1
|
Mu X, Zhou Y, Yu Y, Zhang M, Liu J. The roles of cancer stem cells and therapeutic implications in melanoma. Front Immunol 2024; 15:1486680. [PMID: 39611156 PMCID: PMC11602477 DOI: 10.3389/fimmu.2024.1486680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Melanoma is a highly malignant skin tumor characterized by high metastasis and poor prognosis. Recent studies have highlighted the pivotal role of melanoma stem cells (MSCs)-a subpopulation of cancer stem cells (CSCs)-in driving tumor growth, metastasis, therapeutic resistance, and recurrence. Similar to CSCs in other cancers, MSCs possess unique characteristics, including specific surface markers, dysregulated signaling pathways, and the ability to thrive within complex tumor microenvironment (TME). This review explored the current landscape of MSC research, discussing the identification of MSC-specific surface markers, the role of key signaling pathways such as Wnt/β-catenin, Notch, and Hedgehog (Hh), and how interactions within the TME, including hypoxia and immune cells, contribute to MSC-mediated drug resistance and metastatic behavior. Furthermore, we also investigated the latest therapeutic strategies targeting MSCs, such as small-molecule inhibitors, immune-based approaches, and novel vaccine developments, with an emphasis on their potential to overcome melanoma progression and improve clinical outcomes. This review aims to provide valuable insights into the complex roles of MSCs in melanoma biology and offers perspectives for future research and therapeutic advances against this challenging disease.
Collapse
Affiliation(s)
- Xiaoli Mu
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yixin Zhou
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongxin Yu
- The Department of Plastic and Reconstructive Surgery, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingyi Zhang
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiyan Liu
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Simiczyjew A, Wądzyńska J, Kot M, Ziętek M, Matkowski R, Hoang MP, Donizy P, Nowak D. Combinations of EGFR and MET inhibitors reduce proliferation and invasiveness of mucosal melanoma cells. J Cell Mol Med 2023; 27:2995-3008. [PMID: 37679999 PMCID: PMC10538264 DOI: 10.1111/jcmm.17935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Mucosal melanoma (MM) is a very rare and aggressive type of cancer for which immunotherapy or targeted therapy such as BRAF/MEK inhibitors, used in cutaneous melanoma, usually fail. Due to our earlier experience showing the high effectiveness of epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (MET) inhibitors in reducing the activation of the MAPK and PI3K/AKT signalling pathways, we aim to test whether these drugs would also be effective for mucosal melanoma. Cells representing two commercially available mucosal melanoma cell lines (GAK and HMVII) and one cell line obtained from a patient's vaginal melanoma were treated with MET or EGFR inhibitors, or combinations of these agents. The dual-inhibitor treatment strategy resulted in a decrease of cell proliferation, migration and invasion. Moreover, combinations of inhibitors led to reduction of pEGFR/EGFR and pMET/MET ratio and downregulation of PI3K/AKT and MEK/ERK1/2-based signalling pathways. Our findings indicate a potential therapeutic strategy based on EGFR and MET inhibitors in mucosal melanoma, which should be further evaluated in vivo and in clinical experiments. They also suggest that targeting multiple receptor tyrosine kinases may block signalling crosstalk and possibly delay the appearance of resistance to kinase inhibitors in mucosal melanoma cells.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Justyna Wądzyńska
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Magdalena Kot
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical OncologyWroclaw Medical UniversityWroclawPoland
- Lower Silesian OncologyPulmonology and Hematology CenterWroclawPoland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical OncologyWroclaw Medical UniversityWroclawPoland
- Lower Silesian OncologyPulmonology and Hematology CenterWroclawPoland
| | - Mai P. Hoang
- Department of PathologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Piotr Donizy
- Department of Clinical and Experimental PathologyWroclaw Medical UniversityWroclawPoland
- Department of Pathology and Clinical CytologyJan Mikulicz‐Radecki University HospitalWroclawPoland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| |
Collapse
|
3
|
Ren X, Yan J, Zhao Q, Bao X, Han X, Zheng C, Zhou Y, Chen L, Wang B, Yang L, Lin X, Liu D, Lin Y, Li M, Fang H, Lu Z, Lyu J. The Fe-S cluster assembly protein IscU2 increases α-ketoglutarate catabolism and DNA 5mC to promote tumor growth. Cell Discov 2023; 9:76. [PMID: 37488138 PMCID: PMC10366194 DOI: 10.1038/s41421-023-00558-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/01/2023] [Indexed: 07/26/2023] Open
Abstract
IscU2 is a scaffold protein that is critical for the assembly of iron-sulfur (Fe-S) clusters and the functions of Fe-S-containing mitochondrial proteins. However, the role of IscU2 in tumor development remains unclear. Here, we demonstrated that IscU2 expression is much higher in human pancreatic ductal adenocarcinoma (PDAC) tissues than in adjacent normal pancreatic tissues. In PDAC cells, activated KRAS enhances the c-Myc-mediated IscU2 transcription. The upregulated IscU2 stabilizes Fe-S cluster and regulates the activity of tricarboxylic acid (TCA) cycle enzymes α-ketoglutarate (α-KG) dehydrogenase and aconitase 2, which promote α-KG catabolism through oxidative and reductive TCA cycling, respectively. In addition to promoting mitochondrial functions, activated KRAS-induced and IscU2-dependent acceleration of α-KG catabolism results in reduced α-KG levels in the cytosol and nucleus, leading to an increase in DNA 5mC due to Tet methylcytosine dioxygenase 3 (TET3) inhibition and subsequent expression of genes including DNA polymerase alpha 1 catalytic subunit for PDAC cell proliferation and tumor growth in mice. These findings underscore a critical role of IscU2 in KRAS-promoted α-KG catabolism, 5mC-dependent gene expression, and PDAC growth and highlight the instrumental and integrated regulation of mitochondrial functions and gene expression by IscU2 in PDAC cells.
Collapse
Affiliation(s)
- Xiaojun Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jimei Yan
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiongya Zhao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinzhu Bao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Han
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen Zheng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Zhou
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lifang Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lina Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xi Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dandan Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuyan Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hezhi Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianxin Lyu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Bonafé GA, dos Santos JS, Ziegler JV, Marson FAL, Rocha T, Ortega MM. Dipotassium Glycyrrhizinate on Melanoma Cell Line: Inhibition of Cerebral Metastases Formation by Targeting NF-kB Genes-Mediating MicroRNA-4443 and MicroRNA-3620-Dipotassium Glycyrrhizinate Effect on Melanoma. Int J Mol Sci 2022; 23:ijms23137251. [PMID: 35806253 PMCID: PMC9266887 DOI: 10.3390/ijms23137251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 02/01/2023] Open
Abstract
Glycyrrhizic acid (GA), a natural compound isolated from licorice (Glycyrrhiza glabra), has exhibited anti-inflammatory and anti-tumor effects in vitro. Dipotassium glycyrrhizinate (DPG), a dipotassium salt of GA, also has shown an anti-tumor effect on glioblastoma cell lines, U87MG and T98G. The study investigated the DPG effects in the melanoma cell line (SK-MEL-28). MTT assay demonstrated that the viability of the cells was significantly decreased in a time- and dose-dependent manner after DPG (IC50 = 36 mM; 24 h). DNA fragmentation suggested that DPG (IC50) induced cellular apoptosis, which was confirmed by a significant number of TUNEL-positive cells (p-value = 0.048) and by PARP-1 [0.55 vs. 1.02 arbitrary units (AUs), p-value = 0.001], BAX (1.91 vs. 1.05 AUs, p-value = 0.09), and BCL-2 (0.51 vs. 1.07 AUs, p-value = 0.0018) mRNA compared to control cells. The proliferation and wound-healing assays showed an anti-proliferative effect on DPG-IC50-treated cells, also indicating an inhibitory effect on cell migration (p-values < 0.001). Moreover, it was observed that DPG promoted a 100% reduction in melanospheres formation (p-value = 0.008). Our previous microRNAs (miRs) global analysis has revealed that DPG might increase miR-4443 and miR-3620 expression levels. Thus, qPCR showed that after DPG treatment, SK-MEL-28 cells presented significantly high miR-4443 (1.77 vs. 1.04 AUs, p-value = 0.02) and miR-3620 (2.30 vs. 1.00 AUs, p-value = 0.01) expression compared to control cells, which are predicted to target the NF-kB, CD209 and TNC genes, respectively. Both genes are responsible for cell attachment and migration, and qPCR revealed significantly decreased CD209 (1.01 vs. 0.54 AUs, p-value = 0.018) and TNC (1.00 vs. 0.31 AUs, p-value = 2.38 × 10−6) mRNA expression levels after DPG compared to untreated cells. Furthermore, the migration of SK-MEL-28 cells stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) was attenuated by adding DPG by wound-healing assay (48 h: p-value = 0.004; 72 h: p-value = 7.0 × 10−4). In addition, the MMP-9 expression level was inhibited by DPG in melanoma cells stimulated by TPA and compared to TPA-treated cells (3.56 vs. 0.99 AUs, p-value = 0.0016) after 24 h of treatment. Our results suggested that DPG has an apoptotic, anti-proliferative, and anti-migratory effect on SK-MEL-28 cells. DPG was also able to inhibit cancer stem-like cells that may cause cerebral tumor formation.
