1
|
Wu J, Zhang L, Li W, Wang L, Jia Q, Shi F, Li K, Liao L, Shi Y, Wu S. The role of TOP2A in immunotherapy and vasculogenic mimicry in non-small cell lung cancer and its potential mechanism. Sci Rep 2023; 13:10906. [PMID: 37407689 DOI: 10.1038/s41598-023-38117-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023] Open
Abstract
Type IIA topoisomerase (TOP2A) is significantly associated with malignant tumor development, invasion, treatment and its prognosis, and has been shown to be a therapeutic target against cancer. In contrast, the role of TOP2A in the immunotherapy of non-small cell lung cancer as well as in Vasculogenic mimicry (VM) formation and its potential mechanisms are unclear. The aim of this study was to investigate the role of TOP2A in proliferation, skeleton regulation, motility and VM production in non-small cell lung cancer and its mechanisms by using bioinformatics tools and molecular biology experiments. Subgroup analysis showed that the low-risk group had a better prognosis, while the high-risk group was positively correlated with high tumor mutational load, M1-type macrophage infiltration, immune checkpoint molecule expression, and immunotherapy efficacy. As confirmed by further clinical specimens, the presence of TOP2A and VM was significantly and positively correlated with poor prognosis. Our study established a model based on significant co-expression of TOP2A genes, which significantly correlated with mutational load and immunotherapy outcomes in patients with non-small cell lung cancer. Further mechanistic exploration suggests that TOP2A plays an important role in immunotherapy and VM formation in NSCLC through upregulation of Wnt3a and PD-L1 expression.
Collapse
Affiliation(s)
- Jiatao Wu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, Anhui, China
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Lei Zhang
- Department of Oncology Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233080, Anhui, China
| | - Wenjuan Li
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, Anhui, China
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Luyao Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Qianhao Jia
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Fan Shi
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Kairui Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Lingli Liao
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Yuqi Shi
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.
- Department of Pathology, Bengbu Medical College, Bengbu, 233030, Anhui, China.
- Department of pathology, Anhui No.2 Provincial People's Hospital, Bengbu, China.
| |
Collapse
|
2
|
Shi F, Wu J, Jia Q, Li K, Li W, Shi Y, Wang Y, Wu S. Relationship between the expression of ARHGAP25 and RhoA in non-small cell lung cancer and vasculogenic mimicry. BMC Pulm Med 2022; 22:377. [PMID: 36207695 PMCID: PMC9547444 DOI: 10.1186/s12890-022-02179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Vasculogenic mimicry (VM) is a recently identified pattern of blood supply to tumor tissue. It has long been considered a functional element in the metastasis and prognosis of malignant tumors. Both Rho GTPase-activating protein 25 (ARHGAP25) and Ras homolog family member A (RhoA) are effective predictors of tumor metastasis. In this study, we examined the expression levels of ARHGAP25 and RhoA and the structure of VM in non-small cell lung cancer (NSCLC). At the same time, we used cytology-related experiments to explore the effect of ARHGAP25 on the migration ability of tumor cells. Furthermore, we analyzed the interaction between the three factors and their association with clinicopathological characteristics and the five-year survival time in patients using statistical tools. Methods A total of 130 well-preserved NSCLC and associated paracancerous tumor-free tissues were obtained. Cell colony formation, wound healing, and cytoskeleton staining assays were used to analyze the effect of ARHGAP25 on the proliferation and migration ability of NSCLC cells. Immunohistochemical staining was used to determine the positivity rates of ARHGAP25, RhoA, and VM. Statistical software was used to examine the relationships between the three factors and clinical case characteristics, overall survival, and disease-free survival. Results Cell colony formation, wound healing, and cytoskeleton staining assays confirmed that ARHGAP25 expression affects the proliferation and migratory abilities of NSCLC cells. ARHGAP25 positivity rates in NSCLC and paracancerous tumor-free tissues were 48.5% and 63.1%, respectively, whereas RhoA positivity rates were 62.3% and 18.5%, respectively. ARHGAP25 had a negative relationship with RhoA and VM, whereas RhoA and VM had a positive relationship (P < 0.05). ARHGAP25, RhoA, and VM affected the prognosis of patients with NSCLC (P < 0.05) according to Kaplan–Meier of survival time and Cox regression analyses. Furthermore, lowering ARHGAP25 expression increased NSCLC cell proliferation and migration. Conclusions ARHGAP25 and RhoA expression is associated with VM and may be of potential value in predicting tumor metastasis, prognosis, and targeted therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02179-5.
