pop
- Department of Pharmacology, Physiology, and Pathophysiology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Andrei Bosneag
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Dinu Iuliu Dumitrascu
- Department of Anatomy, UMF "Iuliu Hatieganu" Cluj-Napoca, 400000 Cluj-Napoca, Romania
| | - Maria Barsan
- Department of Occupational Health, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Liliana David
- 2nd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Radiomics nomograms based on R2* mapping and clinical biomarkers for staging of liver fibrosis in patients with chronic hepatitis B: a single-center retrospective study. Eur Radiol 2023; 33:1653-1667. [PMID: 36149481 DOI: 10.1007/s00330-022-09137-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/05/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate the value of R2* mapping-based radiomics nomograms in staging liver fibrosis in patients with chronic hepatitis B. METHODS Between January 2020 and December 2020, 151 patients with chronic hepatitis B were randomly divided into training (n = 103) and validation (n = 48) cohorts. From January to February 2021, 58 patients were included in a test cohort. Radiomics features were selected using the interclass correlation coefficient and least absolute shrinkage and selection operator method. Three radiomics nomograms, combining the radiomics score (Radscore) derived from R2* mapping and clinical variables, were used for staging significant and advanced fibrosis, and cirrhosis. Performance of the model was evaluated using the AUC. The utility and clinical benefits were evaluated using the continuous net reclassification index (NRI), integrated discrimination improvement (IDI), and decision curve analysis (DCA). RESULTS The Radscore calculated by 12 radiomics features and independent factors (laminin and platelet) of advanced fibrosis were used to construct the radiomics nomograms. In the test cohort, the AUCs of the radiomics nomograms for staging significant fibrosis, advanced fibrosis, and cirrhosis were 0.738 (95% confidence interval [CI]: 0.604-0.872), 0.879 (95% CI: 0.779-0.98), and 0.952 (95% CI: 0.878-1), respectively. NRI, IDI, and DCA confirmed that radiomics nomograms demonstrated varying degrees of clinical benefit and improvement for advanced fibrosis and cirrhosis, but not for significant fibrosis. CONCLUSIONS Radiomics nomograms combined with R2* mapping-based Radscore, laminin, and platelet have value in staging advanced fibrosis and cirrhosis but limited value for staging significant fibrosis. KEY POINTS • Laminin and platelets were independent predictors of advanced fibrosis. • Radiomics analysis based on R2* mapping was beneficial for evaluating advanced fibrosis and cirrhosis. • It was difficult to distinguish significant fibrosis using a radiomics nomogram, which is possibly due to the complex pathological microenvironment of chronic liver diseases.
Collapse
|
8
|
Borzillo V, Muto P. Radiotherapy in the Treatment of Subcutaneous Melanoma. Cancers (Basel) 2021; 13:cancers13225859. [PMID: 34831017 PMCID: PMC8616425 DOI: 10.3390/cancers13225859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The non-surgical treatment of cutaneous and/or subcutaneous melanoma lesions involves a multitude of local treatments, including radiotherapy. This is often used when other local methods fail, and there are currently no clear guidelines or evidence-based recommendations to support its use in this setting. This review, collecting the retrospective and prospective experiences on radiotherapy alone or in combination with other methods, aims to provide a scenario of the possible advantages and disadvantages related to its use in the treatment of skin/subcutaneous melanoma lesions. Abstract Malignant melanoma frequently develops cutaneous and/or subcutaneous metastases during the course of the disease. These may present as non-nodal locoregional metastases (microsatellite, satellite, or in-transit) included in stage III or as distant metastases in stage IV. Their presentation is heterogeneous and associated with significant morbidity resulting from both disease-related functional damage and treatment side effects. The standard treatment is surgical excision, whereas local therapies or systemic therapies have a role when surgery is not indicated. Radiotherapy can be used in the local management of ITM, subcutaneous relapses, or distant metastases to provide symptom relief and prolong regional disease control. To increase the local response without increasing toxicity, the addition of hyperthermia and intralesional therapies to radiotherapy appear to be very promising. Boron neutron capture therapy, based on nuclear neutron capture and boron isotope fission reaction, could be an alternative to standard treatments, but its use in clinical practice is still limited. The potential benefit of combining radiotherapy with targeted therapies and immunotherapy has yet to be explored in this lesion setting. This review explores the role of radiotherapy in the treatment of cutaneous and subcutaneous lesions, its impact on outcomes, and its association with other treatment modalities.
Collapse
|
9
|
Current status of China's critical care medicine big data platform and future prospects. Chin Med J (Engl) 2021; 134:1684-1686. [PMID: 33496466 PMCID: PMC8318638 DOI: 10.1097/cm9.0000000000001366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|