1
|
Lewicki S, Bałan BJ, Stelmasiak M, Radomska-Leśniewska DM, Szymański Ł, Rios-Turek N, Bień-Kalinowska J, Szarpak Ł, Hajduk B. Immunological Insights and Therapeutic Advances in COPD: Exploring Oral Bacterial Vaccines for Immune Modulation and Clinical Improvement. Vaccines (Basel) 2025; 13:107. [PMID: 40006655 PMCID: PMC11861055 DOI: 10.3390/vaccines13020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic condition associated with substantial global morbidity and mortality. Primarily caused by prolonged exposure to harmful agents such as dust and gases, COPD is characterized by persistent airflow limitation, clinically manifesting as chronic cough, sputum production, and dyspnea. The disease course alternates between stable phases and exacerbations, with the latter often associated with pathogenic colonization of the respiratory tract. This review examines the immunological underpinnings of COPD, emphasizing the interplay between innate and adaptive immunity in disease pathogenesis. Dysregulated immune responses to environmental factors perpetuate chronic inflammation, resulting in progressive pulmonary epithelial damage and connective tissue hyperplasia, which compromise gas exchange. Exacerbations further exacerbate respiratory failure, aggravating patient symptoms and accelerating disease progression. Despite advances in COPD management, effective therapeutic options remain limited. Current treatments primarily aim to alleviate symptoms, reduce immune activation, and manage infections, yet many patients experience suboptimal outcomes. This review highlights the potential of novel therapeutic approaches targeting immune system cells and pathways. In particular, it explores the promise of oral bacterial vaccines as immunomodulatory agents to enhance immune responses and improve clinical outcomes in COPD, addressing critical gaps in current treatment paradigms.
Collapse
Affiliation(s)
- Sławomir Lewicki
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, Pl. Żelaznej Bramy 10, 00-136 Warsaw, Poland; (J.B.-K.); (B.H.)
| | - Barbara Joanna Bałan
- Department of Environmental Threat Prevention, Allergology and Immunology, Faculty of Health Sciences, Medical University of Warsaw, Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Marta Stelmasiak
- Department of Dietetics, Institute of Human Nutrition Science, Warsaw University of Life Sciences, Nowoursynowska 159c St., 02-776 Warsaw, Poland;
| | | | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland;
| | - Natalia Rios-Turek
- Hull University Teaching Hospitals NHS Trust, Hull University, Anlaby Rd., Hull HU3 2JZ, UK;
| | - Justyna Bień-Kalinowska
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, Pl. Żelaznej Bramy 10, 00-136 Warsaw, Poland; (J.B.-K.); (B.H.)
| | - Łukasz Szarpak
- Institute of Medicine Science, Collegium Medicum, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
- Department of Clinical Research and Development, LUXMED Group, 02-678 Warsaw, Poland
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- TS Out-Patients Clinic for Cardiovascular and Pulmonary Diseases, 01-460 Warsaw, Poland;
| | - Bogdan Hajduk
- TS Out-Patients Clinic for Cardiovascular and Pulmonary Diseases, 01-460 Warsaw, Poland;
| |
Collapse
|
2
|
He Q, Cao J, Zhang M, Feng C. IL-17 in plasma and bronchoalveolar lavage fluid in non-neutropenic patients with invasive pulmonary aspergillosis. Front Cell Infect Microbiol 2024; 14:1402888. [PMID: 39176263 PMCID: PMC11339031 DOI: 10.3389/fcimb.2024.1402888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Background The purpose of this study was to investigate the diagnostic value of IL-17 detection in bronchoalveolar lavage fluid (BALF) and plasma samples from nonneutropenic patients with invasive pulmonary aspergillosis. Methods We retrospectively collected data on non-neutropenic patients who were suspected to have IPA admitted to the Third Affiliated Hospital of Soochow University between March 2020 to January 2023. IL-17 and GM were measured using enzyme-linked immunosorbent assays. Results A total of 281 patients were enrolled in this study, of which 62 had proven or probable IPA and the remaining 219 patients were controls. The plasma and BALF IL-17 levels were significantly higher in the IPA group compared with the control group. The plasma GM, plasma IL17, BALF GM, and BALF IL17 assays had sensitivities of 56.5%, 72.6%, 68.7%, and 81.2%, respectively, and specificities of 87.7%, 69.4%, 91.9%, and 72.6%, respectively. The sensitivity of IL17 in plasma and BALF was higher than that of GM. Plasma GM in combination with IL-17 increases the sensitivity but does not decrease the diagnostic specificity of GM testing. The diagnostic sensitivity and specificity of BALF GM combined with IL-17 for IPA in non-neutropenic patients were greater than 80% and there was a significant increase in sensitivity compared with BALF GM. Conclusions Plasma and BALF IL-17 levels were significantly higher in non-neutropenic patients with IPA. The sensitivity of plasma and BLAF IL-17 for diagnosing IPA in non-neutropenic patients was superior to that of GM. Combined detection of lavage fluid GM and IL17 significantly improves the diagnosis of IPA in non-neutropenic patients. The combined detection of GM and IL-17 in plasma also contributes to the diagnosis of IPA in patients who cannot tolerate invasive procedures.
Collapse
Affiliation(s)
| | | | | | - Chunlai Feng
- Department of Respiratory and Critical Care Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
3
|
Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023; 14:2172264. [PMID: 36752587 PMCID: PMC10732619 DOI: 10.1080/21505594.2023.2172264] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.