Collapse
Affiliation(s)
- Fan Shi
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Jiatao Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Qianhao Jia
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Kairui Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Wenjuan Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Yuqi Shi
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Yufei Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China. .,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China.
| |
Collapse
|
3
|
Luo J, Zhong X, Peng Y, Hao C, Liang X, Yang Y, Shi X, Chen X, Yi X, Li X, Wu J, Li J, Xiao Q, Wu C, Lu R, Pan Y, Wang X, Fan JB, Wang Y, Wang Y. Self-anti-angiogenesis nanoparticles enhance anti-metastatic-tumor efficacy of chemotherapeutics. Bioact Mater 2022; 13:179-190. [PMID: 35224300 PMCID: PMC8843953 DOI: 10.1016/j.bioactmat.2021.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022] Open
Abstract
Beyond traditional endothelium-dependent vessel (EDV), vascular mimicry (VM) is another critical tumor angiogenesis that further forms in many malignant metastatic tumors. However, the existing anti-angiogenesis combined chemotherapeutics strategies are only efficient for the treatment of EDV-based subcutaneous tumors, but remain a great challenge for the treatment of in situ malignant metastatic tumor associated with EDV and VM. Here, we demonstrate a self-assembled nanoparticle (VE-DDP-Pro) featuring self-anti-EDV and -VM capacity enables to significantly enhance the treatment efficacy of cisplatin (DDP) against the growth and metastasis of ovarian cancer. The VE-DDP-Pro is constructed by patching DDP loaded cRGD-folate-heparin nanoparticles (VE) onto the surface of protamine (Pro) nanoparticle. We demonstrated the self-anti-angiogenesis capacity of VE-DDP-Pro was attributed to VE, which could significantly inhibit the formation of EDV and VM by regulating signaling pathway of MMP-2/VEGF, AKT/mTOR/MMP-2/Laminin and AKT/mTOR/EMT, facilitating chemotherapeutics to effectively suppress the development and metastasis of ovarian cancer. Thus, combing with the chemotherapeutics effectiveness of DDP, the VE-DDP-Pro can significantly enhance treatment efficacy and prolong median survival of mice with metastatic ovarian cancer. We believe our self-assembled nanoparticles integrating the anti-EDV and anti-VM capacity provide a new preclinical sight to enhance the efficacy of chemotherapeutics for the treatment malignant metastasis tumor.
Collapse
Affiliation(s)
- Jiamao Luo
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xinxian Zhong
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yingming Peng
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chenyuan Hao
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaomei Liang
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yulu Yang
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiubo Shi
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiao Yi
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaoxuan Li
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jianhua Wu
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinheng Li
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian Xiao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chentian Wu
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ruojing Lu
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yao Pan
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuejiao Wang
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jun-Bing Fan
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yifeng Wang
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Ying Wang
- Department of Obstetrics & Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Dong S, Chen Z, Wang L, Liu Y, Stagos D, Lin X, Liu M. Marine Bromophenol Bis(2,3,6-Tribromo-4,5-Dihydroxybenzyl)ether Inhibits Angiogenesis in Human Umbilical Vein Endothelial Cells and Reduces Vasculogenic Mimicry in Human Lung Cancer A549 Cells. Mar Drugs 2021; 19:641. [PMID: 34822512 PMCID: PMC8617710 DOI: 10.3390/md19110641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, including the growth of new capillary blood vessels from existing ones and the malignant tumors cells formed vasculogenic mimicry, is quite important for the tumor metastasis. Anti-angiogenesis is one of the significant therapies in tumor treatment, while the clinical angiogenesis inhibitors usually exhibit endothelial cells dysfunction and drug resistance. Bis(2,3,6-tribromo-4,5-dihydroxybenzyl)ether (BTDE), a marine algae-derived bromophenol compound, has shown various biological activities, however, its anti-angiogenesis function remains unknown. The present study illustrated that BTDE had anti-angiogenesis effect in vitro through inhibiting human umbilical vein endothelial cells migration, invasion, tube formation, and the activity of matrix metalloproteinases 9 (MMP9), and in vivo BTDE also blocked intersegmental vessel formation in zebrafish embryos. Moreover, BTDE inhibited the migration, invasion, and vasculogenic mimicry formation of lung cancer cell A549. All these results indicated that BTDE could be used as a potential candidate in anti-angiogenesis for the treatment of cancer.
