1
|
Frassini E, Vijfvinkel TS, Butler RM, van der Elst M, Hendriks BHW, van den Dobbelsteen JJ. Deep learning methods for clinical workflow phase-based prediction of procedure duration: a benchmark study. Comput Assist Surg (Abingdon) 2025; 30:2466426. [PMID: 39992712 DOI: 10.1080/24699322.2025.2466426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
This study evaluates the performance of deep learning models in the prediction of the end time of procedures performed in the cardiac catheterization laboratory (cath lab). We employed only the clinical phases derived from video analysis as input to the algorithms. Our results show that InceptionTime and LSTM-FCN yielded the most accurate predictions. InceptionTime achieves Mean Absolute Error (MAE) values below 5 min and Symmetric Mean Absolute Percentage Error (SMAPE) under 6% at 60-s sampling intervals. In contrast, LSTM with attention mechanism and standard LSTM models have higher error rates, indicating challenges in handling both long-term and short-term dependencies. CNN-based models, especially InceptionTime, excel at feature extraction across different scales, making them effective for time-series predictions. We also analyzed training and testing times. CNN models, despite higher computational costs, significantly reduce prediction errors. The Transformer model has the fastest inference time, making it ideal for real-time applications. An ensemble model derived by averaging the two best performing algorithms reported low MAE and SMAPE, although needing longer training. Future research should validate these findings across different procedural contexts and explore ways to optimize training times without losing accuracy. Integrating these models into clinical scheduling systems could improve efficiency in cath labs. Our research demonstrates that the models we implemented can form the basis of an automated tool, which predicts the optimal time to call the next patient with an average error of approximately 30 s. These findings show the effectiveness of deep learning models, especially CNN-based architectures, in accurately predicting procedure end times.
Collapse
Affiliation(s)
- Emanuele Frassini
- Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Teddy S Vijfvinkel
- Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
- Reinier de Graaf Hospital, Delft, The Netherlands
| | - Rick M Butler
- Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Maarten van der Elst
- Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
- Reinier de Graaf Hospital, Delft, The Netherlands
| | - Benno H W Hendriks
- Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
- Medical Systems, Philips Medical Systems, Best, The Netherlands
| | | |
Collapse
|
2
|
Ebad SA, Alhashmi A, Amara M, Miled AB, Saqib M. Artificial Intelligence-Based Software as a Medical Device (AI-SaMD): A Systematic Review. Healthcare (Basel) 2025; 13:817. [PMID: 40218113 PMCID: PMC11988595 DOI: 10.3390/healthcare13070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Artificial intelligence-based software as a medical device (AI-SaMD) refers to AI-powered software used for medical purposes without being embedded in physical devices. Despite increasing approvals over the past decade, research in this domain-spanning technology, healthcare, and national security-remains limited. This research aims to bridge the existing research gap in AI-SaMD by systematically reviewing the literature from the past decade, with the aim of classifying key findings, identifying critical challenges, and synthesizing insights related to technological, clinical, and regulatory aspects of AI-SaMD. Methods: A systematic literature review based on the PRISMA framework was performed to select the relevant AI-SaMD studies published between 2015 and 2024 in order to uncover key themes such as publication venues, geographical trends, key challenges, and research gaps. Results: Most studies focus on specialized clinical settings like radiology and ophthalmology rather than general clinical practice. Key challenges to implement AI-SaMD include regulatory issues (e.g., regulatory frameworks), AI malpractice (e.g., explainability and expert oversight), and data governance (e.g., privacy and data sharing). Existing research emphasizes the importance of (1) addressing the regulatory problems through the specific duties of regulatory authorities, (2) interdisciplinary collaboration, (3) clinician training, (4) the seamless integration of AI-SaMD with healthcare software systems (e.g., electronic health records), and (5) the rigorous validation of AI-SaMD models to ensure effective implementation. Conclusions: This study offers valuable insights for diverse stakeholders, emphasizing the need to move beyond theoretical analyses and prioritize practical, experimental research to advance the real-world application of AI-SaMDs. This study concludes by outlining future research directions and emphasizing the limitations of the predominantly theoretical approaches currently available.
Collapse
Affiliation(s)
- Shouki A. Ebad
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar 73213, Saudi Arabia
| | - Asma Alhashmi
- Department of Computer Science, Faculty of Science, Northern Border University, Arar 73213, Saudi Arabia (M.A.)
| | - Marwa Amara
- Department of Computer Science, Faculty of Science, Northern Border University, Arar 73213, Saudi Arabia (M.A.)
| | - Achraf Ben Miled
- Department of Computer Science, Faculty of Science, Northern Border University, Arar 73213, Saudi Arabia (M.A.)