Collapse
Affiliation(s)
- Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Bragança Paulista 12916-900, São Paulo, Brazil; (G.A.B.); (J.S.d.S.); (F.A.L.M.)
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Jéssica Silva dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Bragança Paulista 12916-900, São Paulo, Brazil; (G.A.B.); (J.S.d.S.); (F.A.L.M.)
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Bragança Paulista 12916-900, São Paulo, Brazil
| | | | - Fernando Augusto Lima Marson
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Bragança Paulista 12916-900, São Paulo, Brazil; (G.A.B.); (J.S.d.S.); (F.A.L.M.)
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Thalita Rocha
- Postgraduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, Sorocaba 05014-901, São Paulo, Brazil;
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Bragança Paulista 12916-900, São Paulo, Brazil; (G.A.B.); (J.S.d.S.); (F.A.L.M.)
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Bragança Paulista 12916-900, São Paulo, Brazil
- Correspondence: ; Tel.: +55-11-2454-8471
| |
Collapse
|
5
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
6
|
Osrodek M, Rozanski M, Czyz M. Insulin Reduces the Efficacy of Vemurafenib and Trametinib in Melanoma Cells. Cancer Manag Res 2020; 12:7231-7250. [PMID: 32982400 PMCID: PMC7501594 DOI: 10.2147/cmar.s263767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the progress made in the clinical management of metastatic melanoma, a patient's response to treatment cannot be fully predicted, and intrinsic or acquired resistance that is developed in most melanoma patients warrants further research efforts. In addition to genetic factors, microenvironmental input should be considered to explain the diversity of response to treatment among melanoma patients. In this study, we evaluated the impact of insulin on patient-derived BRAFV600E melanoma cells, either untreated or treated with vemurafenib or trametinib, inhibitors of BRAFV600 and MEK1/2, respectively. METHODS Cells were cultured in serum-free conditions, either with or without insulin. The activity of the MAPK/ERK and PI3K/AKT pathways was assessed by Western blotting, cell viability, and percentages of Ki-67- and NGFR-positive cells by flow cytometry. Transcript levels were analyzed using qRT-PCR, and γ-H2AX levels by immunoblotting and confocal microscopy. A luminescence-based assay was used to measure glutathione content. RESULTS While insulin did not influence the MAPK/ERK pathway activity, it had a strong influence on melanoma cells, in which this pathway was suppressed by either vemurafenib or trametinib. In the presence of insulin, both drugs were much less efficient in 1) inhibiting proliferation and reducing the percentage of Ki-67-positive cells, and 2) inducing apoptosis and phosphorylation of histone H2AX in melanoma cells. Changes induced by vemurafenib and trametinib in glutathione homeostasis and DNA repair gene expression were also attenuated by insulin. Moreover, insulin impaired the combined effects of targeted drugs and doxorubicin in melanoma cells. In addition to insulin-induced PI3K/AKT activity, which was either transient or sustainable depending on the cell line, an insulin-triggered increase in the percentage of cells expressing NGFR, a marker of neural crest stem-like cells, may contribute to the reduced drug efficacy. CONCLUSION Our results demonstrate the role of insulin in reducing the efficacy of vemurafenib and trametinib. This needs clinical assessment.
Collapse
Affiliation(s)
- Marta Osrodek
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Michal Rozanski
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
17-Aminogeldanamycin Inhibits Constitutive Nuclear Factor-Kappa B (NF-κB) Activity in Patient-Derived Melanoma Cell Lines. Int J Mol Sci 2020; 21:ijms21113749. [PMID: 32466509 PMCID: PMC7312877 DOI: 10.3390/ijms21113749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma remains incurable skin cancer, and targeting heat shock protein 90 (HSP90) is a promising therapeutic approach. In this study, we investigate the effect of 17-aminogeldanamycin, a potent HSP90 inhibitor, on nuclear factor-kappa B (NF-κB) activity in BRAFV600E and NRASQ61R patient-derived melanoma cell lines. We performed time-lapse microscopy and flow cytometry to monitor changes in cell confluence and viability. The NF-κB activity was determined by immunodetection of phospho-p65 and assessment of expression of NF-κB-dependent genes by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Constitutive activity of p65/NF-κB was evident in all melanoma cell lines. Differences in its level might be associated with genetic alterations in CHUK, IL1B, MAP3K14, NFKBIE, RIPK1, and TLR4, while differences in transcript levels of NF-κB-inducible genes revealed by PCR array might result from the contribution of other regulatory mechanisms. 17-Aminogeldanamycin markedly diminished the level of phospho-p65, but the total p65 protein level was unaltered, indicating that 17-aminogeldanamycin inhibited activation of p65/NF-κB. This conclusion was supported by significantly reduced expression of selected NF-κB-dependent genes: cyclin D1 (CCND1), C-X-C motif chemokine ligand 8 (CXCL8), and vascular endothelial growth factor (VEGF), as shown at transcript and protein levels, as well as secretion of IL-8 and VEGF. Our study indicates that 17-aminogeldanamycin can be used for efficient inhibition of NF-κB activity and the simultaneous diminution of IL-8 and VEGF levels in the extracellular milieu of melanoma.
Collapse
|
8
|
17-Aminogeldanamycin selectively diminishes IRE1α-XBP1s pathway activity and cooperatively induces apoptosis with MEK1/2 and BRAF V600E inhibitors in melanoma cells of different genetic subtypes. Apoptosis 2020; 24:596-611. [PMID: 30989459 PMCID: PMC6598962 DOI: 10.1007/s10495-019-01542-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Outcomes of melanoma patient treatment remain unsatisfactory despite accessibility of oncoprotein-targeting drugs and immunotherapy. Here, we reported that 17-aminogeldanamycin more potently activated caspase-3/7 in BRAFV600E melanoma cells than geldanamycin, another inhibitor of heat shock protein 90 (HSP90). 17-aminogeldanamycin alleviated self-triggered compensatory increase in HSP70 mRNA level and induced endoplasmic reticulum (ER) stress, which was followed by selective diminution of cytoprotective IRE1α-XBP1s pathway activity of unfolded protein response (UPR), inhibition of ERK1/2 activity and induction of apoptosis. Concomitantly, ATF6/p50 level and expression of PERK-dependent genes, CHOP and BIM, remained unaltered. This might result from an inframe deletion in EIF2AK3 leading to a PERKL21del variant revealed by whole-exome sequencing in melanoma cell lines. 17-aminogeldanamycin exhibited similar activity in NRASQ61R melanoma cells that harbored a heterozygous inactivating variant of NAD(P)H:quinone oxidoreductase 1 (NQO1P187S). In addition, 17-aminogeldanamycin acted cooperatively with trametinib (an inhibitor of MEK1/2) and vemurafenib (an inhibitor of BRAFV600E) in induction of apoptosis in melanoma cell lines as evidenced by in-cell caspase-3/7 activation and PARP cleavage that occurred earlier compared with either drug used alone. As trametinib and vemurafenib did not significantly affect HSP70 and GRP78 transcript levels, cooperation of MEK/BRAFV600E inhibitors and 17-aminogeldanamycin might result from a concurrent inhibition of the RAS/RAF/MEK/ERK cascade and IRE1α-dependent signaling, and cell-intrinsic ER homeostasis can determine the extent of the drug cooperation. Our study indicates that 17-aminogeldanamycin takes several advantages compared with other HSP90-targeting compounds, and can complement activity of BRAF/MEK inhibitors in melanoma cells of different genetic subtypes.
Collapse
|
9
|
Dias Câmara DA, Luiz de Sá Junior P, Alexandre de Azevedo R, Figueiredo CR, Araldi RP, Levy D, Madeiro de Souza D, Kerkis I. Identification of very small cancer stem cells expressing hallmarks of pluripotency in B16F10 melanoma cells and their reoccurrence in B16F10-derived clones. Exp Cell Res 2020; 391:111938. [PMID: 32278688 DOI: 10.1016/j.yexcr.2020.111938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/18/2023]
Abstract
Melanoma is characterized by high heterogeneity and plasticity, most likely due to the presence of mutated melanocyte stem cells or immature progenitor cells in the skin that serves as precursors to melanoma. In the present study, for the first time, we identified rare cells in the murine melanoma B16F10, and human A2058 and SK-MEL-28 cell lines that express pluripotency markers, including Oct4, Nanog, Sox2 and a marker of melanoma cancer cells (ALDH1/2). These cells are very small with round morphology and they grow onto melanoma cells, thereby demonstrating feeder layer dependence similar to that of other pluripotent cells. These cells underwent self-renewal, symmetric and asymmetric division. We called these cells murine very small cancer stem cells (VSCSC). VSCSC were also found in B16F10-derived clones after 3-5 consecutive passages, where they occur as single cells or as small colonies, nevertheless, always using melanoma cells as feeders. These cells formed melanospheres enriched with Oct4-and ALDH1/2-positive cells. We also evaluated the possible effect of VSCSC that presented in the parental cell line (B16F10) and in clones based on their functional characteristics. We found that VCSCS present in the B16F10 cell line reappearing in their clones were required for continuous tumor growth and were responsible for melanoma cell heterogeneity and plasticity rather than directly affecting functional characteristics of melanoma cells. Our data, together with those of previous reports suggested the existence of melanoma-competent melanocyte stem cells, which corroborate the hypothesis of the existence of tumor-initiating cells and cancer stem cell hierarchies, at least in melanoma.
