1
|
Trencsényi G, Enyedi KN, Mező G, Halmos G, Képes Z. NGR-Based Radiopharmaceuticals for Angiogenesis Imaging: A Preclinical Review. Int J Mol Sci 2023; 24:12675. [PMID: 37628856 PMCID: PMC10454655 DOI: 10.3390/ijms241612675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Angiogenesis plays a crucial role in tumour progression and metastatic spread; therefore, the development of specific vectors targeting angiogenesis has attracted the attention of several researchers. Since angiogenesis-associated aminopeptidase N (APN/CD13) is highly expressed on the surface of activated endothelial cells of new blood vessels and a wide range of tumour cells, it holds great promise for imaging and therapy in the field of cancer medicine. The selective binding capability of asparagine-glycine-arginine (NGR) motif containing molecules to APN/CD13 makes radiolabelled NGR peptides promising radiopharmaceuticals for the non-invasive, real-time imaging of APN/CD13 overexpressing malignancies at the molecular level. Preclinical small animal model systems are major keystones for the evaluation of the in vivo imaging behaviour of radiolabelled NGR derivatives. Based on existing literature data, several positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radioisotopes have been applied so far for the labelling of tumour vasculature homing NGR sequences such as Gallium-68 (68Ga), Copper-64 (64Cu), Technetium-99m (99mTc), Lutetium-177 (177Lu), Rhenium-188 (188Re), or Bismuth-213 (213Bi). Herein, a comprehensive overview is provided of the recent preclinical experiences with radiolabelled imaging probes targeting angiogenesis.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Kata Nóra Enyedi
- ELKH-ELTE Research Group of Peptide Chemistry, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary; (K.N.E.); (G.M.)
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Mező
- ELKH-ELTE Research Group of Peptide Chemistry, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary; (K.N.E.); (G.M.)
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| |
Collapse
|
2
|
van der Heide CD, Dalm SU. Radionuclide imaging and therapy directed towards the tumor microenvironment: a multi-cancer approach for personalized medicine. Eur J Nucl Med Mol Imaging 2022; 49:4616-4641. [PMID: 35788730 PMCID: PMC9606105 DOI: 10.1007/s00259-022-05870-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Targeted radionuclide theranostics is becoming more and more prominent in clinical oncology. Currently, most nuclear medicine compounds researched for cancer theranostics are directed towards targets expressed in only a small subset of cancer types, limiting clinical applicability. The identification of cancer-specific targets that are (more) universally expressed will allow more cancer patients to benefit from these personalized nuclear medicine–based interventions. A tumor is not merely a collection of cancer cells, it also comprises supporting stromal cells embedded in an altered extracellular matrix (ECM), together forming the tumor microenvironment (TME). Since the TME is less genetically unstable than cancer cells, and TME phenotypes can be shared between cancer types, it offers targets that are more universally expressed. The TME is characterized by the presence of altered processes such as hypoxia, acidity, and increased metabolism. Next to the ECM, the TME consists of cancer-associated fibroblasts (CAFs), macrophages, endothelial cells forming the neo-vasculature, immune cells, and cancer-associated adipocytes (CAAs). Radioligands directed at the altered processes, the ECM, and the cellular components of the TME have been developed and evaluated in preclinical and clinical studies for targeted radionuclide imaging and/or therapy. In this review, we provide an overview of the TME targets and their corresponding radioligands. In addition, we discuss what developments are needed to further explore the TME as a target for radionuclide theranostics, with the hopes of stimulating the development of novel TME radioligands with multi-cancer, or in some cases even pan-cancer, application.