| | - Muhammad Saqib
- Applied College, Northern Border University, Arar 73213, Saudi Arabia
| |
Collapse
|
3
|
Mooghali M, Stroud AM, Yoo DW, Barry BA, Grimshaw AA, Ross JS, Zhu X, Miller JE. Trustworthy and ethical AI-enabled cardiovascular care: a rapid review. BMC Med Inform Decis Mak 2024; 24:247. [PMID: 39232725 PMCID: PMC11373417 DOI: 10.1186/s12911-024-02653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) is increasingly used for prevention, diagnosis, monitoring, and treatment of cardiovascular diseases. Despite the potential for AI to improve care, ethical concerns and mistrust in AI-enabled healthcare exist among the public and medical community. Given the rapid and transformative recent growth of AI in cardiovascular care, to inform practice guidelines and regulatory policies that facilitate ethical and trustworthy use of AI in medicine, we conducted a literature review to identify key ethical and trust barriers and facilitators from patients' and healthcare providers' perspectives when using AI in cardiovascular care. METHODS In this rapid literature review, we searched six bibliographic databases to identify publications discussing transparency, trust, or ethical concerns (outcomes of interest) associated with AI-based medical devices (interventions of interest) in the context of cardiovascular care from patients', caregivers', or healthcare providers' perspectives. The search was completed on May 24, 2022 and was not limited by date or study design. RESULTS After reviewing 7,925 papers from six databases and 3,603 papers identified through citation chasing, 145 articles were included. Key ethical concerns included privacy, security, or confidentiality issues (n = 59, 40.7%); risk of healthcare inequity or disparity (n = 36, 24.8%); risk of patient harm (n = 24, 16.6%); accountability and responsibility concerns (n = 19, 13.1%); problematic informed consent and potential loss of patient autonomy (n = 17, 11.7%); and issues related to data ownership (n = 11, 7.6%). Major trust barriers included data privacy and security concerns, potential risk of patient harm, perceived lack of transparency about AI-enabled medical devices, concerns about AI replacing human aspects of care, concerns about prioritizing profits over patients' interests, and lack of robust evidence related to the accuracy and limitations of AI-based medical devices. Ethical and trust facilitators included ensuring data privacy and data validation, conducting clinical trials in diverse cohorts, providing appropriate training and resources to patients and healthcare providers and improving their engagement in different phases of AI implementation, and establishing further regulatory oversights. CONCLUSION This review revealed key ethical concerns and barriers and facilitators of trust in AI-enabled medical devices from patients' and healthcare providers' perspectives. Successful integration of AI into cardiovascular care necessitates implementation of mitigation strategies. These strategies should focus on enhanced regulatory oversight on the use of patient data and promoting transparency around the use of AI in patient care.
Collapse
Affiliation(s)
- Maryam Mooghali
- Section of General Internal Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Yale Center for Outcomes Research and Evaluation (CORE), 195 Church Street, New Haven, CT, 06510, USA.
| | - Austin M Stroud
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN, USA
| | - Dong Whi Yoo
- School of Information, Kent State University, Kent, OH, USA
| | - Barbara A Barry
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
- Division of Health Care Delivery Research, Mayo Clinic, Rochester, MN, USA
| | - Alyssa A Grimshaw
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT, USA
| | - Joseph S Ross
- Section of General Internal Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Xuan Zhu
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Jennifer E Miller
- Section of General Internal Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Li YH, Li YL, Wei MY, Li GY. Innovation and challenges of artificial intelligence technology in personalized healthcare. Sci Rep 2024; 14:18994. [PMID: 39152194 PMCID: PMC11329630 DOI: 10.1038/s41598-024-70073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
As the burgeoning field of Artificial Intelligence (AI) continues to permeate the fabric of healthcare, particularly in the realms of patient surveillance and telemedicine, a transformative era beckons. This manuscript endeavors to unravel the intricacies of recent AI advancements and their profound implications for reconceptualizing the delivery of medical care. Through the introduction of innovative instruments such as virtual assistant chatbots, wearable monitoring devices, predictive analytic models, personalized treatment regimens, and automated appointment systems, AI is not only amplifying the quality of care but also empowering patients and fostering a more interactive dynamic between the patient and the healthcare provider. Yet, this progressive infiltration of AI into the healthcare sphere grapples with a plethora of challenges hitherto unseen. The exigent issues of data security and privacy, the specter of algorithmic bias, the requisite adaptability of regulatory frameworks, and the matter of patient acceptance and trust in AI solutions demand immediate and thoughtful resolution .The importance of establishing stringent and far-reaching policies, ensuring technological impartiality, and cultivating patient confidence is paramount to ensure that AI-driven enhancements in healthcare service provision remain both ethically sound and efficient. In conclusion, we advocate for an expansion of research efforts aimed at navigating the ethical complexities inherent to a technology-evolving landscape, catalyzing policy innovation, and devising AI applications that are not only clinically effective but also earn the trust of the patient populace. By melding expertise across disciplines, we stand at the threshold of an era wherein AI's role in healthcare is both ethically unimpeachable and conducive to elevating the global health quotient.
