1
|
Zhang Q, Zhang Y, Guo S, Wang H. Emerging insights into the role of microRNAs regulation of ferroptosis in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167642. [PMID: 39734007 DOI: 10.1016/j.bbadis.2024.167642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major type of liver cancer and an important cause of cancer death. It has been reported that the hepatocyte death plays an important role in HCC. Ferroptosis is an iron-dependent programmed cell death characterized by the accumulation of free iron and lipid peroxidation. A series of studies have shown that ferroptosis contributes to the occurrence and development of HCC. MicroRNAs (miRNAs) are non-coding RNAs with a length of approximately 222 nt. In recent years, miRNAs have been shown to participate in regulating ferroptosis to play a vital role in HCC, but the related mechanisms are not fully understood. This review summarized the current understanding of ferroptosis, as well as the biogenesis and function of miRNAs, and focused on the role of miRNAs regulation of ferroptosis in HCC, with the hope of providing new targets and ideas for the treatment of HCC.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yingdan Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Safari MH, Rahimzadeh P, Alaei E, Alimohammadi M, Esfandiari N, Daneshi S, Malgard N, Farahani N, Taheriazam A, Hashemi M. Targeting ferroptosis in gastrointestinal tumors: Interplay of iron-dependent cell death and autophagy. Mol Cell Probes 2025; 79:102013. [PMID: 39837469 DOI: 10.1016/j.mcp.2025.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Ferroptosis is a regulated cell death mechanism distinct from apoptosis, autophagy, and necroptosis, marked by iron accumulation and lipid peroxidation. Since its identification in 2012, it has developed into a potential therapeutic target, especially concerning GI disorders like PC, HCC, GC, and CRC. This interest arises from the distinctive role of ferroptosis in the progression of diseases, presenting a new avenue for treatment where existing therapies fall short. Recent studies emphasize the promise of focusing on ferroptosis to fight GI cancers, showcasing its unique pathophysiological mechanisms compared to other types of cell death. By comprehending how ferroptosis aids in the onset and advancement of GI diseases, scientists aim to discover novel drug targets and treatment approaches. Investigating ferroptosis in gastrointestinal disorders reveals exciting possibilities for novel therapies, potentially revolutionizing cancer treatment and providing renewed hope for individuals affected by these tumors.
Collapse
Affiliation(s)
- Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Neda Malgard
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Liu XQ, Shi MZ, Bai YT, Su XL, Liu YM, Wu JC, Chen LR. Hypoxia and ferroptosis. Cell Signal 2024; 122:111328. [PMID: 39094672 DOI: 10.1016/j.cellsig.2024.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Ferroptosis is a novel, iron-dependent cell death characterized by the excessive accumulation of ferroptosis lipid peroxides ultimately leading to oxidative damage to the cell membrane. Iron, lipid, amino acid metabolism, and other signaling pathways all control ferroptosis. Numerous bodily tissues experience hypoxia under normal and pathological circumstances. Tissue cells can adjust to these changes by activating the hypoxia-inducible factor (HIF) signaling pathway and other mechanisms in response to the hypoxic environment. In recent years, there has been increasing evidence that hypoxia and ferroptosis are closely linked, and that hypoxia can regulate ferroptosis in specific cells and conditions through different pathways. In this paper, we review the possible positive and negative regulatory mechanisms of ferroptosis by hypoxia-inducible factors, as well as ferroptosis-associated ischemic diseases, with the intention of delivering novel therapeutic avenues for the defense and management of hypoxic illnesses linked to ferroptosis.
Collapse
Affiliation(s)
- Xiao-Qian Liu
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Meng-Zhen Shi
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yu-Ting Bai
- Qinghai Provincial People's Hospital, Xining 810001, PR China.