Collapse
Affiliation(s)
| | - Simone U Dalm
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Zhu L, Ding Z, Li X, Wei H, Chen Y. Research Progress of Radiolabeled Asn-Gly-Arg (NGR) Peptides for Imaging and Therapy. Mol Imaging 2021; 19:1536012120934957. [PMID: 32862776 PMCID: PMC7466889 DOI: 10.1177/1536012120934957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Asn-Gly-Arg (NGR) motifs have vasculature-homing properties via interactions with the aminopeptidase N (CD13) expressed on tumor neovasculature. Numerous NGR peptides with different molecular scaffolds have been exploited for targeted delivery of different compounds for imaging and therapy. When conjugated with NGR, complexes recognize the CD13 receptor expressed on the tumor vasculature, which improves the specificity to tumor and avoids systematic toxic reactions. Both preclinical and clinical studies performed with these products suggest that NGR-mediated vascular targeting is an effective strategy for delivering bioactive amounts of cytokines to tumor endothelial cells. For molecular imaging, radiolabeled peptides have been the most successful approach and have been translated into clinic. This review describes current data on radiolabeled tumor vasculature-homing NGR peptides for imaging and therapy.
Collapse
Affiliation(s)
- Liqin Zhu
- Department of Nuclear Medicine, 556508The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zhikai Ding
- Department of Nuclear Medicine, 556508The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xingliang Li
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, People's Republic of China
| | - Hongyuan Wei
- Department of Nuclear Medicine, 556508The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, 556508The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Guillou A, Earley DF, Klingler S, Nisli E, Nüesch LJ, Fay R, Holland JP. The Influence of a Polyethylene Glycol Linker on the Metabolism and Pharmacokinetics of a 89Zr-Radiolabeled Antibody. Bioconjug Chem 2021; 32:1263-1275. [PMID: 34056896 DOI: 10.1021/acs.bioconjchem.1c00172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Most experimental work in the space of bioconjugation chemistry focuses on using new methods to construct covalent bonds between a cargo molecule and a protein of interest such as a monoclonal antibody (mAb). Bond formation is important for generating new diagnostic tools, yet when these compounds advance to preclinical in vitro and in vivo studies, and later for translation to the clinic, understanding the fate of potential metabolites that arise from chemical or enzymatic degradation of the construct is important to obtain a full picture of the pharmacokinetic performance of a new compound. In the context of designing new bioconjugate methods for labeling antibodies with the positron-emitting radionuclide 89Zr, we previously developed a photochemical process for making 89Zr-mAbs. Experimental studies on [89Zr]ZrDFO-PEG3-azepin-mAb constructs revealed that incorporation of the tris-polyethylene glycol (PEG3) linker improved the aqueous phase solubility and radiochemical conversion. However, the use of a PEG3 linker also has an impact on the whole-body residence time of the construct, leading to a more rapid excretion of the 89Zr activity when compared with radiotracers that lack the PEG3 chain. In this work, we investigated the metabolic fate of eight possible metabolites that arise from the logical disconnection of [89Zr]ZrDFO-PEG3-azepin-mAb at bonds which are susceptible to chemical or enzymatic cleavage. Synthesis combined with 89Zr-radiolabeling, small-animal positron emission tomography imaging at multiple time points from 0 to 20 h, and measurements of the effective half-life for whole-body excretion are reported. The conclusions are that the use of a PEG3 linker is non-innocent in terms of its impact on enhancing the metabolism of [89Zr]ZrDFO-PEG3-azepin-mAbs. In most cases, degradation can produce metabolites that are rapidly eliminated from the body, thereby enhancing image contrast by reducing nonspecific accumulation and retention of 89Zr in background organs such as the liver, spleen, kidney, and bone.