Collapse
Affiliation(s)
- Yu-Hao Li
- International School, Beijing University of Posts and Telecommunications, Bei Jing, 100876, China
| | - Yu-Lin Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Mu-Yang Wei
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
5
|
Pop-Jordanova N. Opportunity to Use Artificial Intelligence in Medicine. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2024; 45:5-13. [PMID: 39008641 DOI: 10.2478/prilozi-2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Over the past period different reports related to the artificial intelligence (AI) and machine learning used in everyday life have been growing intensely. However, the AI in our country is still very limited, especially in the field of medicine. The aim of this article is to give some review about AI in medicine and the related fields based on published articles in PubMed and Psych Net. A research showed more than 9 thousand articles available at the mentioned databases. After providing some historical data, different AI applications in different fields of medicine are discussed. Finally, some limitations and ethical implications are discussed.
Collapse
|
6
|
Wang W, Wang Y, Chen L, Ma R, Zhang M. Justice at the Forefront: Cultivating felt accountability towards Artificial Intelligence among healthcare professionals. Soc Sci Med 2024; 347:116717. [PMID: 38518481 DOI: 10.1016/j.socscimed.2024.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/24/2024]
Abstract
The advent of AI has ushered in a new era of patient care, but with it emerges a contentious debate surrounding accountability for algorithmic medical decisions. Within this discourse, a spectrum of views prevails, ranging from placing accountability on AI solution providers to laying it squarely on the shoulders of healthcare professionals. In response to this debate, this study, grounded in the mutualistic partner choice (MPC) model of the evolution of morality, seeks to establish a configurational framework for cultivating felt accountability towards AI among healthcare professionals. This framework underscores two pivotal conditions: AI ethics enactment and trusting belief in AI and considers the influence of organizational complexity in the implementation of this framework. Drawing on Fuzzy-set Qualitative Comparative Analysis (fsQCA) of a sample of 401 healthcare professionals, this study reveals that a) focusing justice and autonomy in AI ethics enactment along with building trusting belief in AI reliability and functionality reinforces healthcare professionals' sense of felt accountability towards AI, b) fostering felt accountability towards AI necessitates ensuring the establishment of trust in its functionality for high complexity hospitals, and c) prioritizing justice in AI ethics enactment and trust in AI reliability is essential for low complexity hospitals.
Collapse
Affiliation(s)
- Weisha Wang
- Research Center for Smarter Supply Chain, Business School, Soochow University, 50 Donghuan Road, Suzhou, 215006, China.
| | - Yichuan Wang
- Sheffield University Management School, University of Sheffield, Conduit Rd, Sheffield, S10 1FL, United Kingdom.
| | - Long Chen
- Brunel University London, United Kingdom.
| | - Rui Ma
- Greenwich Business School, University of Greenwich, United Kingdom.
| | - Minhao Zhang
- University of Bristol School of Management, University of Bristol, United Kingdom.
| |
Collapse
|
7
|
Awomuti A, Alimo PK, Lartey-Young G, Agyeman S, Akintunde TY, Agbeja AO, Oderinde O, Samuel OW, Otobrise H. Towards adequate policy enhancement: An AI-driven decision tree model for efficient recognition and classification of EPA status via multi-emission parameters. CITY AND ENVIRONMENT INTERACTIONS 2023; 20:100127. [DOI: 10.1016/j.cacint.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
|
8
|
Shumba AT, Montanaro T, Sergi I, Bramanti A, Ciccarelli M, Rispoli A, Carrizzo A, De Vittorio M, Patrono L. Wearable Technologies and AI at the Far Edge for Chronic Heart Failure Prevention and Management: A Systematic Review and Prospects. SENSORS (BASEL, SWITZERLAND) 2023; 23:6896. [PMID: 37571678 PMCID: PMC10422393 DOI: 10.3390/s23156896] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Smart wearable devices enable personalized at-home healthcare by unobtrusively collecting patient health data and facilitating the development of intelligent platforms to support patient care and management. The accurate analysis of data obtained from wearable devices is crucial for interpreting and contextualizing health data and facilitating the reliable diagnosis and management of critical and chronic diseases. The combination of edge computing and artificial intelligence has provided real-time, time-critical, and privacy-preserving data analysis solutions. However, based on the envisioned service, evaluating the additive value of edge intelligence to the overall architecture is essential before implementation. This article aims to comprehensively analyze the current state of the art on smart health infrastructures implementing wearable and AI technologies at the far edge to support patients with chronic heart failure (CHF). In particular, we highlight the contribution of edge intelligence in supporting the integration of wearable devices into IoT-aware technology infrastructures that provide services for patient diagnosis and management. We also offer an in-depth analysis of open challenges and provide potential solutions to facilitate the integration of wearable devices with edge AI solutions to provide innovative technological infrastructures and interactive services for patients and doctors.
Collapse
Affiliation(s)
- Angela-Tafadzwa Shumba
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.-T.S.); (T.M.); (I.S.); (M.D.V.)