Collapse
Affiliation(s)
- Songtao Dong
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (S.D.); (Z.C.); (L.W.); (Y.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhongyuan Chen
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (S.D.); (Z.C.); (L.W.); (Y.L.)
| | - Li Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (S.D.); (Z.C.); (L.W.); (Y.L.)
| | - Yankai Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (S.D.); (Z.C.); (L.W.); (Y.L.)
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece;
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Jiangyang, Luzhou 646000, China;
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (S.D.); (Z.C.); (L.W.); (Y.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
5
|
Hujanen R, Almahmoudi R, Karinen S, Nwaru BI, Salo T, Salem A. Vasculogenic Mimicry: A Promising Prognosticator in Head and Neck Squamous Cell Carcinoma and Esophageal Cancer? A Systematic Review and Meta-Analysis. Cells 2020; 9:cells9020507. [PMID: 32102317 PMCID: PMC7072765 DOI: 10.3390/cells9020507] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Vasculogenic mimicry (VM) is an intratumoral microcirculation pattern formed by aggressive cancer cells, which mediates tumor growth. In this study, we compiled the evidence from studies evaluating whether positive VM status can serve as a prognostic factor to patients with squamous cell carcinoma of the head and neck (HNSCC) or esophagus (ESCC). Comprehensive systematic searches were conducted using Cochrane Library, Ovid Medline, PubMed, and Scopus databases. We appraised the quality of studies and the potential for bias, and performed random-effect meta-analysis to assess the prognostic impact of VM on the overall survival (OS). Seven studies with 990 patients were eligible, where VM was detected in 34.24% of patients. Positive-VM was strongly associated with poor OS (hazard ratio = 0.50; 95% confidence interval: 0.38-0.64), which remained consistent following the subgroup analysis of the studies. Furthermore, VM was associated with more metastasis to local lymph nodes and more advanced stages of HNSCC and ESCC. In conclusion, this study provides clear evidence showing that VM could serve as a promising prognosticator for patients with either HNSCC or ESCC. Further studies are warranted to assess how VM can be implemented as a reliable staging element in clinical practice and whether it could provide a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Roosa Hujanen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
| | - Rabeia Almahmoudi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
| | - Sini Karinen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
| | - Bright I. Nwaru
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
- Medical Research Centre, Oulu University Hospital, 90220 Oulu, Finland
- Helsinki University Hospital (HUS), 00029 Helsinki, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
6
|
Zhang Z, Imani S, Shasaltaneh MD, Hosseinifard H, Zou L, Fan Y, Wen Q. The role of vascular mimicry as a biomarker in malignant melanoma: a systematic review and meta-analysis. BMC Cancer 2019; 19:1134. [PMID: 31752759 PMCID: PMC6873453 DOI: 10.1186/s12885-019-6350-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vasculogenic mimicry (VM) a microvascular system consisting of non-endothelial cells that is newly formed by aggressive tumors, has been proposed as an important therapeutic target in malignant melanoma (MM). We performed a systematic literature review to evaluate the diagnostic and prognostic accuracy of VM status for overall survival of MM patients. METHODS The quality of the included studies was evaluated using the QUADAS-2 tool. Diagnostic capacity of VM variables, including sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under summary receiver operating characteristic (SROC), were pooled using Meta-DiSc software. RESULTS A retrospective observational study was conducted based on twelve clinical studies including 978 clinically confirmed melanoma patients with proportion (P). VM+ melanoma cells were associated with poor prognosis in 38% of MM group (P = 0.35, 95% confidence intervals (CI): 0.27-0.42, p < 0.001). The pooled sensitivity and specificity were 0.82 (95% CI: 0.79-0.84) and 0.69 (95% CI: 0.66-0.71), respectively. Furthermore, the pooled PLR, NLR, and DOR were 2.56 (95% CI: 1.94-3.93), 0.17 (95% CI: 0.07-0.42), and 17.75 (95% CI: 5.30-59.44), respectively. Furthermore, the AUC of SROC was 0.63, indicating high reliability of VM status as a biomarker. Importantly, subgroup results suggested that VM+ status is a significantly accurate prognostic biomarker when diagnosed by the CD31-/PAS+ staining methods in Asian MM samples (p < 0.001). CONCLUSIONS Our findings support the potential of VM status of tumors as a promising prognostic biomarker and emphasize an effective adjuvant therapeutic strategy in the prognosis of Asian MM patients.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| | | | - Hossein Hosseinifard