Collapse
Affiliation(s)
- Kayleigh Earle
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Daniel P. Conn
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George Vere
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C. Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Alvarez F, Piccirillo CA. The functional adaptation of effector Foxp3 + regulatory T cells to pulmonary inflammation. Eur J Immunol 2023; 53:e2250273. [PMID: 37366319 DOI: 10.1002/eji.202250273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
During infections, the timings of effector differentiation of pulmonary immune responses are of paramount importance, as pathogen persistence and unsuppressed inflammation can rapidly lead to a loss of function, increased frailty, and death. Thus, both an efficient clearance of the danger and a rapid resolution of inflammation are critical to host survival. We now know that tissue-localized FoxP3+ regulatory T cells, a subset of CD4+ T cells, are highly attuned to the type of immune response, acquiring unique phenotypic characteristics that allow them to adapt their suppressive functions with the nature of inflammatory cells. To achieve this, activated effector TREG cells acquire specialized TH 1, TH 2, and TH 17-like characteristics that allow them to migrate, survive, and time their function(s) through refined mechanisms. Herein, we describe how this process requires a unique developmental path that includes the acquisition of master transcription factors and the expression of receptors adapted to sense local danger signals that are found during pulmonary inflammation. In turn, we offer an overview of how these characteristics promote the capacity of local effector TREG cells to proliferate, survive, and display suppressive strategies to resolve lung injury.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montréal, Québec, Canada
| |
Collapse
|
5
|
Zhu Y, Chang D. Interactions between the lung microbiome and host immunity in chronic obstructive pulmonary disease. Chronic Dis Transl Med 2023; 9:104-121. [PMID: 37305112 PMCID: PMC10249200 DOI: 10.1002/cdt3.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease and the third leading cause of death worldwide. Developments in next-generation sequencing technology have improved microbiome analysis, which is increasingly recognized as an important component of disease management. Similar to the gut, the lung is a biosphere containing billions of microbial communities. The lung microbiome plays an important role in regulating and maintaining the host immune system. The microbiome composition, metabolites of microorganisms, and the interactions between the lung microbiome and the host immunity profoundly affect the occurrence, development, treatment, and prognosis of COPD. In this review, we drew comparisons between the lung microbiome of healthy individuals and that of patients with COPD. Furthermore, we summarize the intrinsic interactions between the host and the overall lung microbiome, focusing on the underlying mechanisms linking the microbiome to the host innate and adaptive immune response pathways. Finally, we discuss the possibility of using the microbiome as a biomarker to determine the stage and prognosis of COPD and the feasibility of developing a novel, safe, and effective therapeutic target.
Collapse
Affiliation(s)
- Yixing Zhu
- Graduate School of The PLA General HospitalBeijingChina
| | - De Chang
- Department of Respiratory and Critical Care Medicine, Eighth Medical Center, Department of Respiratory and Critical Care Seventh Medical CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
6
|
He Q, Li M, Cao J, Zhang M, Feng C. Diagnosis values of Dectin-1 and IL-17 levels in plasma for invasive pulmonary aspergillosis in bronchiectasis. Front Cell Infect Microbiol 2022; 12:1018499. [PMID: 36304934 PMCID: PMC9592802 DOI: 10.3389/fcimb.2022.1018499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background Among immunocompetent patients, patients with bronchiectasis are considered to be a high-risk group for invasive pulmonary aspergillosis (IPA). Early diagnosis and treatment can improve the prognosis of patients. Objectives We aimed to investigate the diagnostic value of Dectin-1 and IL-17 for diagnosing IPA with bronchiectasis. Methods We retrospectively collected data on patients with bronchiectasis who had been hospitalized in the Third Affiliated Hospital of Soochow University between September 2018 to December 2021. Dectin-1, IL-17 and GM were measured by enzyme-linked immunosorbent assays. Results A total of 129 patients were analyzed in the study, of whom 33 had proven or probable IPA with bronchiectasis. The remaining 96 patients served as controls. The plasma Dectin-1 and IL-17 levels in the IPA group were significantly higher than that in the control group (P=0.005; P<0.001). The plasma GM, BALF GM, plasma Dectin-1 and IL-17 assays had sensitivities of 39.4%, 62.5%, 69.7% and 78.8%, respectively, and specificities of 89.2%, 91.5%, 72.9% and 71.9%, respectively. The sensitivity of Dectin-1 and IL-17 in plasma was higher than that in plasma and BALF GM. while the specificity is lower than that of plasma and BALF GM. The diagnostic sensitivity and specificity of plasma GM combined with IL-17 for IPA in bronchiectasis were greater than 80%. The combination of plasma GM and IL-17 can improve the sensitivity of the GM test, but does not reduce the diagnostic specificity. The plasma Dectin-1 and IL-17 showed positive linear correlations with the bronchiectasis severity Index (BSI) score in linear regression. Conclusions Plasma Dectin-1 and IL-17 levels were significantly higher in bronchiectasis patients with IPA. The sensitivity of Dectin-1 and IL-17 was superior to that of GM for the diagnosis of IPA in patients with bronchiectasis. The combination of GM and IL-17 in plasma is helpful for the diagnosis of IPA in bronchiectasis patients who cannot tolerate invasive procedures.
Collapse
|