Collapse
Affiliation(s)
- Amaury Guillou
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| | - Daniel F Earley
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| | - Simon Klingler
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| | - Eda Nisli
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| | - Laura J Nüesch
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| | - Rachael Fay
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| | - Jason P Holland
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057, Zurich, Switzerland
| |
Collapse
|
5
|
Vats K, Sharma R, Kameswaran M, Sarma HD, Satpati D, Dash A. Design, synthesis, and comparative evaluation of 99m Tc(CO) 3 -labeled N-terminal and C-terminal modified asparagine-glycine-arginine peptide constructs. J Pept Sci 2019; 25:e3192. [PMID: 31309677 DOI: 10.1002/psc.3192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The present study describes modification of asparagine-glycine-arginine (NGR) peptide at N-terminally and C-terminally by introduction of a tridentate chelating scaffold via click chemistry reaction. The N-terminal and C-terminal modified peptides were radiometalated with [99m Tc(CO)3 ]+ precursor. The influence of these moieties at the two termini on the targeting properties of NGR peptide was determined by in vitro cell uptake studies and in vivo biodistribution studies. The two radiolabeled constructs did not exhibit any significant variation in uptake in murine melanoma B16F10 cells during in vitro studies. In vivo studies revealed nearly similar tumor uptake of N-terminally modified peptide construct 5 and C-terminally construct 6 at 2 h p.i. (1.9 ± 0.1 vs 2.4 ± 0.2% ID/g, respectively). The tumor-to-blood (T/B) and tumor-to-liver (T/L) ratios of the two radiometalated peptides were also quite similar. The two constructs cleared from all the major organs (heart, lungs, spleen, stomach, and blood) at 4 h p.i. (<1% ID/g). Blocking studies carried out by coinjection of cCNGRC peptide led to approximately 50% reduction in the tumor uptake at 2 h p.i. This work thus illustrates the possibility of convenient modification/radiometalation of NGR peptide at either N- or C-terminus without hampering tumor targeting and pharmacokinetics.
Collapse
Affiliation(s)
- Kusum Vats
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Chemical Sciences, Anushaktinagar, Mumbai, India
| | - Mythili Kameswaran
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Chemical Sciences, Anushaktinagar, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Chemical Sciences, Anushaktinagar, Mumbai, India
| |
Collapse
|
6
|
Panait ME, Chilug L, Negoita V, Busca A, Manda G, Niculae D, Dumitru M, Gruia MI. Biological Effects Induced by 68Ga-Conjugated Peptides in Human and Rodent Tumor Cell Lines. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Vats K, Satpati D, Sharma R, Kumar C, Sarma HD, Banerjee S. Preparation and comparative evaluation of 99m Tc-HYNIC-cNGR and 99m Tc-HYNIC-PEG 2 -cNGR as tumor-targeting molecular imaging probes. J Labelled Comp Radiopharm 2018; 61:68-76. [PMID: 29139598 DOI: 10.1002/jlcr.3585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/03/2017] [Indexed: 01/03/2023]
Abstract
The tripeptide sequence asparagine-glycine-arginine (NGR) specifically recognizes aminopeptidase N (APN or CD13) receptors highly expressed on tumor cells and vasculature. Thus, NGR peptides can precisely deliver therapeutic and diagnostic compounds to CD13 expressing cancer sites. In this regard, 2 NGR peptide ligands, HYNIC-c(NGR) and HYNIC-PEG2 -c(NGR), were synthesized, radiolabeled with 99m Tc, and evaluated in CD13-positive human fibrosarcoma HT-1080 tumor xenografts. The radiotracers, 99m Tc-HYNIC-c(NGR) and 99m Tc-HYNIC-PEG2 -c(NGR), could be prepared in approximately 95% radiochemical purity and exhibited excellent in vitro and in vivo stability. The radiotracers were hydrophilic in nature with log P values being -2.33 ± 0.05 and -2.61 ± 0.08. The uptake of 2 radiotracers 99m Tc-HYNIC-c(NGR) and 99m Tc-HYNIC-PEG2 -c(NGR) was similar in nude mice bearing human fibrosarcoma HT-1080 tumor xenografts, which was significantly reduced (P < .05) during blocking studies. The 2 radiotracers being hydrophilic cleared rapidly from blood, liver, and intestine and were excreted through renal pathway. The pharmacokinetics of 99m Tc-labeled HYNIC peptide could not be modulated through introduction of PEG2 unit, thus posing a challenge for studies with other linkers towards enhanced tumor uptake and retention.
