1
|
Kang C, Liu Z, Zhang H. A comprehensive graph neural network method for predicting triplet motifs in disease-drug-gene interactions. Bioinformatics 2025; 41:btaf023. [PMID: 39832275 PMCID: PMC11796092 DOI: 10.1093/bioinformatics/btaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/08/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
MOTIVATION The drug-disease, gene-disease, and drug-gene relationships, as high-frequency edge types, describe complex biological processes within the biomedical knowledge graph. The structural patterns formed by these three edges are the graph motifs of (disease, drug, gene) triplets. Among them, the triangle is a steady and important motif structure in the network, and other various motifs different from the triangle also indicate rich semantic relationships. However, existing methods only focus on the triangle representation learning for classification, and fail to further discriminate various motifs of triplets. A comprehensive method is needed to predict the various motifs within triplets, which will uncover new pharmacological mechanisms and improve our understanding of disease-gene-drug interactions. Identifying complex motif structures within triplets can also help us to study the structural properties of triangles. RESULTS We consider the seven typical motifs within the triplets and propose a novel graph contrastive learning-based method for triplet motif prediction (TriMoGCL). TriMoGCL utilizes a graph convolutional encoder to extract node features from the global network topology. Next, node pooling and edge pooling extract context information as the triplet features from global and local views. To avoid the redundant context information and motif imbalance problem caused by dense edges, we use node and class-prototype contrastive learning to denoise triplet features and enhance discrimination between motifs. The experiments on two different-scale knowledge graphs demonstrate the effectiveness and reliability of TriMoGCL in identifying various motif types. In addition, our model reveals new pharmacological mechanisms, providing a comprehensive analysis of triplet motifs. AVAILABILITY AND IMPLEMENTATION Codes and datasets are available at https://github.com/zhanglabNKU/TriMoGCL and https://doi.org/10.5281/zenodo.14633572.
Collapse
Affiliation(s)
- Chuanze Kang
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China
| | - Zonghuan Liu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China
| | - Han Zhang
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Li E, Boujeddaine N, Houtman MJC, Maas RGC, Sluijter JPG, Ecker GF, Stary-Weinzinger A, van Ham WB, van der Heyden MAG. Development of new K ir2.1 channel openers from propafenone analogues. Br J Pharmacol 2025; 182:633-650. [PMID: 39419581 DOI: 10.1111/bph.17377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND PURPOSES Reduced inward rectifier potassium channel (Kir2.1) functioning is associated with heart failure and may cause Andersen-Tawil Syndrome, among others characterized by ventricular arrhythmias. Most heart failure or Andersen-Tawil Syndrome patients are treated with β-adrenoceptor antagonists (β-blockers) or sodium channel blockers; however, these do not specifically address the inward rectifier current (IK1) nor aim to improve resting membrane potential stability. Consequently, additional pharmacotherapy for heart failure and Andersen-Tawil Syndrome treatment would be highly desirable. Acute propafenone treatment at low concentrations enhances IK1 current, but it also exerts many off-target effects. Therefore, discovering and exploring new IK1-channel openers is necessary. EXPERIMENTAL APPROACH Effects of propafenone and 10 additional propafenone analogues were analysed. Currents were measured by single-cell patch-clamp electrophysiology. Kir2.1 protein expression levels were determined by western blot analysis and action potential characteristics were further validated in human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMCs). Molecular docking was performed to obtain detailed information on drug-channel interactions. KEY RESULTS Analogues GPV0019, GPV0057 and GPV0576 strongly increased the outward component of IK1 while not affecting the Kir2.1 channel expression levels. GPV0057 did not block IKr at concentrations below 0.5 μmol L-1 nor NaV1.5 current below 1 μmol L-1. Moreover, hiPSC-CMC action potential duration was also not affected by GPV0057 at 0.5 and 1 μmol L-1. Structure analysis indicates a mechanism by which GPV0057 might enhance Kir2.1 channel activation. CONCLUSION AND IMPLICATIONS GPV0057 has a strong efficiency towards increasing IK1, which makes it a good candidate to address IK1 deficiency-associated diseases.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Najla Boujeddaine
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marien J C Houtman
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renee G C Maas
- Department of Cardiology, Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Willem B van Ham
