1
|
Enterovirus 71 Infection Shapes Host T Cell Receptor Repertoire and Presumably Expands VP1-Specific TCRβ CDR3 Cluster. Pathogens 2020; 9:pathogens9020121. [PMID: 32075096 PMCID: PMC7169398 DOI: 10.3390/pathogens9020121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 11/17/2022] Open
Abstract
Enterovirus 71 (EV71) has become an important public health problem in the Asia-Pacific region in the past decades. EV71 infection might cause neurological and psychiatric complications and even death. Although an EV71 vaccine has been currently approved, there is no effective therapy for treating EV71-infected patients. Virus infections have been reported to shape host T cell receptor (TCR) repertoire. Therefore, understanding of host TCR repertoire in EV71 infection could better the knowledge in viral pathogenesis and further benefit the anti-viral therapy development. In this study, we used a mouse-adapted EV71 (mEV71) model to observe changes of host TCR repertoire in an EV71-infected central nervous system. Neonate mice were infected with mEV71 and mouse brainstem TCRβ repertoires were explored. Here, we reported that mEV71 infection impacted host brainstem TCRβ repertoire, where mEV71 infection skewed TCRβ diversity, changed VJ combination usages, and further expanded specific TCRβ CDR3 clones. Using bioinformatics analysis and ligand-binding prediction, we speculated the expanded TCRβ CDR3 clone harboring CASSLGANSDYTF sequence was capable of binding cleaved EV71 VP1 peptides in concert with major histocompatibility complex (MHC) molecules. We observed that mEV71 infection shaped host TCRβ repertoire and presumably expanded VP1-specific TCRβ CDR3 in mEV71-infected mouse brainstem that integrated EV71 pathogenesis in central nervous system.
Collapse
|
2
|
Gupta S, Witas R, Voigt A, Semenova T, Nguyen CQ. Single-Cell Sequencing of T cell Receptors: A Perspective on the Technological Development and Translational Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:29-50. [PMID: 32949388 DOI: 10.1007/978-981-15-4494-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
T cells recognize peptides bound to major histocompatibility complex (MHC) class I and class II molecules at the cell surface. This recognition is accomplished by the expression of T cell receptors (TCR) which are required to be diverse and adaptable in order to accommodate the various and vast number of antigens presented on the MHCs. Thus, determining TCR repertoires of effector T cells is necessary to understand the immunological process in responding to cancer progression, infection, and autoimmune development. Furthermore, understanding the TCR repertoires will provide a solid framework to predict and test the antigen which is more critical in autoimmunity. However, it has been a technical challenge to sequence the TCRs and provide a conceptual context in correlation to the vast number of TCR repertoires in the immunological system. The exploding field of single-cell sequencing has changed how the repertoires are being investigated and analyzed. In this review, we focus on the biology of TCRs, TCR signaling and its implication in autoimmunity. We discuss important methods in bulk sequencing of many cells. Lastly, we explore the most pertinent platforms in single-cell sequencing and its application in autoimmunity.
Collapse
Affiliation(s)
- Shivai Gupta
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Gainesville, FL, USA
| | - Richard Witas
- Department of Oral Biology, College of Dentistry, Gainesville, FL, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Gainesville, FL, USA
| | - Touyana Semenova
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Gainesville, FL, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Gainesville, FL, USA. .,Department of Oral Biology, College of Dentistry, Gainesville, FL, USA. .,Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Cheng C, Wang B, Gao L, Liu J, Chen X, Huang H, Zhao Z. Next generation sequencing reveals changes of the γδ T cell receptor repertoires in patients with pulmonary tuberculosis. Sci Rep 2018; 8:3956. [PMID: 29500378 PMCID: PMC5834497 DOI: 10.1038/s41598-018-22061-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/14/2018] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis (TB) is a severe global threat to human health. The immune protection initiated by γδ T cells play an important role in mycobacterial infection. Vaccines for Mycobacterium tuberculosis (Mtb) based on γδ T cells provide a novel approach for TB control. In our previous studies, we found a preponderant complementarity-determining region 3 (CDR3) sequence of the γδ T cell receptor (TCR) in TB patients, and successfully identified a tuberculosis antigen that can effectively activate γδ T cells with a reverse genetic strategy. However, due to the throughput limitation of the method we used, the information we obtained about the γδ TCR repertoire and preponderant CDR3 sequences was limited. In this study, we introduced next generation sequencing (NGS) to study the γδ TCR CDR3 repertoires in TB patients. We found that the CDR3δ tended to be more polyclonal and CDR3γ tended to be longer in TB patients; the γδ T cells expressing CDR3 sequences using a Vγ9-JγP rearrangement expanded significantly during Mtb infection. We also identified new preponderant CDR3 sequences during Mtb infection. This study comprehensively characterized the γδ T cell receptor repertoire changes, and provides useful information for the development of new vaccines and adjuvants against TB.