Collapse
Affiliation(s)
- Diana Aparecida Dias Câmara
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil; Universidade Federal de Sao Paulo, Programa de Pós-graduação em Biologia Estrutural e Funcional, SP, Brazil.
| | | | - Ricardo Alexandre de Azevedo
- Experimental Oncology Unit (UNONEX), Microbiology, Immunology and Parasitology Department, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carlos Rogério Figueiredo
- Experimental Oncology Unit (UNONEX), Microbiology, Immunology and Parasitology Department, Federal University of Sao Paulo, Sao Paulo, SP, Brazil; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | - Debora Levy
- Laboratory of Genetics and Molecular Hematology (LIM31), University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | | | - Irina Kerkis
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil.
| |
Collapse
|
10
|
Dissecting Mechanisms of Melanoma Resistance to BRAF and MEK Inhibitors Revealed Genetic and Non-Genetic Patient- and Drug-Specific Alterations and Remarkable Phenotypic Plasticity. Cells 2020; 9:cells9010142. [PMID: 31936151 PMCID: PMC7017165 DOI: 10.3390/cells9010142] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
The clinical benefit of MAPK pathway inhibition in BRAF-mutant melanoma patients is limited by the development of acquired resistance. Using drug-naïve cell lines derived from tumor specimens, we established a preclinical model of melanoma resistance to vemurafenib or trametinib to provide insight into resistance mechanisms. Dissecting the mechanisms accompanying the development of resistance, we have shown that (i) most of genetic and non-genetic alterations are triggered in a cell line- and/or drug-specific manner; (ii) several changes previously assigned to the development of resistance are induced as the immediate response to the extent measurable at the bulk levels; (iii) reprogramming observed in cross-resistance experiments and growth factor-dependence restricted by the drug presence indicate that phenotypic plasticity of melanoma cells largely contributes to the sustained resistance. Whole-exome sequencing revealed novel genetic alterations, including a frameshift variant of RBMX found exclusively in phospho-AKThigh resistant cell lines. There was no similar pattern of phenotypic alterations among eleven resistant cell lines, including expression/activity of crucial regulators, such as MITF, AXL, SOX, and NGFR, which suggests that patient-to-patient variability is richer and more nuanced than previously described. This diversity should be considered during the development of new strategies to circumvent the acquired resistance to targeted therapies.
Collapse
|
11
|
Hartman ML, Czyz M. TYRP1 mRNA level is stable and MITF-M-independent in drug-naïve, vemurafenib- and trametinib-resistant BRAF V600E melanoma cells. Arch Dermatol Res 2019; 312:385-392. [PMID: 31624899 PMCID: PMC7248034 DOI: 10.1007/s00403-019-01995-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 01/28/2023]
Abstract
TYRP1 mRNA is of interest due to its potential non-coding role as a sponge sequestering tumor-suppressive miRs in melanoma. To our knowledge, there is no report on changes in TYRP1 expression in melanomas after development of resistance to targeted therapies. We used patient-derived drug-naïve RASQ61R and BRAFV600E melanoma cell lines. In BRAFV600E melanoma cells, resistance to vemurafenib and trametinib was developed. A time-lapse fluorescence microscope was used to rate proliferation, qRT-PCR and Western blotting were used to assess TYRP1 expression and MITF-M level and activity. A high TYRP1 protein level in RASQ61R cells corresponded with high TYRP1 mRNA level, whereas undetectable TYRP1 protein in BRAFV600E cells was accompanied by medium mRNA level, also in cells carrying NF1R135W variant in addition. TYRP1 expression was MITF-M-independent, since similar transcript status was found in MITF-Mhigh and MITF-Mlow cells. For the first time, we showed that TYRP1 expression remained unaltered in melanoma cells that became resistant to vemurafenib or trametinib, including those cells losing MITF-M. Also drug discontinuation in resistant cells did not substantially affect TYRP1 expression. To verify in vitro results, publicly available microarray data were analyzed. TYRP1 transcript levels stay unaltered in the majority of paired melanoma samples from patients before treatment and after relapse caused by resistance to targeted therapies. As TYRP1 mRNA level remains unaltered in melanoma cells during development of resistance to vemurafenib or trametinib, therapies developed to terminate a sponge activity of TYRP1 transcript may be extended to patients that relapse with resistant disease.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
12
|
Simiczyjew A, Pietraszek-Gremplewicz K, Dratkiewicz E, Podgórska M, Matkowski R, Ziętek M, Nowak D. Combination of Selected MET and EGFR Inhibitors Decreases Melanoma Cells' Invasive Abilities. Front Pharmacol 2019; 10:1116. [PMID: 31649529 PMCID: PMC6792435 DOI: 10.3389/fphar.2019.01116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
We have previously shown that combination of foretinib, an inhibitor of MET (hepatocyte growth factor receptor), with gefitinib or lapatinib, inhibitors of EGFR (epidermal growth factor receptor), has a synergistic cytotoxic effect on melanoma cells. However, there are cancer cells resistant to drugs’ treatment which are still able to invade. Thus, in this study, we examined the influence of these drugs on invasive abilities of melanoma cells. To investigate cell migration and invasion, Transwell inserts and wound healing assay were used. Cell viability was evaluated by XTT method, while invadopodia formation by immunocytochemistry. Level of phosphorylated Src kinase (pSrc) was verified by Western blot. Proteolytic activity of cells was analyzed using gelatin conjugated with fluorescein degradation assay and gelatin zymography. Combination of used inhibitors diminished cell movement, resulting in smaller distances covered by cells, and decreased the ratio of cells with ability to cross the Transwell inserts. These inhibitors induced changes in formation of invadopodia and actin cytoskeleton organization. Their application also decreased the level of pSrc kinase. Furthermore, used drugs led to reduction of proteolytic activity of examined cells. Our data support the idea that simultaneous targeting of EGFR and MET could be a promising therapeutic strategy inhibiting not only tumor cell growth but also its metastasis.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Marta Podgórska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Wroclaw, Poland.,Lower Silesian Oncology Center, Wroclaw, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Wroclaw, Poland.,Lower Silesian Oncology Center, Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
13
|
Osrodek M, Hartman ML, Czyz M. Physiologically Relevant Oxygen Concentration (6% O 2) as an Important Component of the Microenvironment Impacting Melanoma Phenotype and Melanoma Response to Targeted Therapeutics In Vitro. Int J Mol Sci 2019; 20:ijms20174203. [PMID: 31461993 PMCID: PMC6747123 DOI: 10.3390/ijms20174203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer cell phenotype largely depends on oxygen availability. The atmospheric oxygen concentration (21%) used in in vitro studies is much higher than in any human tissue. Using well-characterized patient-derived melanoma cell lines, we compared: (i) activities of several signaling pathways, and (ii) the effects of vemurafenib and trametinib in hyperoxia (21% O2), normoxia (6% O2) and hypoxia (1% O2). A high plasticity of melanoma cells in response to changes in oxygen supplementation and drug treatment was observed, and the transcriptional reprograming and phenotypic changes varied between cell lines. Normoxia enhanced the expression of vascular endothelial growth factor (VEGF), glucose metabolism/transport-related genes, and changed percentages of NGFR- and MITF-positive cells in cell line-dependent manner. Increased protein stability might be responsible for high PGC1α level in MITFlow melanoma cells. Vemurafenib and trametinib while targeting the activity of MAPK/ERK pathway irrespective of oxygen concentration, were less effective in normoxia than hyperoxia in reducing levels of VEGF, PGC1α, SLC7A11 and Ki-67-positive cells in cell line-dependent manner. In conclusion, in vitro studies performed in atmospheric oxygen concentration provide different information on melanoma cell phenotype and response to drugs than performed in normoxia, which might partially explain the discrepancies between results obtained in vitro and in clinical settings.
Collapse
Affiliation(s)
- Marta Osrodek
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| |
Collapse
|
14
|
Plasticity of Drug-Naïve and Vemurafenib- or Trametinib-Resistant Melanoma Cells in Execution of Differentiation/Pigmentation Program. JOURNAL OF ONCOLOGY 2019; 2019:1697913. [PMID: 31354817 PMCID: PMC6636509 DOI: 10.1155/2019/1697913] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
Abstract
Melanoma plasticity creates a plethora of opportunities for cancer cells to escape treatment. Thus, therapies must target all cancer cell subpopulations bearing the potential to contribute to disease. The role of the differentiation/pigmentation program in intrinsic and acquired drug resistance is largely uncharacterized. MITF level and expression of MITF-dependent pigmentation-related genes, MLANA, PMEL, TYR, and DCT, in drug-naïve and vemurafenib- or trametinib-treated patient-derived melanoma cell lines and their drug-resistant counterparts were analysed and referred to genomic alterations. Variability in execution of pigmentation/differentiation program was detected in patient-derived melanoma cell lines. Acute treatment with vemurafenib or trametinib enhanced expression of pigmentation-related genes in MITF-Mhigh melanoma cells, partially as the consequence of transcriptional reprograming. During development of resistance, changes in pigmentation program were not unidirectional, but also not universal as expression of different pigmentation-related genes was diversely affected. In selected resistant cell lines, differentiation/pigmentation was promoted and might be considered as one of drug-tolerant phenotypes. In other resistant lines, dedifferentiation was induced. Upon drug withdrawal ("drug holiday"), the dedifferentiation process in resistant cells either was enhanced but reversed by drug reexposure suggesting involvement of epigenetic mechanisms or was irreversible. The irreversible dedifferentiation might be connected with homozygous loss-of-function mutation in MC1R, as MC1RR151C +/+ variant was found exclusively in drug-naïve MITF-Mlow dedifferentiated cells and drug-resistant cells derived from MITFhigh/MC1RWT cells undergoing irreversible dedifferentiation. MC1RR151C +/+ variant might be further investigated as a parameter potentially impacting melanoma patient stratification and aiding in treatment decision.
