1
|
Rossi L, Tiecco G, Venturini M, Castelli F, Quiros-Roldan E. Human Orf with Immune-Mediated Reactions: A Systematic Review. Microorganisms 2023; 11:1138. [PMID: 37317112 DOI: 10.3390/microorganisms11051138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Background: Orf is a highly contagious zoonosis caused by Orf virus (ORFV), which is endemic in sheep and goats worldwide. Human Orf is usually a self-limiting disease, but potential complications, including immune-mediated reactions, may occur. Methods: We included all articles regarding Orf-associated immunological complications published in peer-reviewed medical journals. We conducted a literature search of the United States National Library of Medicine, PubMed, MEDLINE, PubMed Central, PMC, and the Cochrane Controlled Trials. Results: A total of 16 articles and 44 patients were included, prevalently Caucasian (22, 95.7%) and female (22, 57.9%). The prevailing immunological reaction was erythema multiforme (26, 59.1%), followed by bullous pemphigoid (7, 15.9%). In most cases, the diagnosis was made on the basis of clinical and epidemiological history (29, 65.9%), while a biopsy of secondary lesions was performed in 15 patients (34.1%). A total of 12 (27.3%) patients received a local or systemic treatment for primary lesions. Surgical removal of primary lesion was described in two cases (4.5%). Orf-immune-mediated reactions were treated in 22 cases (50.0%), mostly with topical corticosteroids (12, 70.6%). Clinical improvement was reported for all cases. Conclusions: Orf-related immune reactions can have a varied clinical presentation, and it is important for clinicians to be aware of this in order to make a prompt diagnosis. The main highlight of our work is the presentation of complicated Orf from an infectious diseases specialist's point of view. A better understanding of the disease and its complications is essential to achieve the correct management of cases.
Collapse
Affiliation(s)
- Luca Rossi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Giorgio Tiecco
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Marina Venturini
- Department of Clinical and Experimental Sciences, Section of Dermatology, University of Brescia, 25123 Brescia, Italy
| | - Francesco Castelli
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
2
|
Muacevic A, Adler JR, Abramowitz C, Ikhuoriah TA, Rogu P, Levada M. Melanoma in the Vulva of a 71-Year-Old Patient: A Case Report. Cureus 2022; 14:e32698. [PMID: 36686100 PMCID: PMC9847483 DOI: 10.7759/cureus.32698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 12/23/2022] Open
Abstract
Mucosal melanomas (MM) are a rare type of melanomas commonly found in the vulvovaginal, anorectal, and respiratory tract. In this case report, a 71-year-old female presented to her OB/GYN clinic with dark raised mass on her right labial region adjacent to the perineum. Past medical and surgical history of note included third-degree uterine prolapse, senile vaginitis, fibrocystic changes of the breasts bilaterally, hypothyroidism, hypertension, as well as a past hysterectomy and anterior colporrhaphy. Upon further workup, the 2.7 x 1.8 x 2 cm polyploid mass was biopsied and was found to be consistent with malignant melanoma. The patient then underwent a wide local excision confirming that the lesion was a nodular vulvar melanoma with superficial ulcerations and lymphovascular invasion of the vulvar region. Post-wide local incisions were found to be healed well after the procedure and the patient was referred to a gynecological oncologist for continuous monitoring. The purpose of this case report is to bring awareness of melanomas arising in atypical regions. While MMs are rare in comparison to cutaneous melanomas (CM), the prognosis can be poor if not caught early.
Collapse
|
3
|
Fares J, Cordero A, Kanojia D, Lesniak MS. The Network of Cytokines in Brain Metastases. Cancers (Basel) 2021; 13:E142. [PMID: 33466236 PMCID: PMC7795138 DOI: 10.3390/cancers13010142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Brain metastases are the most common of all intracranial tumors and a major cause of death in patients with cancer. Cytokines, including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors are key regulators in the formation of brain metastases. They regulate the infiltration of different cellular subsets into the tumor microenvironment and affect the therapeutic outcomes in patients. Elucidating the cancer cell-cytokine interactions in the setting of brain metastases is crucial for the development of more accurate diagnostics and efficacious therapies. In this review, we focus on cytokines that are found in the tumor microenvironment of brain metastases and elaborate on their trends of expression, regulation, and roles in cellular recruitment and tumorigenesis. We also explore how cytokines can alter the anti-tumor response in the context of brain metastases and discuss ways through which cytokine networks can be manipulated for diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (J.F.); (A.C.); (D.K.)