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Railean A, Meiling JB, Miller NJ, Martin MJ, Martindale JM, Caress JB. A Late Diagnosis of Andersen-Tawil Syndrome in Teenage Siblings. Pediatr Neurol 2024; 161:24-25. [PMID: 39243686 DOI: 10.1016/j.pediatrneurol.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Andersen-Tawil syndrome (ATS) is a rare autosomal dominant disorder characterized by a classic symptom triad, including periodic paralysis, ventricular arrhythmias with associated prolonged QT interval and U waves, and dysmorphic facial and skeletal features. Pathogenic variants of the KCNJ2 gene are linked to ATS. METHODS We present two siblings with the same pathogenic mutation and facial characteristic of hypotelorism, yet with intrafamilial and sex-specific variability. RESULTS The first patient is a 16-year-old male who presented from an outside hospital with subacute-onset weakness. The symptoms almost completely subsided the following day, with only mild proximal muscle weakness. Magnetic resonance imaging of the brain and cervical spine was unremarkable. He had one prior attack of self-resolving weakness without apparent triggering factors and a history of premature ventricular contractions and U waves seen on electrocardiogram without cardiac symptoms. On further evaluation his physical examination was significant for micrognathia, hypotelorism, and clinodactyly. Electrodiagnostic examination showed no clear evidence of polyneuropathy. Given his presentation of the typical triad of periodic weakness, dysmorphic features, and cardiac rhythm abnormalities, genetic testing was pursued revealing a pathogenic mutation of the KCNJ2 gene, indicative of ATS. Subsequent genetic testing of his older biological sister, with identical physical features but without a history of cardiac symptoms or episodic periodic paralysis, revealed the same pathogenic mutation. CONCLUSIONS It is essential to note that ATS can manifest with a wide range of symptoms and some individuals may display only subtle or atypical signs, contributing to this challenging diagnosis.
Collapse
Affiliation(s)
- Anastasia Railean
- Department of Neurology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - James B Meiling
- Department of Neurology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota.
| | - Nicholas J Miller
- Department of Neurology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina; Department of Internal Medicine, University of Manitoba, Riverview Health Centre, Winnipeg, Manitoba, Canada
| | - Matthew J Martin
- Department of Neurology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Jaclyn M Martindale
- Department of Neurology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - James B Caress
- Department of Neurology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| |
Collapse
|
4
|
Zhang Y, Huang X, Han Y, Yan R. Rare electrocardiographic findings in a young woman with acute barium poisoning: A case report. Heliyon 2024; 10:e37136. [PMID: 39286072 PMCID: PMC11403023 DOI: 10.1016/j.heliyon.2024.e37136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Background Barium, as a heavy divalent alkaline earth metal, can be found in various products such as rodenticides, insecticides, depilatories, and fireworks. Barium can be highly toxic upon both acute and chronic exposure. The toxicity of barium compounds is dependent on their solubility. Both suicidal and accidental exposures to soluble barium can cause toxicity. Case summary We report a case characterized by two different wide QRS complex tachycardia in a patient with acute barium poisoning, one due to barium-induced ventricular tachycardia (VT) under hypokalemia and, subsequently, sino-ventricular conduction with intraventricular conduction delay due to hyperkalemia after aggressive potassium supplementation. The latter may be misdiagnosed as VT for the history of acute barium poisoning and the absence of peaked T wave in hyperkalemia. Of note, another hemodynamically unstable VT and profound hypokalemia occurred during the potassium-lowering therapy, which, in addition to barium poisoning, may also be due to the iatrogenic hypokalemia. We also observed the prominent T-U waves at serum potassium of 4.6 mM 12 hours after admission, which may indicate that barium had not been completely cleared from the plasma at that moment. There are some parallels to the Andersen-Tawil syndrome with prominent T-U waves and risk of ventricular tachycardias. To our knowledge, this is the first case report of conversion from hypokalemia to hyperkalemia, and in a short moment, from hyperkalemia to hypokalemia, in acute barium poisoning. Conclusion In addition to profound hypokalemia secondary to acute barium poisoning, hyperkalemia may also occur after aggressive potassium supplementation. A more careful rather than too aggressive potassium supplementation may be suitable in these cases of hypokalemia due to an intracellular shift of potassium. And a iatrogenic hypokalemia risk in the treatment of rebound hyperkalemia in barium poisoning must be considered.