Collapse
Affiliation(s)
- Kusum Vats
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Sharmila Banerjee
- Radiation Medicine Centre, Parel, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
177Lu-labeled cyclic Asn-Gly-Arg peptide tagged carbon nanospheres as tumor targeting radio-nanoprobes. J Pharm Biomed Anal 2018; 152:173-178. [PMID: 29414010 DOI: 10.1016/j.jpba.2018.01.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023]
Abstract
This study explores the potential of 177Lu-labeled carbon nanospheres as radio-nanoprobes for molecular imaging and therapy. The carboxyl functionalized surface of carbon nanospheres (CNS) was conjugated with [Gly-Gly-Gly-c(Asn-Gly-Arg)], G3-cNGR peptide through amide bond for targeting tumor vasculature and with [2-(4-Aminobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid], p-NH2-Bz-DOTA for chelation with 177Lu. The nanosphere-peptide conjugate, DOTA-CNS-cNGR, was characterized by dynamic light scattering and zeta potential measurements, IR and UV experiments and did not show any in vitro cytotoxicity. The pharmacokinetics and biodistribution of 177Lu-labeled nanosphere-peptide conjugate, 177Lu-DOTA-CNS-cNGR was compared with 177Lu-DOTA-CNS (without the peptide) as well as with 177Lu-DOTA-cNGR (without carbon nanospheres). The radiolabeled nanosphere-peptide conjugate exhibited higher tumor accumulation than nanosphere-free radiolabeled peptide. The accumulation of the two radiolabeled probes in the tumor reduced to half during blocking studies with unlabeled G3-cNGR peptide. 177Lu-DOTA-CNS exhibited higher tumor uptake than 177Lu-DOTA-CNS-cNGR but rapid clearance of the latter nanoprobe from non-target organs resulted in significantly higher (p < 0.05) tumor-to-blood and tumor-to-muscle ratios at 24 and 48 h p.i. It is evident from this study that carbon nanospheres conjugated to specific vectors shall form an important part of targeted radionanomedicine in future.
Collapse
|
9
|
de Oliveira ÉA, Faintuch BL, Seo D, Barbezan AB, Funari A, Targino RC, Moro AM. Radiolabeled GX1 Peptide for Tumor Angiogenesis Imaging. Appl Biochem Biotechnol 2018; 185:863-874. [DOI: 10.1007/s12010-018-2700-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
|
10
|
Satpati D, Sharma R, Sarma HD, Dash A. Comparative evaluation of 68 Ga-labeled NODAGA, DOTAGA, and HBED-CC-conjugated cNGR peptide chelates as tumor-targeted molecular imaging probes. Chem Biol Drug Des 2017; 91:781-788. [PMID: 29130625 DOI: 10.1111/cbdd.13143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
The biological behavior of 68 Ga-based radiopharmaceuticals can be significantly affected by the chelators' attributes (size, charge, lipophilicity). Thus, this study aimed at examining the influence of three different chelators, DOTAGA, NODAGA, and HBED-CC on the distribution pattern of 68 Ga-labeled NGR peptides targeting CD13 receptors. 68 Ga-DOTAGA-c(NGR), 68 Ga-NODAGA-c(NGR), and 68 Ga-HBED-CC-c(NGR) were observed to be hydrophilic with respective log p values being -3.5 ± 0.2, -3.3 ± 0.08, and -2.8 ± 0.14. The three radiotracers exhibited nearly similar uptake in human fibrosarcoma HT-1080 tumor cells with 86%, 63%, and 33% reduction during blocking studies with unlabeled cNGR peptide for 68 Ga-DOTAGA-c(NGR), 68 Ga-NODAGA-c(NGR), and 68 Ga-HBED-CC-c(NGR), respectively, indicating higher receptor specificity of the first two radiotracers. The neutral radiotracer 68 Ga-NODAGA-c(NGR) demonstrated better target-to-non-target ratios during in vivo studies compared to its negatively charged counterparts, 68 Ga-DOTAGA-c(NGR) and 68 Ga-HBED-CC-c(NGR). The three radiotracers had similar HT-1080 tumor uptake and being hydrophilic exhibited renal excretion with minimal uptake in non-target organs. Significant reduction (p < .005) in HT-1080 tumor uptake of the radiotracers was observed during blocking studies. It may be inferred from these studies that the three radiotracers are promising probes for in vivo imaging of CD13 receptor expressing cancer sites; however, 68 Ga-NODAGA-c(NGR) is a better candidate.