| | - Xiao-Ling Su
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yan-Min Liu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Jin-Chun Wu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Li-Rong Chen
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| |
Collapse
|
4
|
Wang G, Yao Y, Xie J, Wen C. Long noncoding RNA ZFAS1 exerts a suppressive impact on ferroptosis by modulating the miR-150/AIFM2 axis in hepatocellular carcinoma cells. Heliyon 2024; 10:e37225. [PMID: 39296014 PMCID: PMC11409106 DOI: 10.1016/j.heliyon.2024.e37225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
ZNFX1 Antisense RNA 1 (ZFAS1) act as an oncogenic long noncoding RNA in multiple types of cancer. Ferroptosis is an iron-dependent cell death characterized by excessive iron accumulation and lipid peroxidation. However, to date, the functional role and mechanism of ZFAS1 in ferroptosis in hepatocellular carcinoma (HCC) remains largely unknown. The present study revealed that ZFAS1 was upregulated in HCC and upregulation of ZFAS1 indicated poor clinical outcome of HCC patients. Loss- and gain-of-function experiments demonstrated that knockdown of ZFAS1 inhibited HCC cell proliferation and induced ferroptosis, while overexpression of ZFAS1 exerted opposite effects. ZFAS1 enhanced cell proliferation via suppression of ferroptotic death. Mechanistically, ZFAS1 interacted with miR-150 and decreased its expression. AIFM2, the critical ferroptosis protector, was a direct target of ZFAS1/miR-150. ZFAS1 accelerated HCC proliferation and inhibited ferroptosis by the regulation of the miR-150/AIFM2 axis. These discoveries intimate an essential part of ZFAS1/miR-150/AIFM2 in governing HCC ferroptosis, which may provide a promising therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Guangsheng Wang
- Department of Gastrointestinal surgery, The First Clinical Medical College of China Three Gorges University, China
| | - Yongshan Yao
- Department of Emergency surgery, The First Clinical Medical College of China Three Gorges University, China
| | - Jiasheng Xie
- Department of General surgery, Xiling Community Health Service Center, Xiling District, Yichang City, China
| | - Caihong Wen
- Department of Medical oncology, The First Clinical Medical College of China Three Gorges University, China
| |
Collapse
|
5
|
Liu B, Liu L, Liu Y. Targeting cell death mechanisms: the potential of autophagy and ferroptosis in hepatocellular carcinoma therapy. Front Immunol 2024; 15:1450487. [PMID: 39315094 PMCID: PMC11416969 DOI: 10.3389/fimmu.2024.1450487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a type of cell death that plays a remarkable role in the growth and advancement of malignancies including hepatocellular carcinoma (HCC). Non-coding RNAs (ncRNAs) have a considerable impact on HCC by functioning as either oncogenes or suppressors. Recent research has demonstrated that non-coding RNAs (ncRNAs) have the ability to control ferroptosis in HCC cells, hence impacting the advancement of tumors and the resistance of these cells to drugs. Autophagy is a mechanism that is conserved throughout evolution and plays a role in maintaining balance in the body under normal settings. Nevertheless, the occurrence of dysregulation of autophagy is evident in the progression of various human disorders, specifically cancer. Autophagy plays dual roles in cancer, potentially influencing both cell survival and cell death. HCC is a prevalent kind of liver cancer, and genetic mutations and changes in molecular pathways might worsen its advancement. The role of autophagy in HCC is a subject of debate, as it has the capacity to both repress and promote tumor growth. Autophagy activation can impact apoptosis, control proliferation and glucose metabolism, and facilitate tumor spread through EMT. Inhibiting autophagy can hinder the growth and spread of HCC and enhance the ability of tumor cells to respond to treatment. Autophagy in HCC is regulated by several signaling pathways, such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs. Utilizing anticancer drugs to target autophagy may have advantageous implications for the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Shu YJ, Lao B, Qiu YY. Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer. World J Gastrointest Oncol 2024; 16:2335-2349. [PMID: 38994128 PMCID: PMC11236230 DOI: 10.4251/wjgo.v16.i6.2335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 06/13/2024] Open
Abstract
As a highly aggressive tumor, the pathophysiological mechanism of primary liver cancer has attracted much attention. In recent years, factors such as ferroptosis regulation, lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer, providing a new perspective for understanding the development of liver cancer. Ferroptosis regulation, lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer. The regulation of ferroptosis is involved in apoptosis and necrosis, affecting cell survival and death. Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells. Metabolic abnormalities, especially the disorders of glucose and lipid metabolism, directly affect the proliferation and growth of liver cancer cells. Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes. The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer, and reduce the risk of disease by adjusting the metabolic process. This review focuses on the key roles of ferroptosis regulation, lipid peroxidation and metabolic abnormalities in this process.