Collapse
|
15
|
Wang Y, Leonard MK, Snyder DE, Fisher ML, Eckert RL, Kaetzel DM. NME1 Drives Expansion of Melanoma Cells with Enhanced Tumor Growth and Metastatic Properties. Mol Cancer Res 2019; 17:1665-1674. [PMID: 31123173 DOI: 10.1158/1541-7786.mcr-18-0019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/14/2018] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
Melanoma is a lethal skin cancer prone to progression and metastasis, and resistant to therapy. Metastasis and therapy resistance of melanoma and other cancers are driven by tumor cell plasticity, largely via acquisition/loss of stem-like characteristics and transitions between epithelial and mesenchymal phenotypes (EMT/MET). NME1 is a metastasis suppressor gene that inhibits metastatic potential when its expression is enforced in melanoma and other cancers. Herein, we have unmasked a novel role for NME1 as a driver of melanoma growth distinct from its canonical function as a metastasis suppressor. NME1 promotes expansion of stem-like melanoma cells that exhibit elevated expression of stem cell markers (e.g., Sox2, Sox10, Oct-4, KLF4, and Ccnb-1), enhanced growth as melanoma spheres in culture, and enhanced tumor growth and lung colonizing activities in vivo. In contrast, NME1 expression did not affect the proliferation of melanoma cell lines in monolayer culture conditions. Silencing of NME1 expression resulted in a dramatic reduction in melanoma sphere size, and impaired tumor growth and metastatic activities of melanoma sphere cells when xenografted in immunocompromised mice. Individual cells within melanoma sphere cultures displayed a wide range of NME1 expression across multiple melanoma cell lines. Cell subpopulations with elevated NME1 expression were fast cycling and displayed enhanced expression of stem cell markers. IMPLICATIONS: Our findings suggest the current model of NME1 as a metastasis-suppressing factor requires refinement, bringing into consideration its heterogeneous expression within melanoma sphere cultures and its novel role in promoting the expansion and tumorigenicity of stem-like cells.
Collapse
Affiliation(s)
- Ying Wang
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - M Kathryn Leonard
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - Devin E Snyder
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - Matthew L Fisher
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - Richard L Eckert
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland-Baltimore, Baltimore, Maryland
| | - David M Kaetzel
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland-Baltimore, Baltimore, Maryland
| |
Collapse
|
16
|
Hartman ML, Sztiller-Sikorska M, Czyz M. Whole-exome sequencing reveals novel genetic variants associated with diverse phenotypes of melanoma cells. Mol Carcinog 2019; 58:588-602. [DOI: 10.1002/mc.22953] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Mariusz L. Hartman
- Department of Molecular Biology of Cancer; Medical University of Lodz; Lodz Poland
| | | | - Malgorzata Czyz
- Department of Molecular Biology of Cancer; Medical University of Lodz; Lodz Poland
| |
Collapse
|
17
|
Mambelli-Lisboa NC, Sciani JM, Brandão Prieto da Silva AR, Kerkis I. Co-Localization of Crotamine with Internal Membranes and Accentuated Accumulation in Tumor Cells. Molecules 2018; 23:E968. [PMID: 29693555 PMCID: PMC6017820 DOI: 10.3390/molecules23040968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 01/07/2023] Open
Abstract
Crotamine is a highly cationic; cysteine rich, cross-linked, low molecular mass cell penetrating peptide (CPP) from the venom of the South American rattlesnake. Potential application of crotamine in biomedicine may require its large-scale purification. To overcome difficulties related with the purification of natural crotamine (nCrot) we aimed in the present study to synthesize and characterize a crotamine analog (sCrot) as well investigate its CPP activity. Mass spectrometry analysis demonstrates that sCrot and nCrot have equal molecular mass and biological function—the capacity to induce spastic paralysis in the hind limbs in mice. sCrot CPP activity was evaluated in a wide range of tumor and non-tumor cell tests performed at different time points. We demonstrate that sCrot-Cy3 showed distinct co-localization patterns with intracellular membranes inside the tumor and non-tumor cells. Time-lapse microscopy and quantification of sCrot-Cy3 fluorescence signalss in living tumor versus non-tumor cells revealed a significant statistical difference in the fluorescence intensity observed in tumor cells. These data suggest a possible use of sCrot as a molecular probe for tumor cells, as well as, for the selective delivery of anticancer molecules into these tumors.
Collapse
Affiliation(s)
- Nicole Caroline Mambelli-Lisboa
- Laboratory of Genetics, Butantan Institute, Sao Paulo 05503-900, Brazil.
- CENTD-Center of Excellence in New Target Discovery, Butantan Institute, Sao Paulo 05503-900, Brazil.
| | - Juliana Mozer Sciani
- CENTD-Center of Excellence in New Target Discovery, Butantan Institute, Sao Paulo 05503-900, Brazil.
- Biochemistry and Biophysics Laboratory, Butantan Institute, Sao Paulo 05503-900, Brazil.
| | - Alvaro Rossan Brandão Prieto da Silva
- Laboratory of Genetics, Butantan Institute, Sao Paulo 05503-900, Brazil.
- CENTD-Center of Excellence in New Target Discovery, Butantan Institute, Sao Paulo 05503-900, Brazil.
| | - Irina Kerkis
- Laboratory of Genetics, Butantan Institute, Sao Paulo 05503-900, Brazil.
- CENTD-Center of Excellence in New Target Discovery, Butantan Institute, Sao Paulo 05503-900, Brazil.
| |
Collapse
|
18
|
Hua KT, Hong JB, Sheen YS, Huang HY, Huang YL, Chen JS, Liao YH. miR-519d Promotes Melanoma Progression by Downregulating EphA4. Cancer Res 2017; 78:216-229. [PMID: 29093007 DOI: 10.1158/0008-5472.can-17-1933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/08/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that there is a unique cell subpopulation in melanoma that can form nonadherent melanospheres in serum-free stem cell medium, mimicking aggressive malignancy. Using melanospheres as a model to investigate progression mechanisms, we found that miR-519d overexpression was sufficient to promote cell proliferation, migration, invasion, and adhesion in vitro and lung metastatic capability in vivo The cell adhesion receptor EphA4 was determined to be a direct target of miR-519d. Forced expression of EphA4 reversed the effects of miR-519d overexpression, whereas silencing of EphA4 phenocopied the effect of miR-519d. Malignant progression phenotypes were also affected at the level of epithelial-to-mesenchymal transition and the ERK1/2 signaling pathway inversely affected by miR-519d or EphA4 expression. In clinical specimens of metastatic melanoma, we observed significant upregulation of miR-519d and downregulation of EphA4, in the latter case correlated inversely with overall survival. Taken together, our results suggest a significant functional role for miR-519d in determining EphA4 expression and melanoma progression.Significance: These results suggest a significant role for miR-519d in determining expression of a pivotal cell adhesion molecule that may impact risks of malignant progression in many cancers. Cancer Res; 78(1); 216-29. ©2017 AACR.
Collapse
Affiliation(s)
- Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jin-Bong Hong
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ling Huang
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jau-Shiuh Chen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
19
|
Zalesna I, Osrodek M, Hartman ML, Rozanski M, Sztiller-Sikorska M, Niewinna K, Nejc D, Czyz M. Exogenous growth factors bFGF, EGF and HGF do not influence viability and phenotype of V600EBRAF melanoma cells and their response to vemurafenib and trametinib in vitro. PLoS One 2017; 12:e0183498. [PMID: 28829835 PMCID: PMC5568748 DOI: 10.1371/journal.pone.0183498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/05/2017] [Indexed: 12/29/2022] Open
Abstract
It has been shown that the response of V600EBRAF melanoma cells to targeted therapeutics is affected by growth factors. We have investigated the influence of three different growth factors, bFGF, EGF and HGF used either alone or in combination, on the response of V600EBRAF melanoma cell populations established from surgical specimens to vemurafenib and trametinib, targeting V600EBRAF and MEK1/2, respectively. We report that proliferation and phenotype of V600EBRAF melanoma cell populations were not detectably influenced by exogenous growth factors. Neither cell distribution in cell cycle and CCND1 expression nor activity of signaling pathways crucial for melanoma development and maintenance, including the RAF/MEK/ERK pathway, WNT/β-catenin pathway and NF-κB signaling, were affected by the presence of different growth factors. We furthermore show that vemurafenib and trametinib abrogated the activity of ERK1/2, arrested cells in G0/G1 cell cycle phase, triggered apoptosis, induced changes in the expression of CXCL8, CCND1 and CTGF and the frequency of Ki-67high and CD271high cells. These effects were, however, similar in the presence of different growth factors. Interestingly, comparable results were also obtained for melanoma cells grown without exogenous growth factors bFGF, EGF and HGF for a period as long as 4 months prior the drug treatment. We conclude that the composition or lack of exogenous growth factors bFGF, EGF and HGF do not markedly influence viability and phenotype of V600EBRAF melanoma cells and their response to vemurafenib and trametinib in vitro. Our results question the necessity of these growth factors in the medium that is used for culturing V600EBRAF melanoma cells.
