1
|
Gouveia N, Rodriguez-Hernandez JL, Kephart JL, Ortigoza A, Betancourt RM, Sangrador JLT, Rodriguez DA, Diez Roux AV, Sanchez B, Yamada G. Short-term associations between fine particulate air pollution and cardiovascular and respiratory mortality in 337 cities in Latin America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171073. [PMID: 38382618 PMCID: PMC10918459 DOI: 10.1016/j.scitotenv.2024.171073] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Ambient air pollution is a health concern in Latin America given its large urban population exposed to levels above recommended guidelines. Yet no studies have examined the mortality impact of air pollutants in the region across a wide range of cities. We assessed whether short-term levels of fine particulate matter (PM2.5) from modeled estimates, are associated with cardiovascular and respiratory mortality among adults in 337 cities from 9 Latin American countries. We compiled mortality, PM2.5 and temperature data for the period 2009-2015. For each city, we evaluated the association between monthly changes in PM2.5 and cardiovascular and respiratory mortality for sex and age subgroups using Poisson models, adjusted for seasonality, long-term trend, and temperature. To accommodate possibly different associations of mortality with PM2.5 by age, we included interaction terms between changes in PM2.5 and age in the models. We combined the city-specific estimates using a random effects meta-regression to obtain mortality relative risks for each sex and age group. We analyzed 3,026,861 and 1,222,623 cardiovascular and respiratory deaths, respectively, from a study population that represents 41 % of the total population of Latin America. We observed that a 10 μg/m3 increase in monthly PM2.5 is associated with an increase of 1.3 % (95 % confidence interval [CI], 0.4 to 2.2) in cardiovascular mortality and a 0.9 % increase (95 % CI -0.6 to 2.4) in respiratory mortality. Increases in mortality risk ranged between -0.5 % to 3.0 % across 6 sex-age groups, were larger in men, and demonstrated stronger associations with cardiovascular mortality as age increased. Socioeconomic, environmental and health contexts in Latin America are different than those present in higher income cities from which most evidence on air pollution impacts is drawn. Locally generated evidence constitutes a powerful instrument to engage civil society and help drive actions to mitigate and control ambient air pollution.
Collapse
Affiliation(s)
- Nelson Gouveia
- Department of Preventive Medicine, University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | | | - Josiah L Kephart
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, USA; Department of Environmental and Occupational Health, Drexel Dornsife School of Public Health, Philadelphia, USA
| | - Ana Ortigoza
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, USA; Department of Environmental and Social determinants for Health Equity, Pan American Health Organization, USA
| | | | | | - Daniel A Rodriguez
- Institute of Transportation Studies, University of California, Berkeley, CA, USA; Department of City and Regional Planning and Institute Transportation Studies, University of California, Berkeley, USA
| | - Ana V Diez Roux
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, USA; Department of Epidemiology and Biostatistics, Drexel Dornsife School of Public Health, Philadelphia, USA
| | - Brisa Sanchez
- Department of Epidemiology and Biostatistics, Drexel Dornsife School of Public Health, Philadelphia, USA
| | - Goro Yamada
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, USA
| |
Collapse
|
2
|
Sivakumar B, Ali N, Ahmad SF, Nadeem A, Waseem M, Kurian GA. PM 2.5-Induced Cardiac Structural Modifications and Declined Pro-Survival Signalling Pathways Are Responsible for the Inefficiency of GSK-3β Inhibitor in Attenuating Myocardial Ischemia-Reperfusion Injury in Rats. Cells 2023; 12:2064. [PMID: 37626874 PMCID: PMC10453520 DOI: 10.3390/cells12162064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Circulatory GSK3β is recognized as a biomarker and therapeutic target for diseases, including myocardial diseases. However, its potential as a target for myocardial ischemia-reperfusion injury (IR) in the presence of PM2.5 exposure is unclear. Wistar rats underwent IR following either a 21-day or single exposure to PM2.5 at a concentration of 250 µg/m3. The effects of GSK3β inhibitor on cardiac physiology, tissue injury, mitochondrial function, and the PI3K/AKT/GSK3β signalling axis were examined. The inhibitor was not effective in improving hemodynamics or reducing IR-induced infarction in the myocardium exposed to PM2.5 for 21 days. However, for a single-day exposure, the inhibitor showed potential in mitigating cardiac injury. In normal hearts undergoing IR, the inhibitor activated the PI3K/AKT signalling pathway, improved mitochondrial function, and reduced oxidative stress. These positive effects were not observed in PM2.5-exposed rats. Furthermore, the inhibitor stimulated autophagy in hearts exposed to PM2.5 for 21 days and subjected to IR, resulting in increased mTOR expression and decreased AMPK expression. In normal hearts and those exposed to a single dose of PM2.5, the inhibitor effectively activated the PI3K/Akt/AMPK axis. These findings suggest that GSK3β may not be a reliable therapeutic target for IR in the presence of chronic PM2.5 exposure.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (S.F.A.); (A.N.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (S.F.A.); (A.N.)
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (S.F.A.); (A.N.)
| | - Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Gino A. Kurian
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India;
| |
Collapse
|