Collapse
Affiliation(s)
- Yubin Zhang
- Department of Electrocardiogram, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, PR China
| | - Xi Huang
- Department of Electrocardiogram, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, PR China
| | - Yiru Han
- Department of Healthcare, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, PR China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, PR China
| |
Collapse
|
5
|
Li E, van der Heyden MAG. The network of cardiac K IR2.1: its function, cellular regulation, electrical signaling, diseases and new drug avenues. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6369-6389. [PMID: 38683369 PMCID: PMC11422472 DOI: 10.1007/s00210-024-03116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The functioning of the human heart relies on complex electrical and communication systems that coordinate cardiac contractions and sustain rhythmicity. One of the key players contributing to this intricate system is the KIR2.1 potassium ion channel, which is encoded by the KCNJ2 gene. KIR2.1 channels exhibit abundant expression in both ventricular myocytes and Purkinje fibers, exerting an important role in maintaining the balance of intracellular potassium ion levels within the heart. And by stabilizing the resting membrane potential and contributing to action potential repolarization, these channels have an important role in cardiac excitability also. Either gain- or loss-of-function mutations, but also acquired impairments of their function, are implicated in the pathogenesis of diverse types of cardiac arrhythmias. In this review, we aim to elucidate the system functions of KIR2.1 channels related to cellular electrical signaling, communication, and their contributions to cardiovascular disease. Based on this knowledge, we will discuss existing and new pharmacological avenues to modulate their function.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, Netherlands.
| |
Collapse
|
6
|
Tejeda-Camargo MJ, Vanegas-Rincón PN, Villamil-Ramírez LE, Rojas-Rojas JC, Soto Becerra R. [Andersen-Tawil Syndrome, a differential of bidirectional ventricular tachycardia: a case report]. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2024; 5:181-186. [PMID: 39411018 PMCID: PMC11473069 DOI: 10.47487/apcyccv.v5i3.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/08/2024] [Indexed: 10/19/2024]
Abstract
We present the case of a patient with Andersen-Tawil syndrome (ATS), a rare genetic disorder characterized by the presence of ventricular arrhythmias, skeletal dysmorphic features, and periodic muscle paralysis. The diagnosis was delayed due to the non-simultaneity of symptom presentation. The report highlights the importance of investigating neurological symptoms in the presence of ventricular arrhythmias of unclear origin or cardiac symptoms in patients with periodic paralysis. The diagnosis was confirmed by the identification of a mutation in the KCNJ2 gene (c.224C>T(p.Thr75Met)); this specific mutation has not been reported in the gnomAD database, suggesting a minor allele frequency (MAF) of less than 1%. The patient is currently managed pharmacologically with a beta-blocker and remains free of arrhythmias.
Collapse
Affiliation(s)
- Miguel J. Tejeda-Camargo
- Angiografía de Colombia, Clínica Cardiovascular, Villavicencio, Meta, Colombia.Angiografía de Colombia, Clínica CardiovascularVillavicencio, MetaColombia
- Cardiometa, Villavicencio, Meta, Colombia.CardiometaVillavicencio, MetaColombia
| | - Paula N. Vanegas-Rincón
- Angiografía de Colombia, Clínica Cardiovascular, Villavicencio, Meta, Colombia.Angiografía de Colombia, Clínica CardiovascularVillavicencio, MetaColombia
| | - Luis E. Villamil-Ramírez
- Angiografía de Colombia, Clínica Cardiovascular, Villavicencio, Meta, Colombia.Angiografía de Colombia, Clínica CardiovascularVillavicencio, MetaColombia
| | - Julio C. Rojas-Rojas
- Angiografía de Colombia, Clínica Cardiovascular, Villavicencio, Meta, Colombia.Angiografía de Colombia, Clínica CardiovascularVillavicencio, MetaColombia
| | - Richard Soto Becerra
- Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú.Universidad Nacional Mayor de San MarcosFacultad de MedicinaUniversidad Nacional Mayor de San MarcosLimaPeru
| |
Collapse
|
7
|
Lai JD, Berlind JE, Fricklas G, Lie C, Urenda JP, Lam K, Sta Maria N, Jacobs R, Yu V, Zhao Z, Ichida JK. KCNJ2 inhibition mitigates mechanical injury in a human brain organoid model of traumatic brain injury. Cell Stem Cell 2024; 31:519-536.e8. [PMID: 38579683 DOI: 10.1016/j.stem.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Traumatic brain injury (TBI) strongly correlates with neurodegenerative disease. However, it remains unclear which neurodegenerative mechanisms are intrinsic to the brain and which strategies most potently mitigate these processes. We developed a high-intensity ultrasound platform to inflict mechanical injury to induced pluripotent stem cell (iPSC)-derived cortical organoids. Mechanically injured organoids elicit classic hallmarks of TBI, including neuronal death, tau phosphorylation, and TDP-43 nuclear egress. We found that deep-layer neurons were particularly vulnerable to injury and that TDP-43 proteinopathy promotes cell death. Injured organoids derived from C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) patients displayed exacerbated TDP-43 dysfunction. Using genome-wide CRISPR interference screening, we identified a mechanosensory channel, KCNJ2, whose inhibition potently mitigated neurodegenerative processes in vitro and in vivo, including in C9ORF72 ALS/FTD organoids. Thus, targeting KCNJ2 may reduce acute neuronal death after brain injury, and we present a scalable, genetically flexible cerebral organoid model that may enable the identification of additional modifiers of mechanical stress.