Collapse
Affiliation(s)
- Izabela Zalesna
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Marta Osrodek
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Mariusz L. Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Michal Rozanski
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | - Karolina Niewinna
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Dariusz Nejc
- Department of Surgical Oncology, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
20
|
Vemurafenib and trametinib reduce expression of CTGF and IL-8 in V600EBRAF melanoma cells. J Transl Med 2017; 97:217-227. [PMID: 28067893 DOI: 10.1038/labinvest.2016.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 02/05/2023] Open
Abstract
Clinical evidence has revealed that while RAS/RAF/MEK/ERK pathway is a crucial component of melanomagenesis, other signaling pathways can also contribute to the malignant growth and development of resistance to targeted therapies. We explored the response of V600EBRAF melanoma cells derived from surgical specimens and grown in stem cell medium to vemurafenib and trametinib, drugs targeting the activity of V600EBRAF and MEK1/2, respectively. Cell growth and apoptosis were monitored by real-time imaging system, immunophenotype and cell cycle by flow cytometry, gene expression by quantitative real-time PCR, immunoblotting and enzyme-linked immunosorbent assay. The V600EBRAF melanoma cell populations were diverse. Differences in morphology, pigmentation, cell cycle profiles, and immunophenotype were observed. At the molecular level, melanoma cells differed in the phosphorylation of ERK1/2, NF-κB, and β-catenin, and expression of several relevant genes, including MITF-M, DKK1, CCND1, BRAF, CXCL8, and CTGF. Despite having different characteristics, melanoma cells responded similarly to vemurafenib and trametinib. Both drugs reduced ERK1/2 phosphorylation and percentages of cells expressing Ki-67 at high level, inhibited expression of CCND1 and induced cell cycle arrest in the Go/G1 phase. These expected cytostatic effects were accompanied by increased CD271 expression, a marker of stem-like cells. NF-κB activity was reduced by both drugs, however, not completely abolished, whereas the level of active β-catenin was increased by drugs in three out of six cell populations. Interestingly, expression of IL-8 and CTGF was significantly reduced by treatment with vemurafenib and trametinib. Simultaneous inhibition of NF-κB activity and induction of ERK1/2 phosphorylation revealed that CTGF expression depends on ERK1/2 activity but not on NF-κB activity. Both, the positive effects of treatment with vemurafenib and trametinib such as the newly identified CTGF suppression and undesired effects such as increased CD271 expression suggesting selection of melanoma stem-like cells should be considered in the development of combination treatment for melanoma patients.
Collapse
|
21
|
Hartman ML, Talar B, Sztiller-Sikorska M, Nejc D, Czyz M. Parthenolide induces MITF-M downregulation and senescence in patient-derived MITF-M(high) melanoma cell populations. Oncotarget 2016; 7:9026-40. [PMID: 26824319 PMCID: PMC4891023 DOI: 10.18632/oncotarget.7030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
The activity of the M isoform of microphthalmia-associated transcription factor (MITF-M) has been attributed to regulation of differentiation, proliferation, survival and senescence of melanoma cells. MITF expression was shown to be antagonized by the activation of transcription factor NF-κB. Parthenolide, an inhibitor of NF-κB, has not been yet reported to affect MITF-M expression. Our results obtained in patient-derived melanoma cell populations indicate that parthenolide efficiently decreases the MITF-M level. This is neither dependent on p65/NF-κB signaling nor RAF/MEK/ERK pathway activity as inhibition of MEK by GSK1120212 (trametinib) and induction of ERK1/2 activity by parthenolide itself do not interfere with parthenolide-triggered depletion of MITF-M in both wild-type BRAF and BRAFV600E melanoma populations. Parthenolide activity is not prevented by inhibitors of caspases, proteasomal and lysosomal pathways. As parthenolide reduces MITF-M transcript level and HDAC1 protein level, parthenolide-activated depletion of MITF-M protein may be considered as a result of transcriptional regulation, however, the influence of parthenolide on other elements of a dynamic control over MITF-M cannot be ruled out. Parthenolide induces diverse effects in melanoma cells, from death to senescence. The mode of the response to parthenolide is bound to the molecular characteristics of melanoma cells, particularly to the basal MITF-M expression level but other cell-autonomous differences such as NF-κB activity and MCL-1 level might also contribute. Our data suggest that parthenolide can be developed as a drug used in combination therapy against melanoma when simultaneous inhibition of MITF-M, NF-κB and HDAC1 is needed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Beata Talar
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | - Dariusz Nejc
- Department of Surgical Oncology, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
22
|
Hsu CC, Chang WC, Hsu TI, Liu JJ, Yeh SH, Wang JY, Liou JP, Ko CY, Chang KY, Chuang JY. Suberoylanilide hydroxamic acid represses glioma stem-like cells. J Biomed Sci 2016; 23:81. [PMID: 27863490 PMCID: PMC5116136 DOI: 10.1186/s12929-016-0296-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/03/2016] [Indexed: 01/07/2023] Open
Abstract
Background Glioma stem-like cells (GSCs) are proposed to be responsible for high resistance in glioblastoma multiforme (GBM) treatment. In order to find new strategies aimed at reducing GSC stemness and improving GBM patient survival, we investigated the effects and mechanism of a histone deacetylases (HDACs) inhibitor, suberoylanilide hydroxamic acid (SAHA), since HDAC activity has been linked to cancer stem-like cell (CSC) abundance and properties. Methods Human GBM cell lines were plated in serum-free suspension cultures allowed for sphere forming and CSC enrichment. Subsequently, upon SAHA treatment, the stemness markers, cell proliferation, and viability of GSCs as well as cellular apoptosis and senescence were examined in order to clarify whether inhibition of GSCs occurs. Results We demonstrated that SAHA attenuated cell proliferation and diminished the expression stemness-related markers (CD133 and Bmi1) in GSCs. Furthermore, at high concentrations (more than 5 μM), SAHA triggered apoptosis of GSCs accompanied by increases in both activation of caspase 8- and caspase 9-mediated pathways. Interestingly, we found that a lower dose of SAHA (1 μM and 2.5 μM) inhibited GSCs via cell cycle arrest and induced premature senescence through p53 up-regulation and p38 activation. Conclusion SAHA induces apoptosis and functions as a potent modulator of senescence via the p38-p53 pathway in GSCs. Our results provide a perspective on targeting GSCs via SAHA treatment, and suggest that SAHA could be used as a potent agent to overcome drug resistance in GBM patients. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0296-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsung-I Hsu
- Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jr-Jiun Liu
- Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, 367 Sheng-Li Road, Tainan, 70456, Taiwan
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chiung-Yuan Ko
- Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, 367 Sheng-Li Road, Tainan, 70456, Taiwan.