| |
Collapse
|
4
|
Kim YJ, Kim K, Lee KH, Kim J, Jung W. Immune expression signatures as candidate prognostic biomarkers of age and gender survival differences in cutaneous melanoma. Sci Rep 2020; 10:12322. [PMID: 32703987 PMCID: PMC7378165 DOI: 10.1038/s41598-020-69082-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
This study aims to investigate the difference of gene expression and its prognostic significance in younger women with melanoma. Significantly upregulated genes in tumors compared to normal skin tissues were extracted. Among these genes, genes that significantly affected survival according to expression level were selected, and pathway annotation was performed. The patient proportion with high/low expression of the most significant pathways was analyzed in each age (< 50, 50-59, ≥ 60) and gender group. Survival was analyzed according to age, gender, and pathways. The most significant pathways that were upregulated in tumor tissues and also had impacts on survival were programmed cell death protein [PD]-1, interferon-γ, and interferon-α/β pathways. In women, the immune signaling rate in patients was higher than men and decreased with age (63.5%, 53.8%, and 47.6%). In men, the decreasing tendency was minimal (47.6%, 50.0%, and 41.6%). In patients aged < 60 years, women had a favorable survival rate than men (p = 0.055). Except for patients with high immune signaling, no survival difference was observed between genders (p = 0.6). In conclusion, younger female melanoma patients had high immune signaling than older women and men. This immune signaling improved survival of the younger female patients.
Collapse
Affiliation(s)
- Yi-Jun Kim
- Department of Radiation Oncology, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
- Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, 07985, Republic of Korea
| | - Kyubo Kim
- Department of Radiation Oncology, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea.
| | - Kye Hwa Lee
- Biomedical Informatics Department, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jiyoung Kim
- Department of Radiation Oncology, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| | - Wonguen Jung
- Department of Radiation Oncology, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| |
Collapse
|
5
|
Yazdani M, Jaafari MR, Verdi J, Alani B, Noureddini M, Badiee A. Ex vivo-generated dendritic cell-based vaccines in melanoma: the role of nanoparticulate delivery systems. Immunotherapy 2020; 12:333-349. [DOI: 10.2217/imt-2019-0173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Melanoma is a poor immunogenic cancer and many treatment strategies have been used to enhance specific or nonspecific immunity against it. Dendritic cell (DC)-based cancer vaccine is the most effective therapies that have been used so far. Meanwhile, the efficacy of DC-based immunotherapy relies on critical factors relating to DCs such as the state of maturation and proper delivery of antigens. In this regard, the use of nanoparticulate delivery systems for effective delivery of antigen to ex vivo-generated DC-based vaccines that also poses adjuvanticity would be an ideal approach. In this review article, we attempt to summarize the role of different types of nanoparticulate antigen delivery systems used in the development of ex vivo-generated DC-based vaccines against melanoma and describe their adjuvanticity in mediation of DC maturation, cytoplasmic presentation of antigens to MHC class I molecules, which led to potent antigen-specific immune responses. As were represented, cationic liposomes were the most used approach, which suggest its potential applicability as delivery systems for further experiments in combination with either adjuvants or monoclonal antibodies.
Collapse
Affiliation(s)
- Mona Yazdani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 91778-99191, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 91778-99191, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 91778-99191, Iran
| | - Mahdi Noureddini
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 91778-99191, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
| |
Collapse
|
6
|
Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Semin Cancer Biol 2019; 59:236-250. [PMID: 31404607 DOI: 10.1016/j.semcancer.2019.08.002] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/10/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022]
Abstract
Cutaneous melanoma is the most common skin cancer with an incidence that has been rapidly increasing in the past decades. Melanomas are among the most immunogenic tumors and, as such, have the greatest potential to respond favorably to immunotherapy. However, like many cancers, melanomas acquire various suppressive mechanisms, which generally act in concert, to escape innate and adaptive immune detection and destruction. Intense research into the cellular and molecular events associated with melanomagenesis, which ultimately lead to immune suppression, has resulted in the discovery of new therapeutic targets and synergistic combinations of immunotherapy, targeted therapy and chemotherapy. Tremendous effort to determine efficacy of single and combination therapies in pre-clinical and clinical phase I-III trials has led to FDA-approval of several immunotherapeutic agents that could potentially be beneficial for aggressive, highly refractory, advanced and metastatic melanomas. The increasing availability of approved combination therapies for melanoma and more rapid assessment of patient tumors has increased the feasibility of personalized treatment to overcome patient and tumor heterogeneity and to achieve greater clinical benefit. Here, we review the evolution of the immune system during melanomagenesis, mechanisms exploited by melanoma to suppress anti-tumor immunity and methods that have been developed to restore immunity. We emphasize that an effective therapeutic strategy will require coordinate activation of tumor-specific immunity as well as increased recognition and accessibility of melanoma cells in primary tumors and distal metastases. This review integrates available knowledge on melanoma-specific immunity, molecular signaling pathways and molecular targeting strategies that could be utilized to envision therapeutics with broader application and greater efficacy for early stage and advanced metastatic melanoma.