Collapse
Affiliation(s)
- Jesse D Lai
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Amgen Inc., Thousand Oaks, CA, USA; Neurological & Rare Diseases, Dewpoint Therapeutics, Boston, MA, USA.
| | - Joshua E Berlind
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Gabriella Fricklas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Cecilia Lie
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Jean-Paul Urenda
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Kelsey Lam
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Naomi Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Russell Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Violeta Yu
- Amgen Inc., Thousand Oaks, CA, USA; Neurological & Rare Diseases, Dewpoint Therapeutics, Boston, MA, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Bury TM, Diagne K, Olshan D, Glass L, Shrier A, Lerman BB, Bub G. The inverse problem for cardiac arrhythmias. CHAOS (WOODBURY, N.Y.) 2023; 33:123130. [PMID: 38149994 DOI: 10.1063/5.0161210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
A cardiac arrhythmia is an abnormality in the rate or rhythm of the heart beat. We study a type of arrhythmia called a premature ventricular complex (PVC), which is typically benign, but in rare cases can lead to more serious arrhythmias or heart failure. There are three known mechanisms for PVCs: reentry, an ectopic focus, and triggered activity. We develop minimal models for each mechanism and attempt the inverse problem of determining which model (and therefore which mechanism) best describes the beat dynamics observed in an ambulatory electrocardiogram. We demonstrate our approach on a patient who exhibits frequent PVCs and find that their PVC dynamics are best described by a model of triggered activity. Better identification of the PVC mechanism from wearable device data could improve risk stratification for the development of more serious arrhythmias.
Collapse
Affiliation(s)
- T M Bury
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - K Diagne
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - D Olshan
- Department of Medicine, Division of Cardiology, Cornell University Medical Center, New York, New York 10065, USA
| | - L Glass
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - A Shrier
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - B B Lerman
- Department of Medicine, Division of Cardiology, Cornell University Medical Center, New York, New York 10065, USA
| | - G Bub
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
9
|
Collins NJ, Finn D, O'Mahony O, Walsh M. Survival in a young child with out-of-hospital cardiac arrest: diagnostic dilemma and when to deviate from standard resuscitation guidelines. BMJ Case Rep 2023; 16:e255729. [PMID: 37852665 PMCID: PMC10603545 DOI: 10.1136/bcr-2023-255729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
A boy in early childhood presented in cardiac arrest. Care was provided out of hospital and in the emergency department as per standard paediatric resuscitation guidelines. Despite initial return of spontaneous circulation following cardiopulmonary resuscitation, two defibrillation shocks and epinephrine via intraosseous access, he had recurrent episodes of pulseless ventricular tachycardia and ventricular fibrillation. In total, 40 defibrillation shocks were administered, and he subsequently stabilised on combined treatment with intravenous esmolol, amiodarone and milrinone. He was transferred to the paediatric intensive care unit and had an automated implantable cardioverter-defibrillator inserted prior to discharge. Genetic testing has confirmed a diagnosis of catecholaminergic polymorphic ventricular tachycardia and it is hypothesised that the childhood excitement at a popular time of year, combined with caffeinated drinks, instigated his initial cardiac arrest which was propagated with iatrogenic epinephrine. He has remained stable since, with no neurological sequelae thus far from a significantly prolonged downtime.