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
23
|
Talar B, Gajos-Michniewicz A, Talar M, Chouaib S, Czyz M. Pentoxifylline Inhibits WNT Signalling in β-Cateninhigh Patient-Derived Melanoma Cell Populations. PLoS One 2016; 11:e0158275. [PMID: 27351373 PMCID: PMC4924839 DOI: 10.1371/journal.pone.0158275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
Background The heterogeneity of melanoma needs to be addressed and combination therapies seem to be necessary to overcome intrinsic and acquired resistance to newly developed immunotherapies and targeted therapies. Although the role of WNT/β-catenin pathway in melanoma was early demonstrated, its contribution to the lack of the melanoma patient response to treatment was only recently recognized. Using patient-derived melanoma cell populations, we investigated the influence of pentoxifylline on melanoma cells with either high or low expression of β-catenin. Findings Our results indicate that pentoxifylline inhibits the activity of the canonical WNT pathway in melanoma cell populations with high basal activity of this signalling. This is supported by lowered overall activity of transcription factors TCF/LEF and reduced nuclear localisation of active β-catenin. Moreover, treatment of β-cateninhigh melanoma cell populations with pentoxifylline induces downregulation of genes that are targets of the WNT/β-catenin pathway including connective tissue growth factor (CTGF) and microphthalmia-associated transcription factor (MITF-M), a melanocyte- and melanoma cell-specific regulator. Conclusions These results suggest that pentoxifylline, a drug approved by the FDA in the treatment of peripheral arterial disease, might be tested in a subset of melanoma patients with elevated activity of β-catenin. This pharmaceutical might be tested as an adjuvant drug in combination therapies when the response to immunotherapy is prevented by high activity of the WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Beata Talar
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | - Marcin Talar
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Salem Chouaib
- Unité INSERM U1186, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
24
|
Pastuszko A, Majchrzak K, Czyz M, Kupcewicz B, Budzisz E. The synthesis, lipophilicity and cytotoxic effects of new ruthenium(II) arene complexes with chromone derivatives. J Inorg Biochem 2016; 159:133-41. [DOI: 10.1016/j.jinorgbio.2016.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/27/2016] [Accepted: 02/23/2016] [Indexed: 02/01/2023]
|
25
|
Reinforcing B16F10/GPI-IL-21 vaccine efficacy against melanoma by injecting mice with shZEB1 plasmid or miR200c agomir. Biomed Pharmacother 2016; 80:136-144. [PMID: 27133050 DOI: 10.1016/j.biopha.2016.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/13/2016] [Accepted: 03/13/2016] [Indexed: 12/13/2022] Open
Abstract
In this study, we hypothesized that the inhibition of epithelial to mesenchymal transition (EMT) program by knockdown of Zinc-finger E-box binding homeobox 1 (ZEB1) or administration of miR200c agomir would strengthen the B16F10 cells transfected with GPI-anchored IL-21 (B16F10/GPI-IL-21) vaccine efficacy in inhibiting the melanoma metastasis. Our findings from the current study indicated that, when compared with the mice immunized with the B16F10/GPI-IL-21 vaccine alone, the mice immunized with B16F10/GPI-IL-21 vaccine combined with injection of shZEB1 plasmid or miR200c agomir not only meaningfully inhibited EMT of melanoma, reduced the EMT characteristic molecular expression in tumor tissues, but also significantly decreased the Treg cells and TGF-β1, enhanced the cytotoxicities of NK cells and cytotoxic T lymphocytes and the IFN-γ level. Furthermore, the immunotherapeutic combination resulted in inhibiting the melanoma growth and lung metastasis. Our study demonstrated that using the B16F10/GPI-IL-21 vaccine in combination with the down-regulated ZEB1 or miR200c administration effectively elicited anti-tumor immunity and reduced melanoma metastasis by inhibiting the EMT program in the B16F10 melanoma-bearing mice.
Collapse
|
26
|
Abstract
Melanoma is among the most aggressive and therapy-resistant human cancers. While great strides in therapy have generated enthusiasm, many challenges remain. Heterogeneity is the most pressing issue for all types of therapy. This chapter summarizes the clinical classification of melanoma, of which the research community now adds additional layers of classifications for better diagnosis and prediction of therapy response. As the search for new biomarkers increases, we expect that biomarker analyses will be essential for all clinical trials to better select patient populations for optimal therapy. While individualized therapy that is based on extensive biomarker analyses is an option, we expect in the future genetic and biologic biomarkers will allow grouping of melanomas in such a way that we can predict therapy outcome. At this time, tumor heterogeneity continues to be the major challenge leading inevitably to relapse. To address heterogeneity therapeutically, we need to develop complex therapies that eliminate the bulk of the tumor and, at the same time, the critical subpopulations.
Collapse
Affiliation(s)
- Batool Shannan
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Michela Perego
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Rajasekharan Somasundaram
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Wozniak M, Sztiller-Sikorska M, Czyz M. Diminution of miR-340-5p levels is responsible for increased expression of ABCB5 in melanoma cells under oxygen-deprived conditions. Exp Mol Pathol 2015; 99:707-16. [PMID: 26554847 DOI: 10.1016/j.yexmp.2015.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/06/2015] [Accepted: 11/06/2015] [Indexed: 12/21/2022]
Abstract
Melanoma is usually highly refractory to chemotherapy. This resistance to treatment is mainly due to high heterogeneity and plasticity of melanoma cells strictly connected to changes in tumor microenvironment. Hypoxia can drastically alter cancer biology. Solid tumor cells under hypoxia gain stem-like features, they are more invasive and drug-resistant than their normoxic counterparts. These effects could be mediated by changes in miRNA expression under hypoxia. MiRNAs are small non-coding RNA molecules that can negatively control gene expression. In the present study using microarray technology we evaluated the expression of miRNAs in melanoma cells derived from nodular melanoma and grown under normoxic and hypoxic conditions. Using R environment for statistical analysis we found that 70 miRNAs were differentially-expressed, and 16 of them were significantly down-regulated in melanoma cells grown in hypoxic conditions compared to cells grown in normoxia. We intended to find transcripts whose expression is increased due to down-regulation of selected miRNAs. Bioinformatics analysis revealed that increased levels of HIF-2α, ABCB5, OCT4, SOX2 and ZEB1 in different melanoma populations under hypoxia could be a result of significant down-regulation of miR-340-5p. Inhibition of miR-340-5p confirmed that this miRNA negatively influences the expression of ABCB5. This is the first study showing the relationship between miR-340-5p and expression of ABCB5, a transmembrane transporter involved in drug resistance considered as a marker of melanoma stem-like cells.
Collapse
Affiliation(s)
- Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| | - Malgorzata Sztiller-Sikorska
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
28
|
Raja AM, Xu S, Zhuo S, Tai DCS, Sun W, So PTC, Welsch RE, Chen CS, Yu H. Differential remodeling of extracellular matrices by breast cancer initiating cells. JOURNAL OF BIOPHOTONICS 2015; 8:804-15. [PMID: 25597396 PMCID: PMC4761427 DOI: 10.1002/jbio.201400079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/15/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Cancer initiating cells (CICs) have been the focus of recent anti-cancer therapies, exhibiting strong invasion capability via potentially enhanced ability to remodel extracellular matrices (ECM). We have identified CICs in a human breast cancer cell line, MX-1, and developed a xenograft model in SCID mice. We investigated the CICs' matrix-remodeling effects using Second Harmonic Generation (SHG) microscopy to identify potential phenotypic signatures of the CIC-rich tumors. The isolated CICs exhibit higher proliferation, drug efflux and drug resistant properties in vitro; were more tumorigenic than non-CICs, resulting in more and larger tumors in the xenograft model. The CIC-rich tumors have less collagen in the tumor interior than in the CIC-poor tumors supporting the idea that the CICs can remodel the collagen more effectively. The collagen fibers were preferentially aligned perpendicular to the CIC-rich tumor boundary while parallel to the CIC-poor tumor boundary suggesting more invasive behavior of the CIC-rich tumors. These findings would provide potential translational values in quantifying and monitoring CIC-rich tumors in future anti-cancer therapies. CIC-rich tumors remodel the collagen matrix more than CIC-poor tumors.
Collapse
Affiliation(s)
- Anju M Raja
- Biomedical Engineering Division, Department of Electronic and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore, 599489
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, 138669
- NUS Graduate Programme in Bioengineering, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117597
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shuoyu Xu
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, 138669
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore, 138602
| | - Shuangmu Zhuo
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore, 138602
- Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Dean C S Tai
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, 138669
| | - Wanxin Sun
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, 138669
| | - Peter T C So
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore, 138602
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Roy E Welsch
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chien-Shing Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 28 Medical Drive, Singapore, 117456
- School of Medicine, Division of Hematology and Oncology, Loma Linda University, CA, 92354, USA
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, 138669.
- NUS Graduate Programme in Bioengineering, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117597.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore, 138602.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, Singapore, 117597.
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore, 117411.
| |
Collapse
|
29
|
Hartman ML, Talar B, Gajos-Michniewicz A, Czyz M. MCL-1, BCL-XL and MITF Are Diversely Employed in Adaptive Response of Melanoma Cells to Changes in Microenvironment. PLoS One 2015; 10:e0128796. [PMID: 26035829 PMCID: PMC4452715 DOI: 10.1371/journal.pone.0128796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Melanoma cells can switch their phenotypes in response to microenvironmental insults. Heterogeneous melanoma populations characterized by long-term growth and a high self-renewal capacity can be obtained in vitro in EGF(+)bFGF(+) medium whilst invasive potential of melanoma cells is increased in serum-containing cultures. In the present study, we have shown that originally these patient-derived melanoma populations exhibit variable expression of pro-survival genes from the BCL-2 family and inhibitors of apoptosis (IAPs), and differ in the baseline MCL-1 transcript stability as well. While being transferred to serum-containing medium, melanoma cells are well protected from death. Immediate adaptive response of melanoma cells selectively involves a temporary MCL-1 increase, both at mRNA and protein levels, and BCL-XL can complement MCL-1, especially in MITFlow populations. Thus, the extent of MCL-1 and BCL-XL contributions seems to be cell context-dependent. An increase in MCL-1 level results from a transiently enhanced stability of its transcript, but not from altered protein turnover. Inhibition of MCL-1 preceding transfer to serum-containing medium caused the induction of cell death in a subset of melanoma cells, which confirms the involvement of MCL-1 in melanoma cell survival during the rapid alteration of growth conditions. Additionally, immediate response to serum involves the transient increase in MITF expression and inhibition of ERK-1/2 activity. Uncovering the mechanisms of adaptive response to rapid changes in microenvironment may extend our knowledge on melanoma biology, especially at the stage of dissemination.