Collapse
|
7
|
Sutton SK, Cheung BB, Massudi H, Tan O, Koach J, Mayoh C, Carter DR, Marshall GM. Heterozygous loss of keratinocyte TRIM16 expression increases melanocytic cell lesions and lymph node metastasis. J Cancer Res Clin Oncol 2019; 145:2241-2250. [PMID: 31342168 PMCID: PMC6708510 DOI: 10.1007/s00432-019-02981-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/16/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE The tripartite motif (TRIM)16 acts as a tumour suppressor in both squamous cell carcinoma (SCC) and melanoma. TRIM16 is known to be secreted by keratinocytes, but no studies have been reported yet to assess the relationship between TRIM16 keratinocyte expression and melanoma development. METHODS To study the role of TRIM16 in skin cancer development, we developed a keratinocyte TRIM16-specific knockout mouse model, and used the classical two-stage skin carcinogenesis challenge method, to assess the loss of keratinocyte TRIM16 on both papilloma, SCC and melanoma development in the skin after topical carcinogen treatment. RESULTS Heterozygous, but not homozygous, TRIM16 knockout mice exhibited an accelerated development of skin papillomas and melanomas, larger melanoma lesions and an increased potential for lymph node metastasis. CONCLUSION This study provides the first evidence that keratinocyte loss of the putative melanoma tumour suppressor protein, TRIM16, enhances melanomagenesis. Our data also suggest that TRIM16 expression in keratinocytes is involved in cross talk between keratinocytes and melanocytes, and has a role in melanoma tumorigenesis.
Collapse
Affiliation(s)
- Selina K Sutton
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia. .,School of Women's and Children's Health, UNSW Sydney, Randwick, NSW, 2031, Australia.
| | - Hassina Massudi
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Owen Tan
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Jessica Koach
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Daniel R Carter
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Biomedical Engineering, University of Technology Sydney, Ultimo, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia. .,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, 2031, Australia.
| |
Collapse
|
8
|
Sprooten J, Agostinis P, Garg AD. Type I interferons and dendritic cells in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:217-262. [PMID: 31810554 DOI: 10.1016/bs.ircmb.2019.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) facilitate cancer immunosurveillance, antitumor immunity and antitumor efficacy of conventional cell death-inducing therapies (chemotherapy/radiotherapy) as well as immunotherapy. Moreover, it is clear that dendritic cells (DCs) play a significant role in aiding type I IFN-driven immunity. Owing to these antitumor properties several immunotherapies involving, or inducing, type I IFNs have received considerable clinical attention, e.g., recombinant IFNα2 or agonists targeting pattern recognition receptor (PRR) pathways like Toll-like receptors (TLRs), cGAS-STING or RIG-I/MDA5/MAVS. A series of preclinical and clinical evidence concurs that the success of anticancer therapy hinges on responsiveness of both cancer cells and DCs to type I IFNs. In this article, we discuss this link between type I IFNs and DCs in the context of cancer biology, with particular attention to mechanisms behind type I IFN production, their impact on DC driven anticancer immunity, and the implications of this for cancer immunotherapy, including DC-based vaccines.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Many ways to resistance: How melanoma cells evade targeted therapies. Biochim Biophys Acta Rev Cancer 2019; 1871:313-322. [DOI: 10.1016/j.bbcan.2019.02.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/20/2019] [Accepted: 02/13/2019] [Indexed: 12/25/2022]
|
10
|
Abstract
Melanoma represents the most aggressive and the deadliest form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy, and targeted therapy. The therapeutic strategy can include single agents or combined therapies, depending on the patient’s health, stage, and location of the tumor. The efficiency of these treatments can be decreased due to the development of diverse resistance mechanisms. New therapeutic targets have emerged from studies of the genetic profile of melanocytes and from the identification of molecular factors involved in the pathogenesis of the malignant transformation. In this review, we aim to survey therapies approved and under evaluation for melanoma treatment and relevant research on the molecular mechanisms underlying melanomagenesis.