Collapse
Affiliation(s)
- Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
11
|
Schiper L, Faintuch BL, da Silva Badaró RJ, de Oliveira EA, Chavez VEA, Chinen E, Faintuch J. Functional investigation of bone implant viability using radiotracers in a new model of osteonecrosis. Clinics (Sao Paulo) 2016; 71:617-625. [PMID: 27759852 PMCID: PMC5059423 DOI: 10.6061/clinics/2016(10)11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/27/2016] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES: Conventional imaging methods are excellent for the morphological characterization of the consequences of osteonecrosis; however, only specialized techniques have been considered useful for obtaining functional information. To explore the affinity of radiotracers for severely devascularized bone, a new mouse model of isolated femur implanted in a subcutaneous abdominal pocket was devised. To maintain animal mobility and longevity, the femur was harvested from syngeneic donors. Two technetium-99m-labeled tracers targeting angiogenesis and bone matrix were selected. METHODS: Medronic acid and a homodimer peptide conjugated with RGDfK were radiolabeled with technetium-99m, and biodistribution was evaluated in Swiss mice. The grafted and control femurs were evaluated after 15, 30 and 60 days, including computed tomography (CT) and histological analysis. RESULTS: Radiolabeling achieved high (>95%) radiochemical purity. The biodistribution confirmed good blood clearance 1 hour after administration. For 99mTc-hydrazinonicotinic acid (HYNIC)-E-[c(RGDfK)2, remarkable renal excretion was observed compared to 99mTc-methylene diphosphonate (MDP), but the latter, as expected, revealed higher bone uptake. The results obtained in the control femur were equal at all time points. In the implanted femur, 99mTc-HYNIC-E-[c(RGDfK)2 uptake was highest after 15 days, consistent with early angiogenesis. Regarding 99mTc-MDP in the implant, similar uptake was documented at all time points, consistent with sustained bone viability; however, the uptake was lower than that detected in the control femur, as confirmed by histology. CONCLUSIONS: 1) Graft viability was successfully diagnosed using radiotracers in severely ischemic bone at all time points. 2) Analogously, indirect information about angiogenesis could be gathered using 999mTc-HYNIC-E-[c(RGDfK)2. 3) These techniques appear promising and warrant further studies to determine their potential clinical applications.
Collapse
Affiliation(s)
- Luis Schiper
- Universidade Federal da Bahia, Faculdade de Medicina, Departamento de Ortopedia, Bahia/BA, Brazil
| | | | | | | | - Victor E. Arana Chavez
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Biomateriais e Biologia Oral, São Paulo/SP, Brazil
| | - Elisangela Chinen
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Biomateriais e Biologia Oral, São Paulo/SP, Brazil
| | - Joel Faintuch
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Divisão de Cirurgia Gastrointestinal, São Paulo/SP, Brazil
- E-mail:
| |
Collapse
|
12
|
Kim DW, Kim WH, Kim MH, Kim CG. Synthesis and evaluation of novel Tc-99m labeled NGR-containing hexapeptides as tumor imaging agents. J Labelled Comp Radiopharm 2015; 58:30-5. [PMID: 25583160 DOI: 10.1002/jlcr.3260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/03/2014] [Accepted: 12/15/2014] [Indexed: 01/02/2023]
Abstract
Asparagine-glycine-arginine (NGR)-containing peptides targeting aminopeptidase N (APN)/CD13 can be an excellent candidate for targeting ligands in molecular tumor imaging. In this study, we developed two NGR-containing hexapeptides, and evaluated the diagnostic performance of Tc-99m labeled hexapeptides as molecular imaging agents in an HT-1080 fibrosarcoma-bearing murine model. Peptides were synthesized using Fmoc solid-phase peptide synthesis. Radiochemical purity of Tc-99m was evaluated using instant thin-layer chromatography. The uptake of two NGR-containing hexapeptides within HT-1080 cells was evaluated in vitro. In HT-1080 fibrosarcoma tumor-bearing mice, gamma images were acquired. A biodistribution study was performed to calculate percentage of the injected dose per gram of tissue (%ID/g). Two hexapeptides, glutamic acid-cysteine-glycine (ECG)-NGR and NGR-ECG were successfully synthesized. After radiolabeling procedures with Tc-99m, the complexes Tc-99m hexapeptides were prepared in high yield. The uptake of Tc-99m ECG-NGR within the tumor cells had been assured by in vitro studies. The gamma camera imaging in the murine model showed that Tc-99m ECG-NGR was accumulated substantially in the subcutaneously engrafted tumor. However, Tc-99m NGR-ECG was accumulated minimally in the tumor. Two NGR-containing hexapeptides, ECG-NGR and NGR-ECG were developed as molecular imaging agents to target APN/CD13 in HT-1080 fibrosarcoma. Tc-99m ECG-NGR showed a significant uptake in the tumor, and it is a good candidate for tumor imaging.