Collapse
Affiliation(s)
- Neil John Collins
- Cardiac Services, The Royal Children's Hospital, Melbourne, Victoria, Australia
- Paediatrics, Cork University Hospital, Cork, Ireland
| | - Daragh Finn
- Paediatrics, Cork University Hospital, Cork, Ireland
| | | | - Mark Walsh
- Paediatric Cardiology, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|
10
|
Matthews E, Palace J, Ramdas S, Sansone V, Tristani-Firouzi M, Vicart S, Willis T. Care Recommendations for the Investigation and Management of Children With Skeletal Muscle Channelopathies. Pediatr Neurol 2023; 145:102-111. [PMID: 37315339 DOI: 10.1016/j.pediatrneurol.2023.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023]
Abstract
The field of pediatric skeletal muscle channelopathies has seen major new advances in terms of a wider understanding of clinical presentations and new phenotypes. Skeletal muscle channelopathies cause significant disability and even death in some of the newly described phenotypes. Despite this, there are virtually no data on the epidemiology and longitudinal natural history of these conditions or randomized controlled trial evidence of efficacy or tolerability of any treatment in children, and thus best practice care recommendations do not exist. Clinical history, and to a lesser extent examination, is key to eliciting symptoms and signs that indicate a differential diagnosis of muscle channelopathy. Normal routine investigations should not deter one from the diagnosis. Specialist neurophysiologic investigations have an additional role, but their availability should not delay genetic testing. New phenotypes are increasingly likely to be identified by next-generation sequencing panels. Many treatments or interventions for symptomatic patients are available, with anecdotal data to support their benefit, but we lack trial data on efficacy, safety, or superiority. This lack of trial data in turn can lead to hesitancy in prescribing among doctors or in accepting medication by parents. Holistic management addressing work, education, activity, and additional symptoms of pain and fatigue provides significant benefit. Preventable morbidity and sometimes mortality occurs if the diagnosis and therefore treatment is delayed. Advances in genetic sequencing technology and greater access to testing may help to refine recently identified phenotypes, including histology, as more cases are described. Randomized controlled treatment trials are required to inform best practice care recommendations. A holistic approach to management is essential and should not be overlooked. Good quality data on prevalence, health burden, and optimal treatment are urgently needed.
Collapse
Affiliation(s)
- Emma Matthews
- Department of Neurology, Atkinson-Morley Neuromuscular Centre, St George's University Hospitals NHS Foundation Trust, and Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
| | - Jacqueline Palace
- Clinical Neurology, John Radcliffe Hospital, Oxford University Foundation Trust, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sithara Ramdas
- Department of Paediatrics, MDUK Neuromuscular Centre, University of Oxford, Oxford, UK; Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | - Valeria Sansone
- Neurorehabilitation Unit, Neuromuscular Omnicentre Clinical Center, Niguarda Hospital, University of Milan, Milan, Italy
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute and the Division of Paediatric Cardiology, University of Utah, Salt Lake City, Utah
| | - Savine Vicart
- Reference Centre for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Tracey Willis
- Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, England
| |
Collapse
|
11
|
Vicino A, Brugnoni R, Maggi L. Diagnostics in skeletal muscle channelopathies. Expert Rev Mol Diagn 2023; 23:1175-1193. [PMID: 38009256 DOI: 10.1080/14737159.2023.2288258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Skeletal muscle channelopathies (SMCs) are a heterogenous group of disorders, caused by mutations in skeletal ion channels leading to abnormal muscle excitability, resulting in either delayed muscle relaxation (myotonia) which characterizes non-dystrophic myotonias (NDMs), or membrane transient inactivation, causing episodic weakness, typical of periodic paralyses (PPs). AREAS COVERED SMCs include myotonia congenita, paramyotonia congenita, and sodium-channel myotonia among NDMs, and hyper-normokalemic, hypokalemic, or late-onset periodic paralyses among PPs. When suspecting an SMC, a structured diagnostic approach is required. Detailed personal and family history and clinical examination are essential, while neurophysiological tests should confirm myotonia and rule out alternative diagnosis. Moreover, specific electrodiagnostic studies are important to further define the phenotype of de novo cases and drive molecular analyses together with clinical data. Definite diagnosis is achieved through genetic testing, either with Sanger sequencing or multigene next-generation sequencing panel. In still unsolved patients, more advanced techniques, as exome-variant sequencing or whole-genome sequencing, may be considered in expert centers. EXPERT OPINION The diagnostic approach to SMC is still mainly based on clinical data; moreover, definite diagnosis is sometimes complicated by the difficulty to establish a proper genotype-phenotype correlation. Lastly, further studies are needed to allow the genetic characterization of unsolved patients.