- Research Center for Evidence Based Medicine (RCEBM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| | - Yu Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| |
Collapse
|
7
|
Xia Y, Cai XY, Fan JQ, Zhang LL, Ren JH, Li ZY, Zhang RG, Zhu F, Wu G. The role of sema4D in vasculogenic mimicry formation in non-small cell lung cancer and the underlying mechanisms. Int J Cancer 2018; 144:2227-2238. [PMID: 30374974 DOI: 10.1002/ijc.31958] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
Vasculogenic mimicry (VM) is a special vascular pattern in malignant tumors, which is composed of highly aggressive tumor cells. This tumor cell-mediated blood supply pattern is closely associated with a poor prognosis in cancer patients. The interaction of axon guidance factor Sema4D and its high affinity receptor plexinB1 could activate small GTPase RhoA and its downstream ROCKs; this process has an active role in the migration of endothelial cells and tumor angiogenesis. Here, we have begun to uncover the role of this pathway in VM formation in non-small cell lung cancer (NSCLC). First, we confirmed this special form of vasculature in NSCLC tissues and found the existence of VM channels in tumor tissues was correlated with Sema4D expression. Further, we found that inhibition of Sema4D in the human NSCLC cells H1299 and HCC827 reduces VM formation both in vitro and in vivo. Moreover, we demonstrated that downregulating the expression of plexinB1 by siRNA expressing vectors and inhibiting the RhoA/ROCK signaling pathway using fasudil can reduce VM formation of H1299 and HCC827 cells. Finally, we found that suppression of Sema4D leads to less stress fibers and depleted the motility of H1299 and HCC827 cells. Collectively, our study implicates Sema4D plays an important role in the process of VM formation in NSCLC through activating the RhoA/ROCK pathway and regulating tumor cell plasticity and migration. Modulation of the Sema4D/plexinB1 and downstream RhoA/ROCK pathway may prevent the tumor blood supply through the VM pattern, which may eventually halt growth and metastasis of NSCLC.
Collapse
Affiliation(s)
- Yun Xia
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Yi Cai
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Quan Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ling Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Hua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-Yu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui-Guang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Correlation Between Tumor Vasculogenic Mimicry and Poor Prognosis of Human Digestive Cancer Patients: A Systematic Review and Meta-Analysis. Pathol Oncol Res 2018; 25:849-858. [PMID: 30361906 DOI: 10.1007/s12253-018-0496-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
Vasculogenic mimicry (VM) is a new pattern of blood supplement independent of endothelial vessels, which is related with tumor invasion, metastasis and prognosis. However, the role of VM in the prognosis of cancer patients is controversial. This study aimed to perform a meta-analysis of the published data to attempt to clarify the prognostic value of VM in the digestive cancer. Relevant studies were retrieved from the PubMed, Web of Science, Cochrane Library, Chinese National Knowledge Infrastructure and VIP databases published before March 29, 2018. Studies were included if they detected VM in the digestive cancer and analyzed the overall survival (OS) or disease-free survival (DFS) according to VM status. Two independent reviewers screened the studies, extracted data, and evaluated the quality of included studies with the Newcastle-Ottawa scale. Meta-analysis was performed using STATA 12.0 software. A total of 22 studies with 2411 patients were included in this meta-analysis. Meta-analysis showed that VM was related with the poor OS (HR = 2.30, 95% CI: 2.06-2.56, P < 0.001) and DFS (HR = 2.60, 95% CI: 2.07-3.27, P < 0.001) of patients with digestive cancer. Subgroup analysis showed VM was related with tumor differentiation, lymph node metastasis and TNM stage. Moreover, the present meta-analysis was reliable, and there was no obvious publication bias. This meta-analysis suggested that VM was a poor prognosis of digestive cancer patients. Further large and well-designed studies are required.