Collapse
Affiliation(s)
- Yu-Jie Shu
- Department of Gastroenterology, Yinzhou District Second Hospital, Ningbo 315199, Zhejiang Province, China
| | - Bo Lao
- Department of Gastroenterology, Yinzhou District Second Hospital, Ningbo 315199, Zhejiang Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
7
|
Li T, Yi J, Wu H, Wang K, Zhou B. SLC7A11 in hepatocellular carcinoma: potential mechanisms, regulation, and clinical significance. Am J Cancer Res 2024; 14:2326-2342. [PMID: 38859833 PMCID: PMC11162675 DOI: 10.62347/kgcl7357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Exploring novel early detection biomarkers and developing more efficacious treatments remain pressing tasks in the current research landscape for hepatocellular carcinoma (HCC). Morphologically and molecularly separate from apoptosis, cell death, and autophagy, ferroptosis is a recently discovered, unique, controlled form of cell death. SLC7A11 (also known as xCT) represents a subunit of the cystine-glutamate antiporter (also known as system Xc(-)). A growing body of research suggests that induction of ferroptosis through SLC7A11 can effectively eliminate hepatocellular carcinoma (HCC) cells, particularly those exhibiting resistance to alternative forms of cell death. Thus, targeting ferroptosis via SLC7A11 may become a new direction for the design of therapeutic strategies for HCC. Although many research articles have investigated the possible roles of SLC7A11 in HCC, a study that summarizes the main findings, including the regulators and mechanisms of action of SLC7A11 in HCC is not available. Therefore, we present a comprehensive overview of the functions of ferroptosis, particularly SLC7A11, in the identification, development, and management of HCC in this review. In addition, we discuss how this knowledge can be translated into treatment by providing a systemic therapy in advanced HCC using sorafenib, the first-line drug targeting multiple kinases and SLC7A11. We further dissect the possible barriers as well as the corresponding solutions and provide insights on how to navigate effective treatment using this knowledge.
Collapse
Affiliation(s)
- Tianze Li
- Division of Hepato-Biliary-Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
- Queen Mary School, Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| | - Jianwei Yi
- Division of Hepato-Biliary-Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| | - Huajun Wu
- Division of Hepato-Biliary-Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| | - Kai Wang
- Division of Hepato-Biliary-Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
- Jiangxi Province Engineering Research Center of Hepatobiliary DiseaseNanchang 330006, Jiangxi, P. R. China
| | - Binghai Zhou
- Division of Hepato-Biliary-Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| |
Collapse
|
8
|
Pang Q, Tang Z, Luo L. The crosstalk between oncogenic signaling and ferroptosis in cancer. Crit Rev Oncol Hematol 2024; 197:104349. [PMID: 38626848 DOI: 10.1016/j.critrevonc.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Ferroptosis, a novel form of cell death regulation, was identified in 2012. It is characterized by unique features that differentiate it from other types of cell death, including necrosis, apoptosis, autophagy, and pyroptosis. Ferroptosis is defined by an abundance of iron ions and lipid peroxidation, resulting in alterations in subcellular structures, an elevation in reactive oxygen species (ROS), a reduction in glutathione (GSH) levels, and an augmentation in Fe (II) cytokines. Ferroptosis, a regulated process, is controlled by an intricate network of signaling pathways, where multiple stimuli can either enhance or hinder the process. This review primarily examines the defensive mechanisms of ferroptosis and its interaction with the tumor microenvironment. The analysis focuses on the pathways that involve AMPK, p53, NF2, mTOR, System Xc-, Wnt, Hippo, Nrf2, and cGAS-STING. The text discusses the possibilities of employing a combination therapy that targets several pathways for the treatment of cancer. It emphasizes the necessity for additional study in this field.
Collapse
Affiliation(s)
- Qianghu Pang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zhirou Tang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang,School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
9
|
Lv QK, Tao KX, Yao XY, Pang MZ, Cao BE, Liu CF, Wang F. Melatonin MT1 receptors regulate the Sirt1/Nrf2/Ho-1/Gpx4 pathway to prevent α-synuclein-induced ferroptosis in Parkinson's disease. J Pineal Res 2024; 76:e12948. [PMID: 38488331 DOI: 10.1111/jpi.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons and aggregation of α-synuclein (α-syn). Ferroptosis, a form of cell death induced by iron accumulation and lipid peroxidation, is involved in the pathogenesis of PD. It is unknown whether melatonin receptor 1 (MT1) modulates α-syn and ferroptosis in PD. Here, we used α-syn preformed fibrils (PFFs) to induce PD models in vivo and in vitro. In PD mice, α-syn aggregation led to increased iron deposition and ferroptosis. MT1 knockout exacerbated these changes and resulted in more DA neuronal loss and severe motor impairment. MT1 knockout also suppressed the Sirt1/Nrf2/Ho1/Gpx4 pathway, reducing resistance to ferroptosis, and inhibited expression of ferritin Fth1, leading to more release of ferrous ions. In vitro experiments confirmed these findings. Knockdown of MT1 enhanced α-syn PFF-induced intracellular α-syn aggregation and suppressed expression of the Sirt1/Nrf2/Ho1/Gpx4 pathway and Fth1 protein, thereby aggravating ferroptosis. Conversely, overexpression of MT1 reversed these effects. Our findings reveal a novel mechanism by which MT1 activation prevents α-syn-induced ferroptosis in PD, highlighting the neuroprotective role of MT1 in PD.