Collapse
Affiliation(s)
- Chaofei Cheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Bei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lei Gao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jianmin Liu
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450015, China
| | - Xinchun Chen
- Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, 518002, China.
| | - He Huang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China. .,CAMS-Oxford University International Center for Translational Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Yang X, Chen G, Weng NP, Mariuzza RA. Structural basis for clonal diversity of the human T-cell response to a dominant influenza virus epitope. J Biol Chem 2017; 292:18618-18627. [PMID: 28931605 DOI: 10.1074/jbc.m117.810382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) causes an acute infection in humans that is normally eliminated by CD8+ cytotoxic T lymphocytes. Individuals expressing the MHC class I molecule HLA-A2 produce cytotoxic T lymphocytes bearing T-cell receptors (TCRs) that recognize the immunodominant IAV epitope GILGFVFTL (GIL). Most GIL-specific TCRs utilize α/β chain pairs encoded by the TRAV27/TRBV19 gene combination to recognize this relatively featureless peptide epitope (canonical TCRs). However, ∼40% of GIL-specific TCRs express a wide variety of other TRAV/TRBV combinations (non-canonical TCRs). To investigate the structural underpinnings of this remarkable diversity, we determined the crystal structure of a non-canonical GIL-specific TCR (F50) expressing the TRAV13-1/TRBV27 gene combination bound to GIL-HLA-A2 to 1.7 Å resolution. Comparison of the F50-GIL-HLA-A2 complex with the previously published complex formed by a canonical TCR (JM22) revealed that F50 and JM22 engage GIL-HLA-A2 in markedly different orientations. These orientations are distinguished by crossing angles of TCR to peptide-MHC of 29° for F50 versus 69° for JM22 and by a focus by F50 on the C terminus rather than the center of the MHC α1 helix for JM22. In addition, F50, unlike JM22, uses a tryptophan instead of an arginine to fill a critical notch between GIL and the HLA-A2 α2 helix. The F50-GIL-HLA-A2 complex shows that there are multiple structurally distinct solutions to recognizing an identical peptide-MHC ligand with sufficient affinity to elicit a broad anti-IAV response that protects against viral escape and T-cell clonal loss.
Collapse
Affiliation(s)
- Xinbo Yang
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850.,the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Guobing Chen
- the Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Nan-Ping Weng
- the Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Roy A Mariuzza
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, .,the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
5
|
Artyomenko A, Wu NC, Mangul S, Eskin E, Sun R, Zelikovsky A. Long Single-Molecule Reads Can Resolve the Complexity of the Influenza Virus Composed of Rare, Closely Related Mutant Variants. J Comput Biol 2016; 24:558-570. [PMID: 27901586 DOI: 10.1089/cmb.2016.0146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As a result of a high rate of mutations and recombination events, an RNA-virus exists as a heterogeneous "swarm" of mutant variants. The long read length offered by single-molecule sequencing technologies allows each mutant variant to be sequenced in a single pass. However, high error rate limits the ability to reconstruct heterogeneous viral population composed of rare, related mutant variants. In this article, we present two single-nucleotide variants (2SNV), a method able to tolerate the high error rate of the single-molecule protocol and reconstruct mutant variants. 2SNV uses linkage between single-nucleotide variations to efficiently distinguish them from read errors. To benchmark the sensitivity of 2SNV, we performed a single-molecule sequencing experiment on a sample containing a titrated level of known viral mutant variants. Our method is able to accurately reconstruct clone with frequency of 0.2% and distinguish clones that differed in only two nucleotides distantly located on the genome. 2SNV outperforms existing methods for full-length viral mutant reconstruction.
