1
|
Earl CC, Pyle VI, Clark SQ, Annamalai K, Torres PA, Quintero A, Damen FW, Hor KN, Markham LW, Soslow JH, Goergen CJ. Localized strain characterization of cardiomyopathy in Duchenne muscular dystrophy using novel 4D kinematic analysis of cine cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2023; 25:14. [PMID: 36793101 PMCID: PMC9933368 DOI: 10.1186/s12968-023-00922-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/21/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Cardiomyopathy (CMP) is the most common cause of mortality in Duchenne muscular dystrophy (DMD), though the age of onset and clinical progression vary. We applied a novel 4D (3D + time) strain analysis method using cine cardiovascular magnetic resonance (CMR) imaging data to determine if localized strain metrics derived from 4D image analysis would be sensitive and specific for characterizing DMD CMP. METHODS We analyzed short-axis cine CMR image stacks from 43 DMD patients (median age: 12.23 yrs [10.6-16.5]; [interquartile range]) and 25 male healthy controls (median age: 16.2 yrs [13.3-20.7]). A subset of 25 male DMD patients age-matched to the controls (median age: 15.7 yrs [14.0-17.8]) was used for comparative metrics. CMR images were compiled into 4D sequences for feature-tracking strain analysis using custom-built software. Unpaired t-test and receiver operator characteristic area under the curve (AUC) analysis were used to determine statistical significance. Spearman's rho was used to determine correlation. RESULTS DMD patients had a range of CMP severity: 15 (35% of total) had left ventricular ejection fraction (LVEF) > 55% with no findings of myocardial late gadolinium enhancement (LGE), 15 (35%) had findings of LGE with LVEF > 55% and 13 (30%) had LGE with LVEF < 55%. The magnitude of the peak basal circumferential strain, basal radial strain, and basal surface area strain were all significantly decreased in DMD patients relative to healthy controls (p < 0.001) with AUC values of 0.80, 0.89, and 0.84 respectively for peak strain and 0.96, 0.91, and 0.98 respectively for systolic strain rate. Peak basal radial strain, basal radial systolic strain rate, and basal circumferential systolic strain rate magnitude values were also significantly decreased in mild CMP (No LGE, LVEF > 55%) compared to a healthy control group (p < 0.001 for all). Surface area strain significantly correlated with LVEF and extracellular volume (ECV) respectively in the basal (rho = - 0.45, 0.40), mid (rho = - 0.46, 0.46), and apical (rho = - 0.42, 0.47) regions. CONCLUSION Strain analysis of 3D cine CMR images in DMD CMP patients generates localized kinematic parameters that strongly differentiate disease from control and correlate with LVEF and ECV.
Collapse
Affiliation(s)
- Conner C Earl
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victoria I Pyle
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Sydney Q Clark
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karthik Annamalai
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Paula A Torres
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Alejandro Quintero
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kan N Hor
- The Heart Center, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Larry W Markham
- Division of Pediatric Cardiology, Riley Children's Hospital at Indiana University Health, Indianapolis, IN, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan H Soslow
- Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA.
- Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Earl CC, Soslow JH, Markham LW, Goergen CJ. Myocardial strain imaging in Duchenne muscular dystrophy. Front Cardiovasc Med 2022; 9:1031205. [PMID: 36505382 PMCID: PMC9727102 DOI: 10.3389/fcvm.2022.1031205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cardiomyopathy (CM) is the leading cause of death for individuals with Duchenne muscular dystrophy (DMD). While DMD CM progresses rapidly and fatally for some in teenage years, others can live relatively symptom-free into their thirties or forties. Because CM progression is variable, there is a critical need for biomarkers to detect early onset and rapid progression. Despite recent advances in imaging and analysis, there are still no reliable methods to detect the onset or progression rate of DMD CM. Cardiac strain imaging is a promising technique that has proven valuable in DMD CM assessment, though much more work has been done in adult CM patients. In this review, we address the role of strain imaging in DMD, the mechanical and functional parameters used for clinical assessment, and discuss the gaps where emerging imaging techniques could help better characterize CM progression in DMD. Prominent among these emerging techniques are strain assessment from 3D imaging and development of deep learning algorithms for automated strain assessment. Improved techniques in tracking the progression of CM may help to bridge a crucial gap in optimizing clinical treatment for this devastating disease and pave the way for future research and innovation through the definition of robust imaging biomarkers and clinical trial endpoints.