Collapse
Affiliation(s)
- Dae-Weung Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, South Korea; Research Unit of Molecular Imaging Agent (RUMIA), Wonkwang University School of Medicine, Iksan, Jeollabuk-do, South Korea
| | | | | | | |
Collapse
|
13
|
Tsiapa I, Loudos G, Fragogeorgi EA, Bouziotis P, Psimadas D, Xanthopoulos S, Paravatou-Petsotas M, Palamaris L, Varvarigou AD, Karnabatidis D, Kagadis GC. Evaluation of ανβ3-mediated tumor expression with a 99mTc-labeled ornithine-modified RGD derivative during glioblastoma growth in vivo. Cancer Biother Radiopharm 2014; 29:444-50. [PMID: 25405951 DOI: 10.1089/cbr.2014.1672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study, a novel way of distinguishing the intrinsic relationship between ανβ3 integrin targeting and detection of tumor growth by using a radiolabeled tracer based on a cyclic Arg-Gly-Asp (RGD) peptide was provided. The potential of the in vivo scintigraphic imaging of the developing vasculature from the early stage of tumor growth was evaluated. Alongside with the scintigraphic images, biodistribution studies were performed at distinct time points to validate this noninvasive imaging approach. The ability to noninvasively assess the tumor growth of ανβ3 integrin-positive glioblastoma tumors provides a method to better understand tumor angiogenesis in vivo and allows for a direct assessment of anti-integrin treatment efficacy.
Collapse
Affiliation(s)
- Irene Tsiapa
- 1 Department of Medical Physics, School of Medicine, University of Patras , Rion, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Oliveira EA, Faintuch BL. Radiolabeling and biological evaluation of the GX1 and RGD-GX1 peptide sequence for angiogenesis targeting. Nucl Med Biol 2014; 42:123-30. [PMID: 25311749 DOI: 10.1016/j.nucmedbio.2014.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/03/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Aiming to develop a novel (99m)Tc-labeled imaging agent, for angiogenesis and tumor receptors, two peptides obtained from phage display library, namely GX1 and the heterodimer RGD-GX1, were synthesized in a cyclic conformation. They were radiolabeled with (99m)Tc, employing the HYNIC chelator, for radiochemical evaluation and biological properties. METHODS Radiolabeling, radiochemical control, plasma protein binding, and partition coefficient were assessed for both radioconjugates. Biodistribution in healthy Balb/c mice was carried out, in order to evaluate the biological behaviour of the radiocomplexes. RESULTS The conjugates displayed a rather similar pharmacokinetic profile. They were prepared with high radiochemical purity (>96%), and both were hydrophilic (log P of -2.25 and -2.51 respectively). Preferential renal excretion was observed. Kidney uptake (42.31±5.35 %ID/g) for (99m)Tc-HYNIC-E-[c(RGDfk)-c(GX1)], 1h post-injection was about three times higher than the uptake of (99m)Tc-HYNIC-PEG4-c(GX1) (11.92±4.77%ID/g). Total blood, bone and muscle values revealed a slightly slower clearance for the RGD-GX1 radiocomplex. CONCLUSION The high radiochemical purity achieved, and the similar in vivo profile observed for both radioconjugates, make them potential candidates for radiopharmaceuticals for tumor imaging. Further investigations of binding affinity, and uptake of GX1 and RGD-GX1 peptides in tumor models, are warranted.