Collapse
Affiliation(s)
- Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kang-Xin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bing-Er Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Wang Y, Fleishman JS, Li T, Li Y, Ren Z, Chen J, Ding M. Pharmacological therapy of metabolic dysfunction-associated steatotic liver disease-driven hepatocellular carcinoma. Front Pharmacol 2024; 14:1336216. [PMID: 38313077 PMCID: PMC10834746 DOI: 10.3389/fphar.2023.1336216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/31/2023] [Indexed: 02/06/2024] Open
Abstract
In light of a global rise in the number of patients with type 2 diabetes mellitus (T2DM) and obesity, non-alcoholic fatty liver disease (NAFLD), now known as metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), has become the leading cause of hepatocellular carcinoma (HCC), with the annual occurrence of MASLD-driven HCC expected to increase by 45%-130% by 2030. Although MASLD has become a serious major public health threat globally, the exact molecular mechanisms mediating MASLD-driven HCC remain an open problem, necessitating future investigation. Meanwhile, emerging studies are focusing on the utility of bioactive compounds to halt the progression of MASLD to MASLD-driven HCC. In this review, we first briefly review the recent progress of the possible mechanisms of pathogenesis and progression for MASLD-driven HCC. We then discuss the application of bioactive compounds to mitigate MASLD-driven HCC through different modulatory mechanisms encompassing anti-inflammatory, lipid metabolic, and gut microbial pathways, providing valuable information for future treatment and prevention of MASLD-driven HCC. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of MASLD-driven HCC is still warranted.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Joshua S. Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Tongda Li
- Department of Traditional Chinese Medicine, Beijing Geriatric Hospital, Beijing, China
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Zhao Ren
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Mingchao Ding
- Department of Peripheral Vascular Intervention, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
11
|
Cong T, Yang C, Cao Q, Ren J, Luo Y, Yuan P, Zheng B, Liu Y, Yang H, Kang W, Ou A, Li X. The Role of GNMT and MMP12 Expression in Determining TACE Efficacy: Validation at Transcription and Protein Levels. J Hepatocell Carcinoma 2024; 11:95-111. [PMID: 38250306 PMCID: PMC10800115 DOI: 10.2147/jhc.s441179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose Transarterial chemoembolization (TACE) represents a significant therapeutic modality for hepatocellular carcinoma (HCC). We aimed to develop a gene signature to accurately predict patient TACE response and explore the underlying mechanisms. Methods Three independent datasets were utilized, including GSE104580, GSE14520 and external validation from the Cancer Hospital Chinese Academy of Medical Sciences. GSE104580 was randomly partitioned into a training set and a validation set, whereas GSE14520 was categorized into a resection group and a TACE group. Logistic regression was used to develop a TACE effectiveness model. Immunohistochemistry is utilized to confirm the protein expression trends of the signature genes. Immune infiltration and functional enrichment analyses were conducted to investigate the potential underlying mechanisms. Results A 2-gene signature consisting of glycine N-methyltransferase (GNMT) and matrix metalloproteinase-12 (MMP12) was constructed, and based on this, all the patients were assigned TACE effectiveness scores and categorized into high effectiveness (HE) and low effectiveness (LE) groups. The HE group exhibited a better prognosis than the LE group in the various cohorts (p < 0.05). In the external validation set, immunohistochemistry confirmed the expression of the signature genes exhibiting an upregulated trend of GNMT in the HE group and MMP12 in the LE group, the LE group also exhibited a poorer prognosis [for overall survival (OS), HE group: 881 days vs LE group: 273 days (p < 0.05), and for progression-free survival (PFS), HE group: 458 days vs LE group: 136 days (p < 0.05)]. Multivariate analysis in all the datasets identified LE status as an independent risk factor for OS, disease-free survival (DFS) and PFS. The infiltration level of M0 macrophages and activated mast cells in the LE group was significantly higher than in the HE group. The hypoxia signaling pathway and glycolysis pathway were significantly enriched in the LE group. Conclusion The loss of GNMT and the overexpression of MMP12 may be critical factors influencing TACE efficacy.