- Istituto Italiano di Tecnologia, Centre for Biomolecular Nanotechnologies, 73010 Arnesano, Italy
| | - Teodoro Montanaro
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.-T.S.); (T.M.); (I.S.); (M.D.V.)
| | - Ilaria Sergi
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.-T.S.); (T.M.); (I.S.); (M.D.V.)
| | - Alessia Bramanti
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” (DIPMED), University of Salerno, 84081 Baronissi, Italy; (A.B.); (M.C.); (A.R.); (A.C.)
| | - Michele Ciccarelli
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” (DIPMED), University of Salerno, 84081 Baronissi, Italy; (A.B.); (M.C.); (A.R.); (A.C.)
| | - Antonella Rispoli
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” (DIPMED), University of Salerno, 84081 Baronissi, Italy; (A.B.); (M.C.); (A.R.); (A.C.)
| | - Albino Carrizzo
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” (DIPMED), University of Salerno, 84081 Baronissi, Italy; (A.B.); (M.C.); (A.R.); (A.C.)
| | - Massimo De Vittorio
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.-T.S.); (T.M.); (I.S.); (M.D.V.)
- Istituto Italiano di Tecnologia, Centre for Biomolecular Nanotechnologies, 73010 Arnesano, Italy
| | - Luigi Patrono
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.-T.S.); (T.M.); (I.S.); (M.D.V.)
| |
Collapse
|
9
|
Safarlou CW, Jongsma KR, Vermeulen R, Bredenoord AL. The ethical aspects of exposome research: a systematic review. EXPOSOME 2023; 3:osad004. [PMID: 37745046 PMCID: PMC7615114 DOI: 10.1093/exposome/osad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In recent years, exposome research has been put forward as the next frontier for the study of human health and disease. Exposome research entails the analysis of the totality of environmental exposures and their corresponding biological responses within the human body. Increasingly, this is operationalized by big-data approaches to map the effects of internal as well as external exposures using smart sensors and multiomics technologies. However, the ethical implications of exposome research are still only rarely discussed in the literature. Therefore, we conducted a systematic review of the academic literature regarding both the exposome and underlying research fields and approaches, to map the ethical aspects that are relevant to exposome research. We identify five ethical themes that are prominent in ethics discussions: the goals of exposome research, its standards, its tools, how it relates to study participants, and the consequences of its products. Furthermore, we provide a number of general principles for how future ethics research can best make use of our comprehensive overview of the ethical aspects of exposome research. Lastly, we highlight three aspects of exposome research that are most in need of ethical reflection: the actionability of its findings, the epidemiological or clinical norms applicable to exposome research, and the meaning and action-implications of bias.
Collapse
Affiliation(s)
- Caspar W. Safarlou
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
| | - Karin R. Jongsma
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
| | - Roel Vermeulen
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
- Department of Population Health Sciences, Utrecht University,
Utrecht, The Netherlands
| | - Annelien L. Bredenoord
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
- Erasmus School of Philosophy, Erasmus University Rotterdam,
Rotterdam, The Netherlands
| |
Collapse
|
10
|
Visco V, Izzo C, Mancusi C, Rispoli A, Tedeschi M, Virtuoso N, Giano A, Gioia R, Melfi A, Serio B, Rusciano MR, Di Pietro P, Bramanti A, Galasso G, D’Angelo G, Carrizzo A, Vecchione C, Ciccarelli M. Artificial Intelligence in Hypertension Management: An Ace up Your Sleeve. J Cardiovasc Dev Dis 2023; 10:jcdd10020074. [PMID: 36826570 PMCID: PMC9963880 DOI: 10.3390/jcdd10020074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of artificial intelligence (AI) in its prevention and treatment is firmly recognized. Indeed, AI application allows personalized medicine and tailored treatment for each patient. Specifically, this article reviews the benefits of AI in AH management, pointing out diagnostic and therapeutic improvements without ignoring the limitations of this innovative scientific approach. Consequently, we conducted a detailed search on AI applications in AH: the articles (quantitative and qualitative) reviewed in this paper were obtained by searching journal databases such as PubMed and subject-specific professional websites, including Google Scholar. The search terms included artificial intelligence, artificial neural network, deep learning, machine learning, big data, arterial hypertension, blood pressure, blood pressure measurement, cardiovascular disease, and personalized medicine. Specifically, AI-based systems could help continuously monitor BP using wearable technologies; in particular, BP can be estimated from a photoplethysmograph (PPG) signal obtained from a smartphone or a smartwatch using DL. Furthermore, thanks to ML algorithms, it is possible to identify new hypertension genes for the early diagnosis of AH and the prevention of complications. Moreover, integrating AI with omics-based technologies will lead to the definition of the trajectory of the hypertensive patient and the use of the most appropriate drug. However, AI is not free from technical issues and biases, such as over/underfitting, the "black-box" nature of many ML algorithms, and patient data privacy. In conclusion, AI-based systems will change clinical practice for AH by identifying patient trajectories for new, personalized care plans and predicting patients' risks and necessary therapy adjustments due to changes in disease progression and/or therapy response.