Collapse
Affiliation(s)
- E A Oliveira
- Radiopharmacy, Institute of Energy and Nuclear Research, Sao Paulo, SP, Brazil, Av. Prof. Lineu Prestes, 2242 05508-000 São Paulo, SP, Brazil.
| | - B L Faintuch
- Radiopharmacy, Institute of Energy and Nuclear Research, Sao Paulo, SP, Brazil, Av. Prof. Lineu Prestes, 2242 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
15
|
Shao Y, Liang W, Kang F, Yang W, Ma X, Li G, Zong S, Chen K, Wang J. A direct comparison of tumor angiogenesis with ⁶⁸Ga-labeled NGR and RGD peptides in HT-1080 tumor xenografts using microPET imaging. Amino Acids 2014; 46:2355-64. [PMID: 24990522 DOI: 10.1007/s00726-014-1788-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/13/2014] [Indexed: 11/26/2022]
Abstract
Peptides containing asparagine-glycine-arginine (NGR) and arginine-glycine-aspartic acid (RGD) sequence are being developed for tumor angiogenesis-targeted imaging and therapy. The aim of this study was to compare the efficacy of NGR- and RGD-based probes for imaging tumor angiogenesis in HT-1080 tumor xenografts. Two PET probes, (68)Ga-NOTA-G₃-NGR2 and ⁶⁸Ga-NOTA-G₃-RGD2, were successfully prepared. In vitro stability, partition coefficient, tumor cell binding, as well as in vivo biodistribution properties were also analyzed for both PET probes. The results revealed that the two probes were both hydrophilic and stable in vitro and in vivo, and they were excreted predominately and rapidly through the kidneys. For both probes, the higher tumor uptake and lower accumulation in vital organs were determined. No significant difference between two probes was observed in terms of tumor uptake and the in vivo biodistribution properties. We concluded that these two probes are promising in tumor angiogenesis imaging. ⁶⁸Ga-NOTA-G₃-NGR2 has the potential as an alternative for PET imaging in patients with fibrosarcoma, and it may offer an opportunity to noninvasively monitor CD13-targeted therapy.
Collapse
Affiliation(s)
- Yahui Shao
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, 15 Changle West Road, Xi'an, 710032, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Faintuch BL, Oliveira EA, Targino RC, Moro AM. Radiolabeled NGR phage display peptide sequence for tumor targeting. Appl Radiat Isot 2014; 86:41-5. [PMID: 24480451 DOI: 10.1016/j.apradiso.2013.12.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/17/2013] [Accepted: 12/27/2013] [Indexed: 01/16/2023]
Abstract
The asparagine-glycine-arginine (NGR) peptide sequence found by phage display, was radiolabeled with technetium-99m and tested in different tumor models. Similar uptake occurred with ovarian and lung tumor cells. Biodistribution of the radiotracer revealed predominant renal excretion with more substantial uptake in animals bearing ovarian tumor cells. In contrast imaging studies indicated better visualization for lung tumor. NGR peptide was characterized as a promising diagnostic candidate, particularly for lung cancer. Improvements are envisaged using NGR combined with RGD as a heterodimer molecule.
Collapse
Affiliation(s)
- B L Faintuch
- Radiopharmacy, Institute of Energy and Nuclear Research, Av. Prof. Lineu Prestes 2242, 05508-000 São Paulo, SP, Brazil.
| | - E A Oliveira
- Radiopharmacy, Institute of Energy and Nuclear Research, Av. Prof. Lineu Prestes 2242, 05508-000 São Paulo, SP, Brazil
| | - R C Targino
- Laboratory of Biopharmacology in Animal Cells, Butantan Institute, Av. Vital Brazil 1500, 05503900 São Paulo, SP, Brazil
| | - A M Moro
- Laboratory of Biopharmacology in Animal Cells, Butantan Institute, Av. Vital Brazil 1500, 05503900 São Paulo, SP, Brazil
| |
Collapse
|