Collapse
Affiliation(s)
- Mariusz L. Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Beata Talar
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
30
|
Phenotypic diversity of patient-derived melanoma populations in stem cell medium. J Transl Med 2015; 95:672-83. [PMID: 25867763 DOI: 10.1038/labinvest.2015.48] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/08/2015] [Accepted: 01/26/2015] [Indexed: 12/20/2022] Open
Abstract
Melanomas are highly heterogeneous tumors and there is no treatment effective at achieving long-term remission for metastatic melanoma patients. Thus, an appropriate model system for studying melanoma biology and response to drugs is necessary. It has been shown that composition of the medium is a critical factor in preserving the complexity of the tumor in in vitro settings, and melanospheres maintained in stem cell medium are a good model in this respect. In the present study, we observed that not all nodular melanoma patient-derived cell populations grown in stem cell medium were capable of forming melanospheres, and cell aggregates and anchorage-independent single-cell cultures emerged instead. Self-renewing capacity and unlimited growth potential indicated the presence of cells with stem-like properties in all patient-derived populations but immunophenotype and MITF expression exhibited variability. Enhanced MITF expression and activity was observed in melanospheres in comparison with cell aggregates and single-cell culture, and hypoxic-like conditions that increased the ability of single-cell population to form melanospheres enhanced MITF expression and cell pigmentation as well. Thus, MITF seems to be a critical transcription factor for formation of both patient-derived and hypoxia-induced melanospheres. After 2 years of continuous culturing, melanospheres progressively underwent transition into cell aggregates that was accompanied by changes in expression of several MITF-dependent genes associated with melanogenesis and survival and alterations in the composition of subpopulations but not in the frequency of ABCB5-positive cells. Several biological properties of parent tumor are well preserved in patient-derived melanospheres, but during prolonged culturing the heterogeneity is substantially lost when the melanospheres are substituted by cell aggregates. This should be considered when cell aggregates instead of melanospheres are used in the study of melanoma biology and cell response to drugs.
Collapse
|
31
|
Peretz Y, Wu H, Patel S, Bellacosa A, Katz RA. Inhibitor of DNA Binding 4 (ID4) is highly expressed in human melanoma tissues and may function to restrict normal differentiation of melanoma cells. PLoS One 2015; 10:e0116839. [PMID: 25642713 PMCID: PMC4314081 DOI: 10.1371/journal.pone.0116839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022] Open
Abstract
Melanoma tissues and cell lines are heterogeneous, and include cells with invasive, proliferative, stem cell-like, and differentiated properties. Such heterogeneity likely contributes to the aggressiveness of the disease and resistance to therapy. One model suggests that heterogeneity arises from rare cancer stem cells (CSCs) that produce distinct cancer cell lineages. Another model suggests that heterogeneity arises through reversible cellular plasticity, or phenotype-switching. Recent work indicates that phenotype-switching may include the ability of cancer cells to dedifferentiate to a stem cell-like state. We set out to investigate the phenotype-switching capabilities of melanoma cells, and used unbiased methods to identify genes that may control such switching. We developed a system to reversibly synchronize melanoma cells between 2D-monolayer and 3D-stem cell-like growth states. Melanoma cells maintained in the stem cell-like state showed a striking upregulation of a gene set related to development and neural stem cell biology, which included SRY-box 2 (SOX2) and Inhibitor of DNA Binding 4 (ID4). A gene set related to cancer cell motility and invasiveness was concomitantly downregulated. Intense and pervasive ID4 protein expression was detected in human melanoma tissue samples, suggesting disease relevance for this protein. SiRNA knockdown of ID4 inhibited switching from monolayer to 3D-stem cell-like growth, and instead promoted switching to a highly differentiated, neuronal-like morphology. We suggest that ID4 is upregulated in melanoma as part of a stem cell-like program that facilitates further adaptive plasticity. ID4 may contribute to disease by preventing stem cell-like melanoma cells from progressing to a normal differentiated state. This interpretation is guided by the known role of ID4 as a differentiation inhibitor during normal development. The melanoma stem cell-like state may be protected by factors such as ID4, thereby potentially identifying a new therapeutic vulnerability to drive differentiation to the normal cell phenotype.
Collapse
Affiliation(s)
- Yuval Peretz
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
| | - Hong Wu
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
| | - Shayan Patel
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
| | - Alfonso Bellacosa
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
| | - Richard A. Katz
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Zhao F, He X, Wang Y, Shi F, Wu D, Pan M, Li M, Wu S, Wang X, Dou J. Decrease of ZEB1 expression inhibits the B16F10 cancer stem-like properties. Biosci Trends 2015; 9:325-34. [DOI: 10.5582/bst.2015.01106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Xiangfeng He
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University
| | - Yaqing Wang
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Fangfang Shi
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Di Wu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Meng Pan
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Miao Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Songyan Wu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Xiaoying Wang
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| |
Collapse
|
33
|
Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 2014; 72:1249-60. [PMID: 25433395 PMCID: PMC4363485 DOI: 10.1007/s00018-014-1791-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 02/06/2023]
Abstract
MITF (microphthalmia-associated transcription factor) represents a melanocytic lineage-specific transcription factor whose role is profoundly extended in malignant melanoma. Over the last few years, the function of MITF has been tightly connected to plasticity of melanoma cells. MITF participates in executing diverse melanoma phenotypes defined by distinct gene expression profiles. Mutation-dependent alterations in MITF expression and activity have been found in a relatively small subset of melanomas. MITF activity is rather modulated by its upstream activators and suppressors operating on transcriptional, post-transcriptional and post-translational levels. These regulatory mechanisms also include epigenetic and microenvironmental signals. Several transcription factors and signaling pathways involved in the regulation of MITF expression and/or activity such as the Wnt/β-catenin pathway are broadly utilized by various types of tumors, whereas others, e.g., BRAFV600E/ERK1/2 are more specific for melanoma. Furthermore, the MITF activity can be affected by the availability of transcriptional co-partners that are often redirected by MITF from their own canonical signaling pathways. In this review, we discuss the complexity of a multilevel regulation of MITF expression and activity that underlies distinct context-related phenotypes of melanoma and might explain diverse responses of melanoma patients to currently used therapeutics.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | | |
Collapse
|
34
|
CD133⁺ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett 2014; 357:83-104. [PMID: 25449786 DOI: 10.1016/j.canlet.2014.10.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/04/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023]
Abstract
According to the cancer stem-like cell (CSC) hypothesis, neoplastic clones are maintained by a small fraction of cells with stem cell properties. Also, melanoma resistance to chemo- and radiotherapy is thought to be attributed to melanoma stem-like cells (MSCs). Caffeic acid phenethyl ester (CAPE) is a bioactive molecule, whose antitumor activity is approved in different tumor types. CAPE induced both apoptosis and E2F1 expression in CD133(-), but not in CD133(+) melanoma subpopulations. The resistance of CD133(+) melanoma subpopulation is attributed to the enhanced drug efflux mediated by ATP-binding cassette sub-family B member 5 (ABCB5), since the knockdown of ABCB5 was found to sensitize CD133(+) cells to CAPE. CAPE-induced apoptosis is mediated by E2F1 as evidenced by the abrogation of apoptosis induced in response to the knockdown of E2F1. The functional analysis of E2F1 in CD133(+) melanoma subpopulation demonstrated the ability of E2F1 gene transfer to trigger apoptosis of CD133(+) cells and to enhance the activation of apoptosis signal-regulating kinase (ASK1), c-Jun N-terminal kinase and p38, and the DNA-binding activities of the transcription factors AP-1 and p53. Also, the induction of E2F1 expression was found to enhance the expression of the pro-apoptotic proteins Bax, Noxa and Puma, and to suppress the anti-apoptotic protein Mcl-1. Using specific pharmacological inhibitors we could demonstrate that E2F1 overcomes the chemo-resistance of MSCs/CD133(+) cells by a mechanism mediated by both mitochondrial dysregulation and ER-stress-dependent pathways. In conclusion, our data addresses the mechanisms of CAPE/E2F1-induced apoptosis of chemo-resistant CD133(+) melanoma subpopulation.
Collapse
|
35
|
Larson AR, Lee CW, Lezcano C, Zhan Q, Huang J, Fischer AH, Murphy GF. Melanoma spheroid formation involves laminin-associated vasculogenic mimicry. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:71-8. [PMID: 24332013 DOI: 10.1016/j.ajpath.2013.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/30/2013] [Accepted: 09/18/2013] [Indexed: 10/25/2022]
Abstract
Melanoma is a tumor where virulence is conferred on transition from flat (radial) to three-dimensional (tumorigenic) growth. Virulence of tumorigenic growth is governed by numerous attributes, including presence of self-renewing stem-like cells and related formation of patterned networks associated with the melanoma mitogen, laminin, a phenomenon known as vasculogenic mimicry. Vasculogenic mimicry is posited to contribute to melanoma perfusion and nutrition in vivo; we hypothesized that it may also play a role in stem cell-driven spheroid formation in vitro. Using a model of melanoma in vitro tumorigenesis, laminin-associated networks developed in association with three-dimensional melanoma spheroids. Real-time PCR analysis of laminin subunits showed that spheroids formed from anchorage-independent melanoma cells expressed increased α4 and β1 laminin chains and α4 laminin expression was confirmed by in situ hybridization. Association of laminin networks with melanoma stem cell-associated nestin and vascular endothelial growth factor receptor-1 also was documented. Moreover, knockdown of nestin gene expression impaired laminin expression and network formation within spheroids. Laminin networks were remarkably similar to those observed in melanoma xenografts in mice and to those seen in patient melanomas. These data indicate that vasculogenic mimicry-like laminin networks, in addition to their genesis in vivo, are integral to the extracellular architecture of melanoma spheroids in vitro, where they may serve as stimulatory scaffolds to support three-dimensional growth.