Collapse
Affiliation(s)
- Valeria Visco
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Costantino Mancusi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80138 Naples, Italy
| | - Antonella Rispoli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Michele Tedeschi
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Nicola Virtuoso
- Cardiology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Angelo Giano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Renato Gioia
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Americo Melfi
- Cardiology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Bianca Serio
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Gianni D’Angelo
- Department of Computer Science, University of Salerno, 84084 Fisciano, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
- Correspondence:
| |
Collapse
|
11
|
Pavlov VA, Tracey KJ. Bioelectronic medicine: Preclinical insights and clinical advances. Neuron 2022; 110:3627-3644. [PMID: 36174571 PMCID: PMC10155266 DOI: 10.1016/j.neuron.2022.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/28/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The nervous system maintains homeostasis and health. Homeostatic disruptions underlying the pathobiology of many diseases can be controlled by bioelectronic devices targeting CNS and peripheral neural circuits. New insights into the regulatory functions of the nervous system and technological developments in bioelectronics drive progress in the emerging field of bioelectronic medicine. Here, we provide an overview of key aspects of preclinical research, translation, and clinical advances in bioelectronic medicine.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Institute of Bioelectronic Medicine, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
12
|
Zea-Vera R, Ryan CT, Havelka J, Corr SJ, Nguyen TC, Chatterjee S, Wall MJ, Coselli JS, Rosengart TK, Ghanta RK. Machine Learning to Predict Outcomes and Cost by Phase of Care After Coronary Artery Bypass Grafting. Ann Thorac Surg 2022; 114:711-719. [PMID: 34582751 PMCID: PMC9703607 DOI: 10.1016/j.athoracsur.2021.08.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND Machine learning may enhance prediction of outcomes after coronary artery bypass grafting (CABG). We sought to develop and validate a dynamic machine learning model to predict CABG outcomes at clinically relevant pre- and postoperative time points. METHODS The Society of Thoracic Surgeons (STS) registry data elements from 2086 isolated CABG patients were divided into training and testing datasets and input into Extreme Gradient Boosting decision-tree machine learning algorithms. Two prediction models were developed based on data from preoperative (80 parameters) and postoperative (125 parameters) phases of care. Outcomes included operative mortality, major morbidity or mortality, high cost, and 30-day readmission. Machine learning and STS model performance were assessed using accuracy and the area under the precision-recall curve (AUC-PR). RESULTS Preoperative machine learning models predicted mortality (accuracy, 98%; AUC-PR = 0.16; F1 = 0.24), major morbidity or mortality (accuracy, 75%; AUC-PR = 0.33; F1 = 0.42), high cost (accuracy, 83%; AUC-PR = 0.51; F1 = 0.52), and 30-day readmission (accuracy, 70%; AUC-PR = 0.47; F1 = 0.49) with high accuracy. Preoperative machine learning models performed similarly to the STS for prediction of mortality (STS AUC-PR = 0.11; P = .409) and outperformed STS for prediction of mortality or major morbidity (STS AUC-PR = 0.28; P < .001). Addition of intraoperative parameters further improved machine learning model performance for major morbidity or mortality (AUC-PR = 0.39; P < .01) and high cost (AUC-PR = 0.64; P < .01), with cross-clamp and bypass times emerging as important additive predictive parameters. CONCLUSIONS Machine learning can predict mortality, major morbidity, high cost, and readmission after isolated CABG. Prediction based on the phase of care allows for dynamic risk assessment through the hospital course, which may benefit quality assessment and clinical decision-making.
Collapse
Affiliation(s)
- Rodrigo Zea-Vera
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Christopher T Ryan
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | | | - Stuart J Corr
- DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Tom C Nguyen
- Division of Adult Cardiothoracic Surgery, University of California at San Francisco, San Francisco, California
| | - Subhasis Chatterjee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas
| | - Matthew J Wall
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Joseph S Coselli
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas
| | - Todd K Rosengart
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas
| | - Ravi K Ghanta
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
13
|
Nair N, Du D, Hu Z, Gongora E. Risk Prediction Model for Survival of Wait-List Patients on Axial CF-LVAD: A UNOS Database Analysis. Transplant Proc 2022; 54:1894-1901. [PMID: 35927087 DOI: 10.1016/j.transproceed.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Continuous flow left ventricular assist devices (CF-LVADs) have become a viable option for patients with end-stage heart failure as a bridge to transplantation or the destination therapy. METHODS Adult patients listed for heart transplantation (2010-2015) with an axial CF-LVAD on the wait list were obtained from the UNOS database. The multivariate Cox regression model was used to predict the probability of survival after listing. Patients were divided into derivation (80%) and validation (20%) groups. Receiver operating characteristics curves and area under curves were used to define the strength of the model. RESULTS Risk factors on multivariate analyses were diabetes type I (hazard ratio [HR], 2.5; P = .018), presence of inotropes (HR, 1.6; P = .005), creatinine at listing (HR, 1.2; P < .001). No significant differences were observed between the derivation and validation groups for any of the variables. The area under the curve at 3, 6, and 12 months on the wait list was 0.69, 0.65, 0.63, respectively in the training set and 0.71, 0.65, 0.60, respectively in the validation set. Survival analyses showed that patients implanted with Heartmate II before listing had a better survival than those who were implanted after being on the wait list (HR, 0.78; P = .048). CONCLUSION To our knowledge, this was the first time a risk prediction model was generated for wait-list survival of Heartmate II patients. A significant difference in survival was noted between patients who received their Heartmate II before being put on a wait list vs those who were implanted while on the list.