Collapse
Affiliation(s)
- Conner C. Earl
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jonathan H. Soslow
- Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Larry W. Markham
- Division of Pediatric Cardiology, Riley Children's Hospital, Indiana University Health, Indianapolis, IN, United States
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Neuromuscular diseases and their cardiac manifestations under the spectrum of cardiovascular imaging. Heart Fail Rev 2022; 27:2045-2058. [PMID: 35857244 DOI: 10.1007/s10741-022-10260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/04/2022]
Abstract
Neuromuscular diseases (NMDs) include a broad spectrum of disorders that affect motor unit in every possible site, extending from the cell body of peripheral nerves to the muscle. The different lesion sites make this group of inherited disorders difficult to diagnose. Many NMDs, especially those involving skeletal muscles, can present significant cardiovascular complications, ranging from rhythm disturbances to the development of dilated or hypertrophic cardiomyopathy. Heart disease represents a major cause of morbidity and mortality among NMD patients, underlining the vital need for further familiarization with the pathogenesis and assessment of cardiac involvement. Cardiovascular imaging is the cornerstone for the evaluation of heart disorders in NMDs, with conventional echocardiography still offering a portable, affordable, and easily accessible solution. Meanwhile, newer echocardiographic techniques such as speckle tracking imaging in combination with cardiac magnetic resonance add new insights into further substrate characterization. The purpose of this review is to offer a brief presentation of the main NMDs and their cardiovascular complications, as well as the presentation of data that highlight the importance of cardiovascular imaging in early diagnosis, monitoring, and prognosis of these patients. Lastly, the authors provide a simple guide about which clinical features, imaging findings, and follow-up plan to adopt in each myopathic disorder.
Collapse
|
4
|
Moore U, Fernandez‐Torron R, Jacobs M, Gordish‐Dressman H, Diaz‐Manera J, James MK, Mayhew AG, Harris E, Guglieri M, Rufibach LE, Feng J, Blamire AM, Carlier PG, Spuler S, Day JW, Jones KJ, Bharucha‐Goebel DX, Salort‐Campana E, Pestronk A, Walter MC, Paradas C, Stojkovic T, Mori‐Yoshimura M, Bravver E, Pegoraro E, Lowes LP, Mendell JR, Bushby K, Bourke J, Straub V. Cardiac and pulmonary findings in dysferlinopathy: A 3-year, longitudinal study. Muscle Nerve 2022; 65:531-540. [PMID: 35179231 PMCID: PMC9311426 DOI: 10.1002/mus.27524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/05/2022] [Accepted: 02/12/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION/AIMS There is debate about whether and to what extent either respiratory or cardiac dysfunction occurs in patients with dysferlinopathy. This study aimed to establish definitively whether dysfunction in either system is part of the dysferlinopathy phenotype. METHODS As part of the Jain Foundation's International Clinical Outcome Study (COS) for dysferlinopathy, objective measures of respiratory and cardiac function were collected twice, with a 3-y interval between tests, in 188 genetically confirmed patients aged 11-86 y (53% female). Measures included forced vital capacity (FVC), electrocardiogram (ECG), and echocardiogram (echo). RESULTS Mean FVC was 90% predicted at baseline, decreasing to 88% at year 3. FVC was less than 80% predicted in 44 patients (24%) at baseline and 48 patients (30%) by year 3, including ambulant participants. ECGs showed P-wave abnormalities indicative of delayed trans-atrial conduction in 58% of patients at baseline, representing a risk for developing atrial flutter or fibrillation. The prevalence of impaired left ventricular function or hypertrophy was comparable to that in the general population. DISCUSSION These results demonstrate clinically significant respiratory impairment and abnormal atrial conduction in some patients with dysferlinopathy. Therefore, we recommend that annual or biannual follow-up should include FVC measurement, enquiry about arrhythmia symptoms and peripheral pulse palpation to assess cardiac rhythm. However, periodic specialist cardiac review is probably not warranted unless prompted by symptoms or abnormal pulse findings.