Collapse
Affiliation(s)
- Alex Vicino
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Nerve-Muscle Unit, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raffaella Brugnoni
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Maggi
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
12
|
Meyer KM, Malhotra N, Kwak JS, El Refaey M. Relevance of KCNJ5 in Pathologies of Heart Disease. Int J Mol Sci 2023; 24:10849. [PMID: 37446026 PMCID: PMC10341679 DOI: 10.3390/ijms241310849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Abnormalities in G-protein-gated inwardly rectifying potassium (GIRK) channels have been implicated in diseased states of the cardiovascular system; however, the role of GIRK4 (Kir3.4) in cardiac physiology and pathophysiology has yet to be completely understood. Within the heart, the KACh channel, consisting of two GIRK1 and two GIRK4 subunits, plays a major role in modulating the parasympathetic nervous system's influence on cardiac physiology. Being that GIRK4 is necessary for the functional KACh channel, KCNJ5, which encodes GIRK4, it presents as a therapeutic target for cardiovascular pathology. Human variants in KCNJ5 have been identified in familial hyperaldosteronism type III, long QT syndrome, atrial fibrillation, and sinus node dysfunction. Here, we explore the relevance of KCNJ5 in each of these diseases. Further, we address the limitations and complexities of discerning the role of KCNJ5 in cardiovascular pathophysiology, as identical human variants of KCNJ5 have been identified in several diseases with overlapping pathophysiology.
Collapse
Affiliation(s)
- Karisa M. Meyer
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nipun Malhotra
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jung seo Kwak
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mona El Refaey
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Park S, Heo W, Shin SW, Kim HJ, Yoo YM, Kim HY. General anesthesia using propofol infusion for implantation of an implantable cardioverter defibrillator in a pediatric patient with Andersen-Tawil syndrome: a case report. J Dent Anesth Pain Med 2023; 23:45-51. [PMID: 36819605 PMCID: PMC9911964 DOI: 10.17245/jdapm.2023.23.1.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 02/05/2023] Open
Abstract
Andersen-Tawil syndrome (ATS) is a rare genetic disease characterized by a triad of episodic flaccid muscle weakness, ventricular arrhythmias, and physical anomalies. ATS patients have various cardiac arrhythmias that can cause sudden death. Implantation of an implantable cardioverter-defibrillator (ICD) is required when life-threatening cardiac arrhythmias do not respond to medical treatment. An 11-year-old girl underwent surgery for an ICD implantation. For general anesthesia in ATS patients, anesthesiologists should focus on the potentially difficult airway, serious cardiac arrhythmias, such as ventricular tachycardia (VT), and delayed recovery from neuromuscular blockade. We followed the difficult airway algorithm, avoided drugs that can precipitate QT prolongation and fatal cardiac arrhythmias, and tried to maintain normoxia, normocarbia, normothermia, normoglycemia, and pain control for prevention of sympathetic stimulation. We report the successful application of general anesthesia for ICD implantation in a pediatric patient with ATS and recurrent VT.
Collapse
Affiliation(s)
- Seyeon Park
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Wonjae Heo
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Sang-Wook Shin
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hye-Jin Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Yeong Min Yoo
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Hee Young Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
14
|
Abstract
Long QT syndrome (LQTS) is a detrimental arrhythmia syndrome mainly caused by dysregulated expression or aberrant function of ion channels. The major clinical symptoms of ventricular arrhythmia, palpitations and syncope vary among LQTS subtypes. Susceptibility to malignant arrhythmia is a result of delayed repolarisation of the cardiomyocyte action potential (AP). There are 17 distinct subtypes of LQTS linked to 15 autosomal dominant genes with monogenic mutations. However, due to the presence of modifier genes, the identical mutation may result in completely different clinical manifestations in different carriers. In this review, we describe the roles of various ion channels in orchestrating APs and discuss molecular aetiologies of various types of LQTS. We highlight the usage of patient-specific induced pluripotent stem cell (iPSC) models in characterising fundamental mechanisms associated with LQTS. To mitigate the outcomes of LQTS, treatment strategies are initially focused on small molecules targeting ion channel activities. Next-generation treatments will reap the benefits from development of LQTS patient-specific iPSC platform, which is bolstered by the state-of-the-art technologies including whole-genome sequencing, CRISPR genome editing and machine learning. Deep phenotyping and high-throughput drug testing using LQTS patient-specific cardiomyocytes herald the upcoming precision medicine in LQTS.