Collapse
Affiliation(s)
- Nandini Nair
- Division of Cardiology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, Texas.
| | - Dongping Du
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, Texas
| | - Zhiyong Hu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, Texas
| | - Enrique Gongora
- Department of Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Development of a Machine Learning Model to Predict Outcomes and Cost after Cardiac Surgery. Ann Thorac Surg 2022; 115:1533-1542. [DOI: 10.1016/j.athoracsur.2022.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
|
15
|
SHIFTing artificial intelligence to be responsible in healthcare: A systematic review. Soc Sci Med 2022; 296:114782. [DOI: 10.1016/j.socscimed.2022.114782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
16
|
Brenneisen J, Daub A, Gerach T, Kovacheva E, Huetter L, Frohnapfel B, Dössel O, Loewe A. Sequential Coupling Shows Minor Effects of Fluid Dynamics on Myocardial Deformation in a Realistic Whole-Heart Model. Front Cardiovasc Med 2022; 8:768548. [PMID: 35004885 PMCID: PMC8733159 DOI: 10.3389/fcvm.2021.768548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The human heart is a masterpiece of the highest complexity coordinating multi-physics aspects on a multi-scale range. Thus, modeling the cardiac function in silico to reproduce physiological characteristics and diseases remains challenging. Especially the complex simulation of the blood's hemodynamics and its interaction with the myocardial tissue requires a high accuracy of the underlying computational models and solvers. These demanding aspects make whole-heart fully-coupled simulations computationally highly expensive and call for simpler but still accurate models. While the mechanical deformation during the heart cycle drives the blood flow, less is known about the feedback of the blood flow onto the myocardial tissue. Methods and Results: To solve the fluid-structure interaction problem, we suggest a cycle-to-cycle coupling of the structural deformation and the fluid dynamics. In a first step, the displacement of the endocardial wall in the mechanical simulation serves as a unidirectional boundary condition for the fluid simulation. After a complete heart cycle of fluid simulation, a spatially resolved pressure factor (PF) is extracted and returned to the next iteration of the solid mechanical simulation, closing the loop of the iterative coupling procedure. All simulations were performed on an individualized whole heart geometry. The effect of the sequential coupling was assessed by global measures such as the change in deformation and-as an example of diagnostically relevant information-the particle residence time. The mechanical displacement was up to 2 mm after the first iteration. In the second iteration, the deviation was in the sub-millimeter range, implying that already one iteration of the proposed cycle-to-cycle coupling is sufficient to converge to a coupled limit cycle. Conclusion: Cycle-to-cycle coupling between cardiac mechanics and fluid dynamics can be a promising approach to account for fluid-structure interaction with low computational effort. In an individualized healthy whole-heart model, one iteration sufficed to obtain converged and physiologically plausible results.
Collapse
Affiliation(s)
- Jochen Brenneisen
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anna Daub
- Institute of Fluid Mechanics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tobias Gerach
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ekaterina Kovacheva
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Larissa Huetter
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Fluid Mechanics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bettina Frohnapfel
- Institute of Fluid Mechanics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
17
|
Lockshin MD, Crow MK, Barbhaiya M. When a Diagnosis Has No Name: Uncertainty and Opportunity. ACR Open Rheumatol 2021; 4:197-201. [PMID: 34806330 PMCID: PMC8916551 DOI: 10.1002/acr2.11368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Diagnostic uncertainty, commonly encountered in rheumatology and other fields of medicine, is an opportunity: Stakeholders who understand uncertainty's causes and quantitate its effects can reduce uncertainty and can use uncertainty to improve medical practice, science, and administration. To articulate, bring attention to, and offer recommendations for diagnostic uncertainty, the Barbara Volcker Center at the Hospital for Special Surgery sponsored, in April 2021, a virtual international workshop, “When a Diagnosis Has No Name.” This paper summarizes the opinions of 72 stakeholders from the fields of medical research, industry, federal regulatory agencies, insurers, hospital management, medical philosophy, public media, health care law, clinical rheumatology, other specialty areas of medicine, and patients. Speakers addressed the effects of diagnostic uncertainty in their fields. The workshop addressed the following six questions: What is a diagnosis? What are the purposes of diagnoses? How do doctors assign diagnoses? What is uncertainty? What are its causes? How does understanding uncertainty offer opportunities to improve all fields of medicine? The workshop's conveners systematically reviewed video recordings of formal presentations, video recordings of open discussion periods, manuscripts, and slide files submitted by the speakers to develop consensus take‐home messages, which were as follows: Diagnostic uncertainty causes harm when patients lack access to laboratory test and treatments, do not participate in research studies, are not counted in administrative and public health documents, and suffer humiliation in their interactions with others. Uncertainty offers opportunities, such as quantifying uncertainty, using statistical technologies and automated intelligence to stratify patient groups by level of uncertainty, using a common vocabulary, and considering the effects of time.