Collapse
Affiliation(s)
| | - Nicholas C Wu
- 2 Department of Integrative Structural and Computational Biology, The Scripps Research Institute , La Jolla, California
| | - Serghei Mangul
- 3 Department of Computer Science, University of California , Los Angeles, Los Angeles, California.,4 Institute for Quantitative and Computational Biosciences, University of California Los Angeles , Los Angeles, California
| | - Eleazar Eskin
- 3 Department of Computer Science, University of California , Los Angeles, Los Angeles, California
| | - Ren Sun
- 5 Molecular and Medical Pharmacology, University of California , Los Angeles, Los Angeles, California
| | - Alex Zelikovsky
- 1 Department of Computer Science, Georgia State University , Atlanta, Georgia
| |
Collapse
|
6
|
Long Single-Molecule Reads Can Resolve the Complexity of the Influenza Virus Composed of Rare, Closely Related Mutant Variants. LECTURE NOTES IN COMPUTER SCIENCE 2016. [DOI: 10.1007/978-3-319-31957-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Proserpio V, Mahata B. Single-cell technologies to study the immune system. Immunology 2015; 147:133-40. [PMID: 26551575 PMCID: PMC4717243 DOI: 10.1111/imm.12553] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 01/05/2023] Open
Abstract
The immune system is composed of a variety of cells that act in a coordinated fashion to protect the organism against a multitude of different pathogens. The great variability of existing pathogens corresponds to a similar high heterogeneity of the immune cells. The study of individual immune cells, the fundamental unit of immunity, has recently transformed from a qualitative microscopic imaging to a nearly complete quantitative transcriptomic analysis. This shift has been driven by the rapid development of multiple single‐cell technologies. These new advances are expected to boost the detection of less frequent cell types and transient or intermediate cell states. They will highlight the individuality of each single cell and greatly expand the resolution of current available classifications and differentiation trajectories. In this review we discuss the recent advancement and application of single‐cell technologies, their limitations and future applications to study the immune system.
Collapse
Affiliation(s)
- Valentina Proserpio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Bidesh Mahata
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
8
|
Yang X, Gao M, Chen G, Pierce BG, Lu J, Weng NP, Mariuzza RA. Structural Basis for Clonal Diversity of the Public T Cell Response to a Dominant Human Cytomegalovirus Epitope. J Biol Chem 2015; 290:29106-19. [PMID: 26429912 DOI: 10.1074/jbc.m115.691311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 11/06/2022] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous and persistent human pathogen that is kept in check by CD8(+) cytotoxic T lymphocytes. Individuals expressing the major histocompatibility complex (MHC) class I molecule HLA-A2 produce cytotoxic T lymphocytes bearing T cell receptors (TCRs) that recognize the immunodominant CMV epitope NLVPMVATV (NLV). The NLV-specific T cell repertoire is characterized by a high prevalence of TCRs that are frequently observed in multiple unrelated individuals. These public TCRs feature identical, or nearly identical, complementarity-determining region 3α (CDR3α) and/or CDR3β sequences. The TCRs may express public CDR3α motifs alone, public CDR3β motifs alone, or dual public CDR3αβ motifs. In addition, the same public CDR3α motif may pair with different CDR3β motifs (and the reverse), giving rise to highly diverse NLV-specific TCR repertoires. To investigate the structural underpinnings of this clonal diversity, we determined crystal structures of two public TCRs (C7 and C25) in complex with NLV·HLA-A2. These TCRs utilize completely different CDR3α and CDR3β motifs that, in addition, can associate with multiple variable α and variable β regions in NLV-specific T cell repertoires. The C7·NLV·HLA-A2 and C25·NLV·HLA-A2 complexes exhibit divergent TCR footprints on peptide-MHC such that C25 is more focused on the central portion of the NLV peptide than is C7. These structures combined with molecular modeling show how the public CDR3α motif of C25 may associate with different variable α regions and how the public CDR3α motif of C7 may pair with different CDR3β motifs. This interchangeability of TCR V regions and CDR3 motifs permits multiple structural solutions to binding an identical peptide-MHC ligand and thereby the generation of a clonally diverse public T cell response to CMV.