Collapse
|
15
|
Postrigan AE, Babushkina NP, Svintsova LI, Plotnikova IV, Skryabin NA. Clinical and Genetic Characteristics of Congenital Long QT Syndrome. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Sagray E, Wackel PL, Cannon BC. Cardiac arrhythmias in Primary Hypokalemic Periodic Paralysis: Case report and Literature Review. HeartRhythm Case Rep 2022; 8:719-723. [PMID: 36310724 PMCID: PMC9596356 DOI: 10.1016/j.hrcr.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
17
|
Villar-Quiles RN, Sternberg D, Tredez G, Beatriz Romero N, Evangelista T, Lafôret P, Cintas P, Sole G, Sacconi S, Bendahhou S, Franques J, Cances C, Noury JB, Delmont E, Blondy P, Perrin L, Hezode M, Fournier E, Fontaine B, Stojkovic T, Vicart S. Phenotypical variability and atypical presentations in a French cohort of Andersen-Tawil syndrome. Eur J Neurol 2022; 29:2398-2411. [PMID: 35460302 DOI: 10.1111/ene.15369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND PURPOSE Andersen-Tawil syndrome (ATS) is a skeletal muscle channelopathy caused by KCNJ2 mutations, characterized by a clinical triad of periodic paralysis, cardiac arrhythmias and dysmorphism. The muscle phenotype, particularly the atypical forms with prominent permanent weakness or predominantly painful symptoms, remains incompletely characterized. METHODS A retrospective clinical, histological, electroneuromyography (ENMG) and genetic analysis of molecularly confirmed ATS patients, diagnosed and followed up at neuromuscular reference centers in France, was conducted. RESULTS Thirty-five patients from 27 unrelated families carrying 17 different missense KCNJ2 mutations (four novel mutations) and a heterozygous KCNJ2 duplication are reported. The typical triad was observed in 42.9% of patients. Cardiac abnormalities were observed in 65.7%: 56.5% asymptomatic and 39.1% requiring antiarrhythmic drugs. 71.4% of patients exhibited dysmorphic features. Muscle symptoms were reported in 85.7%, amongst whom 13.3% had no cardiopathy and 33.3% no dysmorphic features. Periodic paralysis was present in 80% and was significantly more frequent in men. Common triggers were exercise, immobility and carbohydrate-rich diet. Ictal serum potassium concentrations were low in 53.6%. Of the 35 patients, 45.7% had permanent weakness affecting proximal muscles, which was mild and stable or slowly progressive over several decades. Four patients presented with exercise-induced pain and myalgia attacks. Diagnostic delay was 14.4 ± 9.5 years. ENMG long-exercise test performed in 25 patients (71.4%) showed in all a decremental response up to 40%. Muscle biopsy performed in 12 patients revealed tubular aggregates in six patients (associated in two of them with vacuolar lesions), dystrophic features in one patient and non-specific myopathic features in one patient; it was normal in four patients. DISCUSSION Recognition of atypical features (exercise-induced pain or myalgia and permanent weakness) along with any of the elements of the triad should arouse suspicion. The ENMG long-exercise test has a high diagnostic yield and should be performed. Early diagnosis is of utmost importance to improve disease prognosis.
Collapse
Affiliation(s)
- Rocio Nur Villar-Quiles
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Institute of Myology, Centre de Recherche en Myologie, UMRS974, Sorbonne Université - INSERM, Paris, France
| | - Damien Sternberg
- Reference Center for Muscle Channelopathies, Service de Biochimie et Centre de Génétique, APHP, Pitié-Salpêtrière Hospital, Paris, France
| | - Grégoire Tredez
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Norma Beatriz Romero
- Institute of Myology, Centre de Recherche en Myologie, UMRS974, Sorbonne Université - INSERM, Paris, France.,Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Teresinha Evangelista
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Institute of Myology, Centre de Recherche en Myologie, UMRS974, Sorbonne Université - INSERM, Paris, France.,Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Pascal Lafôret
- Reference Center for Neuromuscular Disorders, APHP, Raymond-Poincaré Hospital, Paris, France
| | - Pascal Cintas
- Neurology Department, Pierre-Paul Riquet Hospital, CHU Toulouse, Toulouse, France
| | - Guilhem Sole
- Reference Centre for Neuromuscular Disorders, Pellegrin Hospital CHU Bordeaux, Bordeaux, France
| | - Sabrina Sacconi
- Neuromuscular Diseases and ALS Specialized Center, University of Nice-Sophia Antipolis, Nice, France
| | - Said Bendahhou
- UMR7370 CNRS, LP2M, Labex ICST, Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France
| | - Jérôme Franques
- Assistance Publique-Hôpitaux de Marseille, Department of Neurology and Neuromuscular Diseases, La Timone Hospital, Marseille, France
| | - Claude Cances
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropediatric Department, Toulouse University Hospital, Toulouse, France
| | - J B Noury
- Neurology Department, Neuromuscular Center, CHRU Cavale Blanche, Brest, France
| | - Emilien Delmont
- Department of Neurology, University Hospital Timone, Marseille, France