Collapse
|
9
|
Desmoglein 2 promotes vasculogenic mimicry in melanoma and is associated with poor clinical outcome. Oncotarget 2018; 7:46492-46508. [PMID: 27340778 PMCID: PMC5216812 DOI: 10.18632/oncotarget.10216] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022] Open
Abstract
Tumors can develop a blood supply not only by promoting angiogenesis but also by forming vessel-like structures directly from tumor cells, known as vasculogenic mimicry (VM). Understanding mechanisms that regulate VM is important, as these might be exploitable to inhibit tumor progression. Here, we reveal the adhesion molecule desmoglein 2 (DSG2) as a novel mediator of VM in melanoma. Analysis of patient-derived melanoma cell lines and tumor tissues, and interrogation of The Cancer Genome Atlas (TCGA) data, revealed that DSG2 is frequently overexpressed in primary and metastatic melanomas compared to normal melanocytes. Notably, this overexpression was associated with poor clinical outcome. DSG2+ melanoma cells self-organized into tube-like structures on Matrigel, indicative of VM activity, which was inhibited by DSG2 knockdown or treatment with a DSG2-blocking peptide. Mechanistic studies revealed that DSG2 regulates adhesion and cell-cell interactions during tube formation, but does not control melanoma cell viability, proliferation or motility. Finally, analysis of patient tumors revealed a correlation between DSG2 expression, VM network density and expression of VM-associated genes. These studies identify DSG2 as a key regulator of VM activity in human melanoma and suggest this molecule might be therapeutically targeted to reduce tumor blood supply and metastatic spread.
Collapse
|
10
|
Periodic acid-Schiff-positive loops and networks as a prognostic factor in oral mucosal melanoma. Melanoma Res 2017; 26:145-52. [PMID: 26636907 DOI: 10.1097/cmr.0000000000000220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The prognostic factors of oral mucosal melanoma (OMM), a rare and aggressive neoplasm, remain to be determined. The aim of this study is to investigate the prognostic significance of vasculogenic mimicry in OMM. The clinical data of 62 patients with primary OMM treated in Shanghai Ninth People's Hospital from April 2007 to April 2012 were retrieved and analyzed retrospectively. Staining of periodic acid-Schiff (PAS) and CD31 immunohistochemistry were performed to evaluate the prognostic value of PAS-positive patterns, blood lakes, and microvascular density. PAS-positive loops and networks (P<0.001) as well as blood lakes (P=0.040) were found to be predictors of overall survival (OS). The presence of PAS-positive loops and networks was an independent prognostic factor of poor OS in multivariate analysis (P=0.002). Although the presence of PAS-positive loops and networks was associated with hematogenous metastasis (P=0.041) and lymphogenous metastasis (P=0.041), it was not an independent predictor of both types of metastasis in multivariate analysis. Microvascular density was not associated with OS (P=0.627) and metastasis of OMM patients. PAS-positive loops and networks have a significant prognostic value in OMM. Detection of PAS-positive patterns may lead to better staging and serve as a prognostic parameter of OMM.
Collapse
|
11
|
Association between Tumor Vasculogenic Mimicry and the Poor Prognosis of Gastric Cancer in China: An Updated Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2408645. [PMID: 27812528 PMCID: PMC5080470 DOI: 10.1155/2016/2408645] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022]
Abstract
Background. Vasculogenic mimicry can promote tumor growth and metastasis. This article is aimed at conducting a systematic meta-analysis to explore the clinicopathological and prognostic significance of vasculogenic mimicry and gastric cancer. Methods. We searched Pubmed, EMBASE, Cochrane Library, China National Knowledge Infrastructure, and the VIP and Wanfang Database for eligible studies. We manually searched for printed journals and relevant textbooks. Subgroups analyses were performed based on the region, manuscript quality, methods of vasculogenic mimicry identification, pathology, and number of patients. Results. Nine studies with 997 patients were included in this meta-analysis. A significant association was observed between vasculogenic mimicry-positive patients and those with gastric cancer with poor overall survival (hazard ratio = 2.24, 95% confidence interval: 1.45-3.47), poor pathological grading, high tumor node metastasis clinical stage, lymph node metastasis, deep tumor invasion, and distant metastasis. Conclusions. Vasculogenic mimicry is associated with a poor prognosis in patients with gastric cancer in China. Clinical studies with large samples are needed worldwide and standardized protocols should be adopted in the future to achieve a better understanding of the relationship between gastric cancer and vasculogenic mimicry.