Collapse
Affiliation(s)
- Michael D Lockshin
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York
| | - Mary K Crow
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York
| | - Medha Barbhaiya
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
18
|
Yang H, Tian J, Meng B, Wang K, Zheng C, Liu Y, Yan J, Han Q, Zhang Y. Application of Extreme Learning Machine in the Survival Analysis of Chronic Heart Failure Patients With High Percentage of Censored Survival Time. Front Cardiovasc Med 2021; 8:726516. [PMID: 34778396 PMCID: PMC8586069 DOI: 10.3389/fcvm.2021.726516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/08/2021] [Indexed: 12/05/2022] Open
Abstract
Objective: To explore the application of the Cox model based on extreme learning machine in the survival analysis of patients with chronic heart failure. Methods: The medical records of 5,279 inpatients diagnosed with chronic heart failure in two grade 3 and first-class hospitals in Taiyuan from 2014 to 2019 were collected; with death as the outcome and after the feature selection, the Lasso Cox, random survival forest (RSF), and the Cox model based on extreme learning machine (ELM Cox) were constructed for survival analysis and prediction; the prediction performance of the three models was explored based on simulated data with three censoring ratios of 25, 50, and 75%. Results: Simulation results showed that the prediction performance of the three models decreased with increasing censoring proportion, and the ELM Cox model performed best overall; the ELM Cox model constructed with 21 highly influential survival predictors screened from actual chronic heart failure data showed the best performance with C-index and Integrated Brier Score (IBS) of 0.775(0.755, 0.802) and 0.166(0.150, 0.182), respectively. Conclusion: The ELM Cox model showed good discrimination performance in the survival analysis of patients with chronic heart failure; it performs consistently for data with a high proportion of censored survival time; therefore, the model could help physicians identify patients at high risk of poor prognosis and target therapeutic measures to patients as early as possible.
Collapse
Affiliation(s)
- Hong Yang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China.,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
| | - Jing Tian
- Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China.,Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bingxia Meng
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China.,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
| | - Ke Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China.,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
| | - Chu Zheng
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China.,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
| | - Yanling Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China.,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
| | - Jingjing Yan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China.,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
| | - Qinghua Han
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanbo Zhang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China.,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
| |
Collapse
|
19
|
Miller DD. The Strength of a New Signal. Can J Cardiol 2021; 37:1691-1694. [PMID: 34715282 DOI: 10.1016/j.cjca.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- D Douglas Miller
- Medicine, Radiology, and Population Health Sciences, Medical College of Georgia, Augusta, Georgia, USA.
| |
Collapse
|
20
|
Idrobo-Ávila E, Loaiza-Correa H, Muñoz-Bolaños F, van Noorden L, Vargas-Cañas R. A Proposal for a Data-Driven Approach to the Influence of Music on Heart Dynamics. Front Cardiovasc Med 2021; 8:699145. [PMID: 34490368 PMCID: PMC8417899 DOI: 10.3389/fcvm.2021.699145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Electrocardiographic signals (ECG) and heart rate viability measurements (HRV) provide information in a range of specialist fields, extending to musical perception. The ECG signal records heart electrical activity, while HRV reflects the state or condition of the autonomic nervous system. HRV has been studied as a marker of diverse psychological and physical diseases including coronary heart disease, myocardial infarction, and stroke. HRV has also been used to observe the effects of medicines, the impact of exercise and the analysis of emotional responses and evaluation of effects of various quantifiable elements of sound and music on the human body. Variations in blood pressure, levels of stress or anxiety, subjective sensations and even changes in emotions constitute multiple aspects that may well-react or respond to musical stimuli. Although both ECG and HRV continue to feature extensively in research in health and perception, methodologies vary substantially. This makes it difficult to compare studies, with researchers making recommendations to improve experiment planning and the analysis and reporting of data. The present work provides a methodological framework to examine the effect of sound on ECG and HRV with the aim of associating musical structures and noise to the signals by means of artificial intelligence (AI); it first presents a way to select experimental study subjects in light of the research aims and then offers possibilities for selecting and producing suitable sound stimuli; once sounds have been selected, a guide is proposed for optimal experimental design. Finally, a framework is introduced for analysis of data and signals, based on both conventional as well as data-driven AI tools. AI is able to study big data at a single stroke, can be applied to different types of data, and is capable of generalisation and so is considered the main tool in the analysis.