Collapse
Affiliation(s)
- Beatriz Domingues
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Manuel Lopes
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Hospital S João, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Helena Pópulo
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Fukumoto T, Fujiwara S, Sakaguchi M, Oka M, Nishigori C. A case of malignant melanoma that developed multiple metastases after switching from interferon-beta to pegylated interferon-alpha-2b as adjuvant therapy. Eur J Dermatol 2018; 28:115-116. [PMID: 29171409 DOI: 10.1684/ejd.2017.3169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Takeshi Fukumoto
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA, Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Susumu Fujiwara
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Masanobu Sakaguchi
- Division of Dermatology, Tohoku Medical and Pharmaceutical University, 1-12-1 Fukumuro, Miyagino-ku, Sendai, Japan
| | - Masahiro Oka
- Division of Dermatology, Tohoku Medical and Pharmaceutical University, 1-12-1 Fukumuro, Miyagino-ku, Sendai, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan
| |
Collapse
|
12
|
Medrano RF, Hunger A, Mendonça SA, Barbuto JAM, Strauss BE. Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget 2017; 8:71249-71284. [PMID: 29050360 PMCID: PMC5642635 DOI: 10.18632/oncotarget.19531] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
During the last decades, the pleiotropic antitumor functions exerted by type I interferons (IFNs) have become universally acknowledged, especially their role in mediating interactions between the tumor and the immune system. Indeed, type I IFNs are now appreciated as a critical component of dendritic cell (DC) driven T cell responses to cancer. Here we focus on IFN-α and IFN-β, and their antitumor effects, impact on immune responses and their use as therapeutic agents. IFN-α/β share many properties, including activation of the JAK-STAT signaling pathway and induction of a variety of cellular phenotypes. For example, type I IFNs drive not only the high maturation status of DCs, but also have a direct impact in cytotoxic T lymphocytes, NK cell activation, induction of tumor cell death and inhibition of angiogenesis. A variety of stimuli, including some standard cancer treatments, promote the expression of endogenous IFN-α/β, which then participates as a fundamental component of immunogenic cell death. Systemic treatment with recombinant protein has been used for the treatment of melanoma. The induction of endogenous IFN-α/β has been tested, including stimulation through pattern recognition receptors. Gene therapies involving IFN-α/β have also been described. Thus, harnessing type I IFNs as an effective tool for cancer therapy continues to be studied.
Collapse
Affiliation(s)
- Ruan F.V. Medrano
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Aline Hunger
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Samir Andrade Mendonça
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| | - José Alexandre M. Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Cell and Molecular Therapy Center, NUCEL-NETCEM, University of São Paulo, São Paulo, Brazil
| | - Bryan E. Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
13
|
Wang Y, Li M, Zhang Y, Zhang F, Liu C, Song Y, Zhang Y, Lan X. Detection of melanoma metastases with PET—Comparison of 18 F-5-FPN with 18 F–FDG. Nucl Med Biol 2017; 50:33-38. [DOI: 10.1016/j.nucmedbio.2017.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/22/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022]
|
14
|
Sanlorenzo M, Vujic I, Carnevale-Schianca F, Quaglino P, Gammaitoni L, Fierro MT, Aglietta M, Sangiolo D. Role of interferon in melanoma: old hopes and new perspectives. Expert Opin Biol Ther 2017; 17:475-483. [PMID: 28274138 DOI: 10.1080/14712598.2017.1289169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Interferons (IFNs) play a key role in modulating anti-microbial and antitumor immune responses. In oncology, past attempts to exploit IFNs therapeutically did not fulfill expectations, and had only modest clinical results, mostly limited to adjuvant melanoma treatment. The recent successes of immunotherapy in oncology have brought new attention to the potential of immune-modulatory agents like the IFNs. Areas covered: The authors review the biological effects of IFN on melanoma and immune cells. Then, the authors summarize the clinical results of adjuvant and therapeutic IFN in melanoma, giving focus to possible prognostic factors and new on-going clinical trials. Expert opinion: IFNs offer intriguing opportunities for synergism between conventional treatments and recently introduced molecular-targeted and immunotherapy approaches. However, the full comprehension of all IFN effects and their multiple biologic links is challenging. A strong commitment toward parallel translational research is needed to facilitate the interpretation of IFN's expected and unexpected effects, guiding the rational design of informative clinical studies.