Collapse
|
12
|
Tumor vasculogenic mimicry predicts poor prognosis in cancer patients: a meta-analysis. Angiogenesis 2016; 19:191-200. [DOI: 10.1007/s10456-016-9500-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/11/2016] [Indexed: 01/10/2023]
|
13
|
Qiao L, Liang N, Zhang J, Xie J, Liu F, Xu D, Yu X, Tian Y. Advanced research on vasculogenic mimicry in cancer. J Cell Mol Med 2015; 19:315-26. [PMID: 25598425 PMCID: PMC4407602 DOI: 10.1111/jcmm.12496] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022] Open
Abstract
Vasculogenic mimicry (VM) is a brand-new tumour vascular paradigm independent of angiogenesis that describes the specific capacity of aggressive cancer cells to form vessel-like networks that provide adequate blood supply for tumour growth. A variety of molecule mechanisms and signal pathways participate in VM induction. Additionally, cancer stem cell and epithelial-mesenchymal transitions are also shown to be implicated in VM formation. As a unique perfusion way, VM is associated with tumour invasion, metastasis and poor cancer patient prognosis. Due to VM's important effects on tumour progression, more VM-related strategies are being utilized for anticancer treatment. Here, with regard to the above aspects, we make a review of advanced research on VM in cancer.
Collapse
Affiliation(s)
- Lili Qiao
- Department of Oncology, Shandong University School of Medicine, Jinan, Shandong Pro, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lezcano C, Kleffel S, Lee N, Larson AR, Zhan Q, DoRosario A, Wang LC, Schatton T, Murphy GF. Merkel cell carcinoma expresses vasculogenic mimicry: demonstration in patients and experimental manipulation in xenografts. J Transl Med 2014; 94:1092-102. [PMID: 25111691 PMCID: PMC4236190 DOI: 10.1038/labinvest.2014.99] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 12/31/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a highly virulent cutaneous neoplasm that, like melanoma, is a frequent cause of patient morbidity and mortality. The cellular mechanisms responsible for the aggressive behavior of MCC remain unknown. Vasculogenic mimicry (VM) is a phenomenon associated with cancer virulence, including in melanoma, whereby anastomosing laminin networks form in association with tumor cells that express certain endothelial genes. To determine whether VM is a factor in MCC, we employed a relevant xenograft model using two independent human MCC lines. Experimentally induced tumors were remarkably similar histologically to patient MCC, and both contained laminin networks associated with vascular endothelial-cadherin (CD144) and vascular endothelial growth factor receptor 1, as well as Nodal expression typical of VM in melanoma. Moreover, two established chemotherapeutic agents utilized for human MCC, etoposide and carboplatin, induced necrosis in xenografts on systemic administration while enriching for laminin networks in apparently resistant viable tumor regions that persisted. These findings for the first time establish VM-like laminin networks as a biomarker in MCC, demonstrate the experimental utility of the MCC xenograft model, and suggest that VM-rich regions of MCC may be refractory to conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Cecilia Lezcano
- Department of Pathology, University of Pittsburgh Medical Center,
Pittsburgh, PA
| | - Sonja Kleffel
- Department of Dermatology, Brigham and Women’s Hospital,
Boston, MA,Harvard Medical School, Boston, MA
| | - Nayoung Lee
- Department of Dermatology, Brigham and Women’s Hospital,
Boston, MA,Harvard Medical School, Boston, MA
| | - Allison R. Larson
- Department of Dermatology, Brigham and Women’s Hospital,
Boston, MA,Harvard Medical School, Boston, MA
| | - Qian Zhan
- Harvard Medical School, Boston, MA,Department of Pathology, Brigham and Women’s Hospital,
Boston, MA
| | - Andrew DoRosario
- Harvard Medical School, Boston, MA,Center for Cutaneous Oncology, Dana-Farber/Brigham and
Women’s Cancer Center, Boston, MA
| | - Linda C. Wang
- Institute for Cancer Care, Mercy Medical Center, Baltimore,
MD
| | - Tobias Schatton
- Harvard Medical School, Boston, MA,Transplantation Research Center, Children’s Hospital
Boston, MA
| | - George F. Murphy
- Harvard Medical School, Boston, MA,Department of Pathology, Brigham and Women’s Hospital,
Boston, MA
| |