Collapse
Affiliation(s)
- Tianhao Cong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chao Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qi Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jinrui Ren
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yingen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Pei Yuan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Liu
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hongcai Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wendi Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Aixin Ou
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Wang Z, Li W, Wang X, Zhu Q, Liu L, Qiu S, Zou L, Liu K, Li G, Miao H, Yang Y, Jiang C, Liu Y, Shao R, Wang X, Liu Y. Isoliquiritigenin induces HMOX1 and GPX4-mediated ferroptosis in gallbladder cancer cells. Chin Med J (Engl) 2023; 136:2210-2220. [PMID: 37488674 PMCID: PMC10508381 DOI: 10.1097/cm9.0000000000002675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is the most common malignant tumor of biliary tract. Isoliquiritigenin (ISL) is a natural compound with chalcone structure extracted from the roots of licorice and other plants. Relevant studies have shown that ISL has a strong anti-tumor ability in various types of tumors. However, the research of ISL against GBC has not been reported, which needs to be further investigated. METHODS The effects of ISL against GBC cells in vitro and in vivo were characterized by cytotoxicity test, RNA-sequencing, quantitative real-time polymerase chain reaction, reactive oxygen species (ROS) detection, lipid peroxidation detection, ferrous ion detection, glutathione disulphide/glutathione (GSSG/GSH) detection, lentivirus transfection, nude mice tumorigenesis experiment and immunohistochemistry. RESULTS ISL significantly inhibited the proliferation of GBC cells in vitro . The results of transcriptome sequencing and bioinformatics analysis showed that ferroptosis was the main pathway of ISL inhibiting the proliferation of GBC, and HMOX1 and GPX4 were the key molecules of ISL-induced ferroptosis. Knockdown of HMOX1 or overexpression of GPX4 can reduce the sensitivity of GBC cells to ISL-induced ferroptosis and significantly restore the viability of GBC cells. Moreover, ISL significantly reversed the iron content, ROS level, lipid peroxidation level and GSSG/GSH ratio of GBC cells. Finally, ISL significantly inhibited the growth of GBC in vivo and regulated the ferroptosis of GBC by mediating HMOX1 and GPX4 . CONCLUSION ISL induced ferroptosis in GBC mainly by activating p62-Keap1-Nrf2-HMOX1 signaling pathway and down-regulating GPX4 in vitro and in vivo . This evidence may provide a new direction for the treatment of GBC.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Xue Wang
- Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qin Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Shimei Qiu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
- University of Shanghai for Science and Technology, School of Medical Instrument and Food Engineering, Shanghai 200093, China
| | - Lu Zou
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Guoqiang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Huijie Miao
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Yang Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Chengkai Jiang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Yong Liu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine Nanjing University of Chinese Medicine, Changzhou, Jiangsu 213004, China
| | - Rong Shao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xu'an Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| |
Collapse
|
13
|
Xia P, Wen GM, Zheng XH, Zhao ZY. Differences of ferroptosis-related genes between White and Asian patients with liver cancer. Am J Cancer Res 2023; 13:3659-3667. [PMID: 37693126 PMCID: PMC10492120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
Ferroptosis results from metabolic dysregulation and is closely linked to liver cancer. Although a ferroptosis-related gene signature in liver cancer has been established, the precise regulatory mechanism is still unclear. To identify shared pathogenic genes linked to ferroptosis across liver cancer patients from diverse racial backgrounds, we evaluated various ferroptosis-related genes, constructing a signature for both Asian and White patients using The Cancer Genome Atlas (TCGA) database. Based on the differential expression and functionality of ferroptosis-associated genes, we selected Farnesyl diphosphate farnesyl transferase 1 (FDFT1), Acyl-CoA synthetase long-chain 4 (ACSL4) and Endoplasmic reticulum membrane protein complex 2 (EMC2) for further study in liver cancer cells. FDFT1, ACSL4 and EMC2 induced ferroptosis of liver cancer cells though upregulation of reactive oxygen species (ROS) levels and downregulation of glutathione peroxidase (GPX4). Current data indicate no notable influence of racial differences on the functionality of ferroptosis-related genes. Our data suggests potential novel therapeutic avenues for liver cancer treatment.