Collapse
Affiliation(s)
- Ennio Idrobo-Ávila
- Escuela de Ingeniería Eléctrica y Electrónica, PSI - Percepción y Sistemas Inteligentes, Universidad del Valle, Cali, Colombia
| | - Humberto Loaiza-Correa
- Escuela de Ingeniería Eléctrica y Electrónica, PSI - Percepción y Sistemas Inteligentes, Universidad del Valle, Cali, Colombia
| | - Flavio Muñoz-Bolaños
- Departamento de Ciencias Fisiológicas, CIFIEX - Ciencias Fisiológicas Experimentales, Universidad del Cauca, Popayán, Colombia
| | - Leon van Noorden
- Department of Art, Music, and Theatre Sciences, IPEM—Institute for Systematic Musicology, Ghent University, Ghent, Belgium
| | - Rubiel Vargas-Cañas
- Departamento de Física, SIDICO - Sistemas Dinámicos, Instrumentación y Control, Universidad del Cauca, Popayán, Colombia
| |
Collapse
|
21
|
Bosmans H, Zanca F, Gelaude F. Procurement, commissioning and QA of AI based solutions: An MPE's perspective on introducing AI in clinical practice. Phys Med 2021; 83:257-263. [PMID: 33984579 DOI: 10.1016/j.ejmp.2021.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE In this study, we propose a framework to help the MPE take up a unique and important role at the introduction of AI solutions in clinical practice, and more in particular at procurement, acceptance, commissioning and QA. MATERIAL AND METHODS The steps for the introduction of Medical Radiological Equipment in a hospital setting were extrapolated to AI tools. Literature review and in-house experience was added to prepare similar, yet dedicated test methods. RESULTS Procurement starts from the clinical cases to be solved and is usually a complex process with many stakeholders and possibly many candidate AI solutions. Specific KPIs and metrics need to be defined. Acceptance testing follows, to verify the installation and test for critical exams. Commissioning should test the suitability of the AI tool for the intended use in the local institution. Results may be predicted from peer reviewed papers that treat representative populations. If not available, local data sets can be prepared to assess the KPIs, or 'virtual clinical trials' could be used to create large, simulated test data sets. Quality assurance must be performed periodically to verify if KPIs are stable, especially if the software is upscaled or upgraded, and as soon as self-learning AI tools would enter the medical practice. DISCUSSION MPEs are well placed to bridge between manufacturer and medical team and help from procurement up to reporting to the management board. More work is needed to establish consolidated test protocols.
Collapse
Affiliation(s)
- Hilde Bosmans
- University Hospitals of the KU Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Artificial intelligence is a broad set of sophisticated computer-based statistical tools that have become widely available. Cardiovascular medicine with its large data repositories, need for operational efficiency and growing focus on precision care is set to be transformed by artificial intelligence. Applications range from new pathophysiologic discoveries to decision support for individual patient care to optimization of system-wide logistical processes. RECENT FINDINGS Machine learning is the dominant form of artificial intelligence wherein complex statistical algorithms 'learn' by deducing patterns in datasets. Supervised machine learning uses classified large data to train an algorithm to accurately predict the outcome, whereas in unsupervised machine learning, the algorithm uncovers mathematical relationships within unclassified data. Artificial multilayered neural networks or deep learning is one of the most successful tools. Artificial intelligence has demonstrated superior efficacy in disease phenomapping, early warning systems, risk prediction, automated processing and interpretation of imaging, and increasing operational efficiency. SUMMARY Artificial intelligence demonstrates the ability to learn through assimilation of large datasets to unravel complex relationships, discover prior unfound pathophysiological states and develop predictive models. Artificial intelligence needs widespread exploration and adoption for large-scale implementation in cardiovascular practice.
Collapse
Affiliation(s)
- Sagar Ranka
- Department of Cardiovascular Medicine, The University of Kansas, Health System, Kansas City, Kansas, USA
| | | | | |
Collapse
|
23
|
Abstract
Recommendation systems have overcome the overload of irrelevant information by considering users’ preferences and emotional states in the fields of tourism, health, e-commerce, and entertainment. This article reviews the principal recommendation approach documents found in scientific databases (Elsevier’s Scopus and Clarivate Web of Science) through a scientometric analysis in ScientoPy. Research publications related to the recommenders of emotion-based tourism cover the last two decades. The review highlights the collection, processing, and feature extraction of data from sensors and wearables to detect emotions. The study proposes the thematic categories of recommendation systems, emotion recognition, wearable technology, and machine learning. This paper also presents the evolution, trend analysis, theoretical background, and algorithmic approaches used to implement recommenders. Finally, the discussion section provides guidelines for designing emotion-sensitive tourist recommenders.
Collapse
|
24
|
Miller DD. Machine Intelligence for Management of Acute Coronary Syndromes: Neural or Nervous Times? Can J Cardiol 2020; 36:470-473. [PMID: 32007347 DOI: 10.1016/j.cjca.2019.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 11/27/2022] Open
|