Collapse
Affiliation(s)
- Xinbo Yang
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Mingming Gao
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Guobing Chen
- Lymphocyte Differentiation Section, Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224, and
| | - Brian G Pierce
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850
| | - Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Nan-Ping Weng
- Lymphocyte Differentiation Section, Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224, and
| | - Roy A Mariuzza
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742,
| |
Collapse
|
9
|
Pierce BG, Weng Z. A flexible docking approach for prediction of T cell receptor-peptide-MHC complexes. Protein Sci 2014; 22:35-46. [PMID: 23109003 DOI: 10.1002/pro.2181] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/15/2012] [Indexed: 11/10/2022]
Abstract
T cell receptors (TCRs) are immune proteins that specifically bind to antigenic molecules, which are often foreign peptides presented by major histocompatibility complex proteins (pMHCs), playing a key role in the cellular immune response. To advance our understanding and modeling of this dynamic immunological event, we assembled a protein-protein docking benchmark consisting of 20 structures of crystallized TCR/pMHC complexes for which unbound structures exist for both TCR and pMHC. We used our benchmark to compare predictive performance using several flexible and rigid backbone TCR/pMHC docking protocols. Our flexible TCR docking algorithm, TCRFlexDock, improved predictive success over the fixed backbone protocol, leading to near-native predictions for 80% of the TCR/pMHC cases among the top 10 models, and 100% of the cases in the top 30 models. We then applied TCRFlexDock to predict the two distinct docking modes recently described for a single TCR bound to two different antigens, and tested several protein modeling scoring functions for prediction of TCR/pMHC binding affinities. This algorithm and benchmark should enable future efforts to predict, and design of uncharacterized TCR/pMHC complexes.
Collapse
Affiliation(s)
- Brian G Pierce
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
10
|
Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire. Nat Commun 2014; 5:3866. [PMID: 24832684 DOI: 10.1038/ncomms4866] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 04/10/2014] [Indexed: 02/06/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize conserved bacterial antigens derived from riboflavin precursors, presented by the non-polymorphic MHC class I-like molecule MR1. Here we show that human MAIT cells are remarkably oligoclonal in both the blood and liver, display high inter-individual homology and exhibit a restricted length CDR3β domain of the TCRVβ chain. We extend this analysis to a second sub-population of MAIT cells expressing a semi-invariant TCR conserved between individuals. Similar to 'conventional' MAIT cells, these lymphocytes react to riboflavin-synthesizing microbes in an MR1-restricted manner and infiltrate solid tissues. Both MAIT cell types release Th0, Th1 and Th2 cytokines, and sCD40L in response to bacterial infection, show cytotoxic capacity against infected cells and promote killing of intracellular bacteria, thus suggesting important protective and immunoregulatory functions of these lymphocytes.
Collapse
|
11
|
Kurzweil V, Tang R, Galinski M, Wang K, Zuo F, Cherukuri A, Gasser RA, Malkin E, Sifakis F, Mendel DB, Esser MT. Translational sciences approach to RSV vaccine development. Expert Rev Vaccines 2014; 12:1047-60. [PMID: 24053398 DOI: 10.1586/14760584.2013.824706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in infants and the elderly. Despite its relatively low degree of antigenic variation, it causes frequent reinfection throughout life. Clinical manifestations of RSV disease and the immune response to infection differ in infants and the elderly, suggesting that vaccines designed to protect these two populations may require different attributes. Here, the authors describe the translational approach of utilizing data from epidemiology studies performed in these populations, the use of RSV diagnostics in clinical practice, lessons learned from previous vaccine clinical trials and the success of palivizumab in prevention of RSV disease in premature and high-risk infants to aid the development of safe and effective RSV vaccines.