Collapse
Affiliation(s)
- Martina Sanlorenzo
- a Department of Oncology , University of Torino , Candiolo , Torino , Italy.,b Department of Medical Sciences, Section of Dermatology , University of Turin , Torino , Italy.,c Division of Medical Oncology, Experimental Cell Therapy , Candiolo Cancer Institute , Candiolo , Torino , Italy
| | - Igor Vujic
- d School of Medicine , Sigmund Freud University , Vienna , Austria.,e Department of Dermatology , The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna , Vienna , Austria
| | - Fabrizio Carnevale-Schianca
- c Division of Medical Oncology, Experimental Cell Therapy , Candiolo Cancer Institute , Candiolo , Torino , Italy
| | - Pietro Quaglino
- b Department of Medical Sciences, Section of Dermatology , University of Turin , Torino , Italy
| | - Loretta Gammaitoni
- c Division of Medical Oncology, Experimental Cell Therapy , Candiolo Cancer Institute , Candiolo , Torino , Italy
| | - Maria Teresa Fierro
- b Department of Medical Sciences, Section of Dermatology , University of Turin , Torino , Italy
| | - Massimo Aglietta
- a Department of Oncology , University of Torino , Candiolo , Torino , Italy.,c Division of Medical Oncology, Experimental Cell Therapy , Candiolo Cancer Institute , Candiolo , Torino , Italy
| | - Dario Sangiolo
- a Department of Oncology , University of Torino , Candiolo , Torino , Italy.,c Division of Medical Oncology, Experimental Cell Therapy , Candiolo Cancer Institute , Candiolo , Torino , Italy
| |
Collapse
|
15
|
STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci U S A 2015; 112:15408-13. [PMID: 26607445 DOI: 10.1073/pnas.1512832112] [Citation(s) in RCA: 437] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.
Collapse
|
16
|
TRIM16 inhibits proliferation and migration through regulation of interferon beta 1 in melanoma cells. Oncotarget 2015; 5:10127-39. [PMID: 25333256 PMCID: PMC4259410 DOI: 10.18632/oncotarget.2466] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/07/2014] [Indexed: 12/12/2022] Open
Abstract
High basal or induced expression of the tripartite motif protein, TRIM16, leads to reduce cell growth and migration of neuroblastoma and skin squamous cell carcinoma cells. However, the role of TRIM16 in melanoma is currently unknown. TRIM16 protein levels were markedly reduced in human melanoma cell lines, compared with normal human epidermal melanocytes due to both DNA methylation and reduced protein stability. TRIM16 knockdown strongly increased cell migration in normal human epidermal melanocytes, while TRIM16 overexpression reduced cell migration and proliferation of melanoma cells in an interferon beta 1 (IFNβ1)-dependent manner. Chromatin immunoprecipitation assays revealed TRIM16 directly bound the IFNβ1 gene promoter. Low level TRIM16 expression in 91 melanoma patient samples, strongly correlated with lymph node metastasis, and, predicted poor patient prognosis in a separate cohort of 170 melanoma patients with lymph node metastasis. The BRAF inhibitor, vemurafenib, increased TRIM16 protein levels in melanoma cells in vitro, and induced growth arrest in BRAF-mutant melanoma cells in a TRIM16-dependent manner. High levels of TRIM16 in melanoma tissues from patients treated with Vemurafenib correlated with clinical response. Our data, for the first time, demonstrates TRIM16 is a marker of cell migration and metastasis, and a novel treatment target in melanoma.
Collapse
|
17
|
Mori T, Ohashi T, Kikuchi N, Hanami Y, Yamamoto T. Cellulitis-like skin necrosis induced by postoperative local interferon-β injection for malignant melanoma on the buttock. J Dermatol 2014; 41:364-5. [PMID: 24690105 DOI: 10.1111/1346-8138.12435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatsuhiko Mori
- Department of Dermatology, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | |
Collapse
|
18
|
Type I interferons: key players in normal skin and select cutaneous malignancies. Dermatol Res Pract 2014; 2014:847545. [PMID: 24516470 PMCID: PMC3913103 DOI: 10.1155/2014/847545] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 02/01/2023] Open
Abstract
Interferons (IFNs) are a family of naturally existing glycoproteins known for their antiviral activity and their ability to influence the behavior of normal and transformed cell types. Type I Interferons include IFN- α and IFN- β . Currently, IFN- α has numerous approved antitumor applications, including malignant melanoma, in which IFN- α has been shown to increase relapse free survival. Moreover, IFN- α has been successfully used in the intralesional treatment of cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). In spite of these promising clinical results; however, there exists a paucity of knowledge on the precise anti-tumor action of IFN- α / β at the cellular and molecular levels in cutaneous malignancies such as SCC, BCC, and melanoma. This review summarizes current knowledge on the extent to which Type I IFN influences proliferation, apoptosis, angiogenesis, and immune function in normal skin, cutaneous SCC, BCC, and melanoma.
Collapse
|