Collapse
Affiliation(s)
- Ursula Moore
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Roberto Fernandez‐Torron
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Neurology DepartmentBiodonostia Health Research Institute, Neuromuscular Area, Hospital Donostia, Basque Health ServiceDonostia‐San SebastianSpain
| | - Marni Jacobs
- Center for Translational Science, Division of Biostatistics and Study MethodologyChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
- Pediatrics, Epidemiology and BiostatisticsGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Heather Gordish‐Dressman
- Center for Translational Science, Division of Biostatistics and Study MethodologyChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
- Pediatrics, Epidemiology and BiostatisticsGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Jordi Diaz‐Manera
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER)BarcelonaSpain
- Neuromuscular Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Meredith K. James
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Anna G. Mayhew
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Elizabeth Harris
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Michela Guglieri
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | | | - Jia Feng
- Center for Translational Science, Division of Biostatistics and Study MethodologyChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Andrew M. Blamire
- Translational and Clinical Research Institute, Newcastle UniversityNewcastle upon TyneUK
| | - Pierre G. Carlier
- University Paris‐Saclay, CEA, DRF, Service Hospitalier Frederic JoliotOrsayFrance
| | - Simone Spuler
- Charite Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation of the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineBerlinGermany
| | - John W. Day
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Kristi J. Jones
- The Children's Hospital at Westmead, and The University of SydneyWestmeadNew South WalesAustralia
| | - Diana X. Bharucha‐Goebel
- Department of Neurology Children's National Health SystemWashingtonDistrict of ColumbiaUSA
- National Institutes of Health (NINDS)BethesdaMarylandUSA
| | | | - Alan Pestronk
- Department of Neurology Washington University School of MedicineSt. LouisMissouriUSA
| | - Maggie C. Walter
- Friedrich‐Baur‐Institute, Department of NeurologyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Carmen Paradas
- Neuromuscular Unit, Department of NeurologyHospital U. Virgen del Rocío/Instituto de Biomedicina de SevillaSevilleSpain
| | - Tanya Stojkovic
- Centre de référence des maladies neuromusculaires, Institut de Myologie, AP‐HP, Sorbonne Université, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Madoka Mori‐Yoshimura
- Department of NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Elena Bravver
- Neuroscience Institute, Carolinas Neuromuscular/ALS‐MDA Center, Carolinas HealthCare SystemCharlotteNorth CarolinaUSA
| | - Elena Pegoraro
- Department of NeuroscienceUniversity of PadovaPaduaItaly
| | - Linda Pax Lowes
- The Abigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Jerry R. Mendell
- The Abigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | | | - John Bourke
- Department of CardiologyFreeman Hospital, NUTH NHS Hospitals Foundation TrustNewcastle upon TyneUK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| |
Collapse
|
5
|
Florczyk-Soluch U, Polak K, Dulak J. The multifaceted view of heart problem in Duchenne muscular dystrophy. Cell Mol Life Sci 2021; 78:5447-5468. [PMID: 34091693 PMCID: PMC8257522 DOI: 10.1007/s00018-021-03862-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Dystrophin is a large protein serving as local scaffolding repetitively bridging cytoskeleton and the outside of striated muscle cell. As such dystrophin is a critical brick primarily in dystrophin-associated protein complex (DAGC) and in a larger submembranous unit, costamere. Accordingly, the lack of functional dystrophin laying at the root of Duchenne muscular dystrophy (DMD) drives sarcolemma instability. From this point on, the cascade inevitably leading to the death of myocyte begins. In cardiomyocytes, intracellular calcium overload and related mitochondrial-mediated cell death mainly contribute to myocardial dysfunction and dilation while other protein dysregulation and/or mislocalization may affect electrical conduction system and favor arrhythmogenesis. Although clinically DMD manifests as progressive muscle weakness and skeletal muscle symptoms define characteristic of DMD, it is the heart problem the biggest challenge that most often develop in the form of dilated cardiomyopathy (DCM). Current standards of treatment and recent progress in respiratory care, introduced in most settings in the 1990s, have improved quality of life and median life expectancy to 4th decade of patient's age. At the same time, cardiac causes of death related to DMD increases. Despite preventive and palliative cardiac treatments available, the prognoses remain poor. Direct therapeutic targeting of dystrophin deficiency is critical, however, hindered by the large size of the dystrophin cDNA and/or stochastic, often extensive genetic changes in DMD gene. The correlation between cardiac involvement and mutations affecting specific dystrophin isoforms, may provide a mutation-specific cardiac management and novel therapeutic approaches for patients with CM. Nonetheless, the successful cardiac treatment poses a big challenge and may require combined therapy to combat dystrophin deficiency and its after-effects (critical in DMD pathogenesis). This review locates the multifaceted heart problem in the course of DMD, balancing the insights into basic science, translational efforts and clinical manifestation of dystrophic heart disease.