Collapse
Affiliation(s)
- Vanessa Kurzweil
- Cell and Molecular Biology Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol 2014; 14:24-35. [PMID: 24336101 PMCID: PMC4032067 DOI: 10.1038/nri3567] [Citation(s) in RCA: 653] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Memory T cells constitute the most abundant lymphocyte population in the body for the majority of a person's lifetime; however, our understanding of memory T cell generation, function and maintenance mainly derives from mouse studies, which cannot recapitulate the exposure to multiple pathogens that occurs over many decades in humans. In this Review, we discuss studies focused on human memory T cells that reveal key properties of these cells, including subset heterogeneity and diverse tissue residence in multiple mucosal and lymphoid tissue sites. We also review how the function and the adaptability of human memory T cells depend on spatial and temporal compartmentalization.
Collapse
Affiliation(s)
- Donna L Farber
- 1] Columbia Center for Translational Immunology and Department of Microbiology and Immunology, Columbia University Medical Center, 650 West 168th Street, BB1501, New York, New York 10032, USA. [2] Department of Surgery, Columbia University Medical Center, 650 West 168th Street, BB1501, New York 10032, USA
| | - Naomi A Yudanin
- Columbia Center for Translational Immunology and Department of Microbiology and Immunology, Columbia University Medical Center, 650 West 168th Street, BB1501, New York, New York 10032, USA
| | - Nicholas P Restifo
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Woodsworth DJ, Castellarin M, Holt RA. Sequence analysis of T-cell repertoires in health and disease. Genome Med 2013; 5:98. [PMID: 24172704 PMCID: PMC3979016 DOI: 10.1186/gm502] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
T-cell antigen receptor (TCR) variability enables the cellular immune system to discriminate between self and non-self. High-throughput TCR sequencing (TCR-seq) involves the use of next generation sequencing platforms to generate large numbers of short DNA sequences covering key regions of the TCR coding sequence, which enables quantification of T-cell diversity at unprecedented resolution. TCR-seq studies have provided new insights into the healthy human T-cell repertoire, such as revised estimates of repertoire size and the understanding that TCR specificities are shared among individuals more frequently than previously anticipated. In the context of disease, TCR-seq has been instrumental in characterizing the recovery of the immune repertoire after hematopoietic stem cell transplantation, and the method has been used to develop biomarkers and diagnostics for various infectious and neoplastic diseases. However, T-cell repertoire sequencing is still in its infancy. It is expected that maturation of the field will involve the introduction of improved, standardized tools for data handling, deposition and statistical analysis, as well as the emergence of new and equivalently large-scale technologies for T-cell functional analysis and antigen discovery. In this review, we introduce this nascent field and TCR-seq methodology, we discuss recent insights into healthy and diseased TCR repertoires, and we examine the applications and challenges for TCR-seq in the clinic.
Collapse
Affiliation(s)
- Daniel J Woodsworth
- BC Cancer Agency, Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 1L3, Canada
- Genome Sciences & Technology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Mauro Castellarin
- BC Cancer Agency, Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Robert A Holt
- BC Cancer Agency, Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 1L3, Canada
- Genome Sciences & Technology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
14
|
Luciani F, Bull RA, Lloyd AR. Next generation deep sequencing and vaccine design: today and tomorrow. Trends Biotechnol 2012; 30:443-52. [PMID: 22721705 PMCID: PMC7127335 DOI: 10.1016/j.tibtech.2012.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 12/20/2022]
Abstract
Next generation sequencing (NGS) technologies have redefined the modus operandi in both human and microbial genetics research, allowing the unprecedented generation of very large sequencing datasets on a short time scale and at affordable costs. Vaccine development research is rapidly taking full advantage of the advent of NGS. This review provides a concise summary of the current applications of NGS in relation to research seeking to develop vaccines for human infectious diseases, incorporating studies of both the pathogen and the host. We focus on rapidly mutating viral pathogens, which are major targets in current vaccine research. NGS is unraveling the complex dynamics of viral evolution and host responses against these viruses, thus contributing substantially to the likelihood of successful vaccine development.
Collapse
Affiliation(s)
- Fabio Luciani
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|