Collapse
|
15
|
Basal caspase-3 activity promotes migration, invasion, and vasculogenic mimicry formation of melanoma cells. Melanoma Res 2014; 23:243-53. [PMID: 23695439 DOI: 10.1097/cmr.0b013e3283625498] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melanoma is the least common but most serious form of skin cancer. The leading cause of death in melanoma patients is widespread metastasis caused by increased cell motility and a rich blood supply for tumor cells. A unique form of microcirculation called vasculogenic mimicry, which efficiently supplies blood to tumor cells, has been reported recently. Apoptosis-related protein performs a nonapoptotic function to promote migration and invasion of tumor cells. This study focuses on the nonapoptotic role of caspase-3 in melanoma and its effects on the migration, invasion, and vasculogenic mimicry formation of melanoma cells. Human melanoma samples were used to detect active caspase-3 expression and determine its relationship with clinicopathologic parameters. In addition, a human melanoma A375 cell line was used to determine the role of caspase-3 in migration and invasion using z-DEVD-fmk, a selective caspase-3 inhibitor, to inhibit caspase-3 activity. The findings suggest that active caspase-3 is expressed in nonapoptotic melanoma cells and is related to metastasis and vasculogenic mimicry formation in patients with melanoma. Low doses of caspase-3 inhibitor reduced caspase-3 activity without affecting cell apoptosis. Inhibition of caspase-3 activity using low-dose z-DEVD-fmk decreased the migration, invasion, and vasculogenic mimicry formation of melanoma cells in vitro. Similarly, downregulation of caspase-3 by specific small interfering RNA also inhibited the migratory, invasive, and tube-forming potential of melanoma cells. The caspase-3-mediated promotion of melanoma cell motility may be because of the cleavage of matrix metalloproteinase-2.
Collapse
|
16
|
Cao Z, Shang B, Zhang G, Miele L, Sarkar FH, Wang Z, Zhou Q. Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1836:273-286. [PMID: 23933263 DOI: 10.1016/j.bbcan.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/22/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022]
Abstract
Robust neovascularization and lymphangiogenesis have been found in a variety of aggressive and metastatic tumors. Endothelial sprouting angiogenesis is generally considered to be the major mechanism by which new vasculature forms in tumors. However, increasing evidence shows that tumor vasculature is not solely composed of endothelial cells (ECs). Some tumor cells acquire processes similar to embryonic vasculogenesis and produce new vasculature through vasculogenic mimicry, trans-differentiation of tumor cells into tumor ECs, and tumor cell-EC vascular co-option. In addition, tumor cells secrete various vasculogenic factors that induce sprouting angiogenesis and lymphangiogenesis. Vasculogenic tumor cells actively participate in the formation of vascular cancer stem cell niche and a premetastatic niche. Therefore, tumor cell-mediated neovascularization and lymphangiogenesis are closely associated with tumor progression, cancer metastasis, and poor prognosis. Vasculogenic tumor cells have emerged as key players in tumor neovascularization and lymphangiogenesis and play pivotal roles in tumor progression and cancer metastasis. However, the mechanisms underlying tumor cell-mediated vascularity as they relate to tumor progression and cancer metastasis remain unclear. Increasing data have shown that various intrinsic and extrinsic factors activate oncogenes and vasculogenic genes, enhance vasculogenic signaling pathways, and trigger tumor neovascularization and lymphangiogenesis. Collectively, tumor cells are the instigators of neovascularization. Therefore, targeting vasculogenic tumor cells, genes, and signaling pathways will open new avenues for anti-tumor vasculogenic and metastatic drug discovery. Dual targeting of endothelial sprouting angiogenesis and tumor cell-mediated neovascularization and lymphangiogenesis may overcome current clinical problems with anti-angiogenic therapy, resulting in significantly improved anti-angiogenesis and anti-cancer therapies.
Collapse
Affiliation(s)
- Zhifei Cao
- Cyrus Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | |
Collapse
|