Collapse
Affiliation(s)
- Allison R Larson
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Chung-Wei Lee
- Division of Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Cecilia Lezcano
- Division of Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Qian Zhan
- Division of Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - John Huang
- Division of Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Andrew H Fischer
- Department of Pathology, University of Massachusetts Medical Center, Worcester, Massachusetts
| | - George F Murphy
- Division of Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
36
|
Hartman ML, Talar B, Noman MZ, Gajos-Michniewicz A, Chouaib S, Czyz M. Gene expression profiling identifies microphthalmia-associated transcription factor (MITF) and Dickkopf-1 (DKK1) as regulators of microenvironment-driven alterations in melanoma phenotype. PLoS One 2014; 9:e95157. [PMID: 24733089 PMCID: PMC3986414 DOI: 10.1371/journal.pone.0095157] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/24/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The diversity of functional phenotypes observed within a tumor does not exclusively result from intratumoral genetic heterogeneity but also from the response of cancer cells to the microenvironment. We have previously demonstrated that the morphological and functional phenotypes of melanoma can be dynamically altered upon external stimuli. FINDINGS In the present study, transcriptome profiles were generated to explore the molecules governing phenotypes of melanospheres grown in the bFGF(+)EGF(+) serum-free cultures and monolayers maintained in the serum-containing medium. Higher expression levels of MITF-dependent genes that are responsible for differentiation, e.g., TYR and MLANA, and stemness-related genes, e.g., ALDH1A1, were detected in melanospheres. These results were supported by the observation that the melanospheres contained more pigmented cells and cells exerting the self-renewal capacity than the monolayers. In addition, the expression of the anti-apoptotic, MITF-dependent genes e.g., BCL2A1 was also higher in the melanospheres. The enhanced activity of MITF in melanospheres, as illustrated by the increased expression of 74 MITF-dependent genes, identified MITF as a central transcriptional regulator in melanospheres. Importantly, several genes including MITF-dependent ones were expressed in melanospheres and original tumors at similar levels. The reduced MITF level in monolayers might be partially explained by suppression of the Wnt/β-catenin pathway, and DKK1, a secreted inhibitor of this pathway, was highly up-regulated in monolayers in comparison to melanospheres and original tumors. Furthermore, the silencing of DKK1 in monolayers increased the percentage of cells with self-renewing capacity. CONCLUSIONS Our study indicates that melanospheres can be used to unravel the molecular pathways that sustain intratumoral phenotypic heterogeneity. Melanospheres directly derived from tumor specimens more accurately mirrored the morphology and gene expression profiles of the original tumors compared to monolayers. Therefore, melanospheres represent a relevant preclinical tool to study new anticancer treatment strategies.
Collapse
Affiliation(s)
- Mariusz L. Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Beata Talar
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | | | - Salem Chouaib
- Unité INSERM U753, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
37
|
Sztiller-Sikorska M, Koprowska K, Majchrzak K, Hartman M, Czyz M. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells. PLoS One 2014; 9:e90783. [PMID: 24595456 PMCID: PMC3940936 DOI: 10.1371/journal.pone.0090783] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/04/2014] [Indexed: 12/21/2022] Open
Abstract
Background Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. Methods We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. Findings Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5)-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF) and proto-oncogene c-MYC. Conclusion Selected anti-clonogenic compounds might be further investigated as potential adjuvants targeting melanoma stem-like cells in the combined anti-melanoma therapy, whereas selected cytotoxic but not anti-clonogenic compounds, which increased the frequency of ABCB5-positive cells and remained slow-cycling cells unaffected, might be considered as a tool to enrich cultures with cells exhibiting melanoma stem cell characteristics.
Collapse
Affiliation(s)
| | - Kamila Koprowska
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Kinga Majchrzak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Mariusz Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
38
|
Pastuszko A, Niewinna K, Czyz M, Jóźwiak A, Małecka M, Budzisz E. Synthesis, X-ray structure, electrochemical properties and cytotoxic effects of new arene ruthenium(II) complexes. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Abstract
AbstractCurrent therapies against metastatic tumors are still ineffective. Cancer stem cells — a small subset of cells inside the tumor that possesses a self-renewal capacity — might be responsible for the recurrence of the tumor after anti-cancer therapies. Their immortality and unique drug resistance impede their eradication during therapy. The ‘stemness’ of these cells is controlled by microRNAs. These molecules possess the ability to downregulate gene expression by binding to the target mRNA. It turns out that microRNAs control the expression of approximately 60% of the genes in human cells. MicroRNA aberrant expression can lead to cancer development and progression. Therefore, recent research has focused on unraveling the role of microRNA in maintaining a stem-like phenotype in malignant tumors and cancer stem cells. This review summarizes our current knowledge about microRNAs that control the self-renewal capacity of cancer stem cells and indicates the importance of profound research aimed at developing efficient miRNA-targeted therapies.
Collapse
|
40
|
Hartman ML, Czyz M. Anti-apoptotic proteins on guard of melanoma cell survival. Cancer Lett 2013; 331:24-34. [PMID: 23340174 DOI: 10.1016/j.canlet.2013.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/18/2012] [Accepted: 01/07/2013] [Indexed: 12/30/2022]
Abstract
Apoptosis plays a pivotal role in sustaining proper tissue development and homeostasis. Evading apoptosis by cancer cells is a part of their adaption to microenvironment and therapies. Cellular integrity is predominantly maintained by pro-survival members of Bcl-2 family and IAPs. Melanoma cells are characterized by a labile and stage-dependent phenotype. Pro-survival molecules can protect melanoma cells from apoptosis and mediate other processes, thus enhancing aggressive phenotype. The essential role of Bcl-2, Mcl-1, Bcl-X(L), livin, survivin and XIAP was implicated for melanoma, often in a tumor stage-dependent fashion. In this review, the current knowledge of pro-survival machinery in melanoma is discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Poland
| | | |
Collapse
|
41
|
Rappa G, Mercapide J, Anzanello F, Le TT, Johlfs MG, Fiscus RR, Wilsch-Bräuninger M, Corbeil D, Lorico A. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells. Exp Cell Res 2013; 319:810-9. [PMID: 23318676 DOI: 10.1016/j.yexcr.2013.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 12/01/2022]
Abstract
Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1-positive structures appeared in three sizes (small, ≤40 nm; intermediates ~40-80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1-containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma.
Collapse
Affiliation(s)
- Germana Rappa
- Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Prominin-1 (CD133) and Metastatic Melanoma: Current Knowledge and Therapeutic Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:197-211. [PMID: 23161084 DOI: 10.1007/978-1-4614-5894-4_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Innovative approaches to specifically target the melanoma subpopulation responsible for local invasion and metastatic dissemination are needed. Prominin-1 (CD133) expression has been observed in many melanoma cell lines, as well as in primary and metastatic melanomas from patients. Although its function(s) in melanoma is presently unknown, prominin-1 may represent a molecular target, due to its association with melanoma stem cells and with the metastatic phenotype.
Collapse
|
43
|
Czyz M, Koprowska K, Sztiller-Sikorska M. Parthenolide reduces the frequency of ABCB5-positive cells and clonogenic capacity of melanoma cells from anchorage independent melanospheres. Cancer Biol Ther 2012. [PMID: 23192276 PMCID: PMC3571995 DOI: 10.4161/cbt.22952] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Growing evidence suggests that the cancer stem cell phenotype in melanoma is dynamically regulated. Therefore, effective therapies have to target simultaneously bulk tumor cells and melanoma stem-like cells. The aim of the present study was to investigate the effects of parthenolide on heterogeneous cancer cell populations from anchorage-independent melanospheres. Cells derived from nodular melanoma specimens were grown under serum-free sphere-forming conditions. The effects of parthenolide on cellular viability, immunophenotype and self-renewing capacity were assessed with cells from dissociated melanospheres. Its penetration capacity was evaluated with intact melanospheres. In melanoma cells that survived treatment with parthenolide, a different immunophenotype than that in untreated control was found. The frequency of cells expressing the ABCB5 transporter was markedly reduced. Most importantly, melanoma cells that survived parthenolide treatment lost their self-renewing capacity. Significantly lower influence of drug on cellular viability and frequency of ABCB5-positive cells was observed in intact melanospheres. The potential clinical significance of our findings is based on the ability of parthenolide to affect both bulk and melanoma stem-like cells with clonogenic capacity and high expression of the ABCB5 transporter. Its low penetration capacity, however, may limit its action to easily accessible melanoma cells, either circulating in the blood or those in the vicinity to blood vessels within the tumor. Because of limited penetration capacity of parthenolide, this drug should be further explored as a part of multimodal therapies rather than as a stand-alone therapeutic agent.
Collapse
Affiliation(s)
- Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland.
| | | | | |
Collapse
|