Collapse
Affiliation(s)
- Pu Xia
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical UniversityJinzhou, Liaoning, P. R. China
| | - Gui-Min Wen
- Department of Community Nursing, College of Nursing, Jinzhou Medical UniversityJinzhou, Liaoning, P. R. China
| | - Xiao-Hui Zheng
- Department of Pharmacy, Tianjin Union Medical CenterTianjin, P. R. China
| | - Zhen-Ying Zhao
- Department of Pharmacy, Tianjin Union Medical CenterTianjin, P. R. China
| |
Collapse
|
14
|
Yang L, Guan Y, Liu Z. Role of ferroptosis and its non-coding RNA regulation in hepatocellular carcinoma. Front Pharmacol 2023; 14:1177405. [PMID: 37124203 PMCID: PMC10133567 DOI: 10.3389/fphar.2023.1177405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Ferroptosis is a newly discovered form of programmed cell death that involves the accumulation of iron-dependent lipid peroxides and plays a vital role in the tumorigenesis, development, and drug resistance of various tumors such as hepatocellular carcinoma (HCC). As a hotspot in molecular biology, non-coding RNAs (ncRNAs) participate in the initiation and progression of HCC, either act as oncogenes or tumor suppressors. Recent studies have shown that ncRNAs can regulate ferroptosis in HCC cells, which would affect the tumor progression and drug resistance. Therefore, clarifying the underlying role of ferroptosis and the regulatory role of ncRNA on ferroptosis in HCC could develop new treatment interventions for this disease. This review briefly summarizes the role of ferroptosis and ferroptosis-related ncRNAs in HCC tumorigenesis, progression, treatment, drug resistance and prognosis, for the development of potential therapeutic strategies and prognostic markers in HCC patients.
Collapse
Affiliation(s)
| | - Yu Guan
- *Correspondence: Yu Guan, ; Zhanbing Liu,
| | | |
Collapse
|
15
|
Zhang JX, Xiao Y, Li YQ, Zhu YL, Li YR, Zhao RS, Jin NY, Fang JB, Li X, Han JC. Licochalcone A Induces Ferroptosis in Hepatocellular Carcinoma via Reactive Oxygen Species Activated by the SLC7A11/GPX4 Pathway. Integr Cancer Ther 2023; 22:15347354231210867. [PMID: 37965730 PMCID: PMC10647947 DOI: 10.1177/15347354231210867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/15/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Liver cancer is a common malignant tumor, and its incidence is increasing yearly. Millions of people suffer from liver cancer annually, which has a serious impact on global public health security. Licochalcone A (Lico A), an important component of the traditional Chinese herb licorice, is a natural small molecule drug with multiple pharmacological activities. In this study, we evaluated the inhibitory effects of Lico A on hepatocellular carcinoma cell lines (HepG2 and Huh-7), and explored the inhibitory mechanism of Lico A on hepatocellular carcinoma. First, we evaluated the inhibitory effects of Lico A on hepatocellular carcinoma, and showed that Lico A significantly inhibited and killed HepG2 and Huh-7 cells in vivo and in vitro. Transcriptomic analysis showed that Lico A inhibited the expression of solute carrier family 7 member 11 (SLC7A11), which induced ferroptosis. We confirmed through in vivo and in vitro experiments that Lico A promoted ferroptosis in hepatocellular carcinoma cells by downregulating SLC7A11 expression, thereby inhibiting the glutathione (GSH)-glutathione peroxidase 4 (GPX4) pathway and inducing activation of reactive oxygen species (ROS). In this study, we suggest that Lico A is a potential SLC7A11 inhibitor that induces ferroptotic death in hepatocellular carcinoma cells, thereby providing a theoretical basis for the development of natural small molecule drugs against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jin-Xin Zhang
- Changchun University of Science and Technology, Changchun, China
- Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yan Xiao
- Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yi-Quan Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Yi-Long Zhu
- Changchun University of Chinese Medicine, Changchun, China
| | - Ya-Ru Li
- Changchun University of Chinese Medicine, Changchun, China
| | | | - Ning-Yi Jin
- Chinese Academy of Agricultural Sciences, Changchun, China
- Changchun University of Chinese Medicine, Changchun, China
| | - Jin-Bo Fang
- Changchun University of Chinese Medicine, Changchun, China
| | - Xiao Li
- Changchun University of Science and Technology, Changchun, China
- Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ji-Cheng Han
- Chinese Academy of Agricultural Sciences, Changchun, China
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|