Collapse
Affiliation(s)
- Urszula Florczyk-Soluch
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Katarzyna Polak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
6
|
Murphy AP, Johnson A, Straub V, Heads-Baister A, Lord S, Bourke JP. Effects of cardiac medications on ventricular function in patients with Duchenne muscular dystrophy-related cardiomyopathy. Muscle Nerve 2021; 64:163-171. [PMID: 34050938 DOI: 10.1002/mus.27336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION/AIMS The DMD Care Considerations Working Group Guidelines 2010 recommended treating cardiac dystrophinopathy with angiotensin-converting enzyme-inhibitor (ACEi) and beta-blocker (BB) therapy to prevent the progressive decline in left ventricular function expected from earlier, natural history studies. The aim of this research was to audit change in measures of left ventricular function over 8 years to 4 years before and 4 years after deploying an ACEi/BB combination systematically at a dedicated "cardiology-muscle" clinic. METHODS This is an institutionally registered, retrospective, case-file-based audit of serial echocardiographic measures of left ventricular fractional shortening accumulated over the period 1995 to 2015. RESULTS Data from 104 genetically confirmed Duchenne muscular dystrophy (DMD) patients, aged 22.2 ± 5.3 years at data censure, were included. Mean age at first detection of left ventricular dysfunction was 15.1 ± 4.2 years, but older in those on maintenance steroid therapy (16.8 ± 4.2 vs 14.5 ± 4.1 years; P = .04). Group mean fractional shortening fell by 1.5%/year over the 4 years before therapy, but this decreased to 0.9%/year over the first 4 years after starting therapy. Analysis of limited left ventricular ejection fraction measures showed similar but nonsignificant changes. Neither age at detection of left ventricular dysfunction nor fractional shortening percent at time of therapy initiation affected the beneficial response. DISCUSSION The results support the international DMD recommendations of the time. This combination of cardiac medications helps stabilize heart function. For the best long-term effects, therapy needs to be initiated no later than on first detection left ventricular impairment.
Collapse
Affiliation(s)
- Alexander P Murphy
- The John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Anna Johnson
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Alison Heads-Baister
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Stephen Lord
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John P Bourke
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Duchenne muscular dystrophy is one of many neuromuscular disorders, but it frequently causes severe disability early in life and early death. Cardiac involvement is an important cause of morbidity and mortality. RECENT FINDINGS Heart disease in Duchenne muscular dystrophy can include a cardiomyopathy leading to end-stage heart failure along with associated supraventricular and ventricular arrhythmias. This article reviews the diagnosis and treatment of heart disease in Duchenne muscular dystrophy as well as emerging therapies.
Collapse
Affiliation(s)
- Jeffrey A Shih
- University of Massachusetts, 55 Lake Avenue North, Worcester, MA, 01532, USA.
| | - Alejandro Folch
- University of Massachusetts, 55 Lake Avenue North, Worcester, MA, 01532, USA
| | - Brenda L Wong
- University of Massachusetts, 55 Lake Avenue North, Worcester, MA, 01532, USA
| |
Collapse
|