| | - Patricia Blondy
- Reference Center for Muscle Channelopathies, Service de Biochimie et Centre de Génétique, APHP, Pitié-Salpêtrière Hospital, Paris, France
| | - Laurence Perrin
- Pediatrics Department, APHP, Robert-Débré Hospital, Paris, France
| | - Marianne Hezode
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Emmanuel Fournier
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Bertrand Fontaine
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Institute of Myology, Centre de Recherche en Myologie, UMRS974, Sorbonne Université - INSERM, Paris, France.,Reference Center for Muscle Channelopathies, APHP, Institut de Myologie, Pitié-Salpêtrière Hospital, Paris, France
| | - Tanya Stojkovic
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Institute of Myology, Centre de Recherche en Myologie, UMRS974, Sorbonne Université - INSERM, Paris, France
| | - Savine Vicart
- Reference Center for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Reference Center for Muscle Channelopathies, APHP, Institut de Myologie, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
18
|
George LF, Bates EA. Mechanisms Underlying Influence of Bioelectricity in Development. Front Cell Dev Biol 2022; 10:772230. [PMID: 35237593 PMCID: PMC8883286 DOI: 10.3389/fcell.2022.772230] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/07/2022] [Indexed: 12/25/2022] Open
Abstract
To execute the intricate process of development, cells coordinate across tissues and organs to determine where each cell divides and differentiates. This coordination requires complex communication between cells. Growing evidence suggests that bioelectrical signals controlled via ion channels contribute to cell communication during development. Ion channels collectively regulate the transmembrane potential of cells, and their function plays a conserved role in the development of organisms from flies to humans. Spontaneous calcium oscillations can be found in nearly every cell type and tissue, and disruption of these oscillations leads to defects in development. However, the mechanism by which bioelectricity regulates development is still unclear. Ion channels play essential roles in the processes of cell death, proliferation, migration, and in each of the major canonical developmental signaling pathways. Previous reviews focus on evidence for one potential mechanism by which bioelectricity affects morphogenesis, but there is evidence that supports multiple different mechanisms which are not mutually exclusive. Evidence supports bioelectricity contributing to development through multiple different mechanisms. Here, we review evidence for the importance of bioelectricity in morphogenesis and provide a comprehensive review of the evidence for several potential mechanisms by which ion channels may act in developmental processes.
Collapse
Affiliation(s)
- Laura Faith George
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Emily Anne Bates
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
19
|
Hager NA, McAtee CK, Lesko MA, O’Donnell AF. Inwardly Rectifying Potassium Channel Kir2.1 and its "Kir-ious" Regulation by Protein Trafficking and Roles in Development and Disease. Front Cell Dev Biol 2022; 9:796136. [PMID: 35223865 PMCID: PMC8864065 DOI: 10.3389/fcell.2021.796136] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Potassium (K+) homeostasis is tightly regulated for optimal cell and organismal health. Failure to control potassium balance results in disease, including cardiac arrythmias and developmental disorders. A family of inwardly rectifying potassium (Kir) channels helps cells maintain K+ levels. Encoded by KCNJ genes, Kir channels are comprised of a tetramer of Kir subunits, each of which contains two-transmembrane domains. The assembled Kir channel generates an ion selectivity filter for K+ at the monomer interface, which allows for K+ transit. Kir channels are found in many cell types and influence K+ homeostasis across the organism, impacting muscle, nerve and immune function. Kir2.1 is one of the best studied family members with well-defined roles in regulating heart rhythm, muscle contraction and bone development. Due to their expansive roles, it is not surprising that Kir mutations lead to disease, including cardiomyopathies, and neurological and metabolic disorders. Kir malfunction is linked to developmental defects, including underdeveloped skeletal systems and cerebellar abnormalities. Mutations in Kir2.1 cause the periodic paralysis, cardiac arrythmia, and developmental deficits associated with Andersen-Tawil Syndrome. Here we review the roles of Kir family member Kir2.1 in maintaining K+ balance with a specific focus on our understanding of Kir2.1 channel trafficking and emerging roles in development and disease. We provide a synopsis of the vital work focused on understanding the trafficking of Kir2.1 and its role in development.
Collapse
Affiliation(s)
| | | | | | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
20
|
Du C, Rasmusson RL, Bett GC, Franks B, Zhang H, Hancox JC. Investigation of the Effects of the Short QT Syndrome D172N Kir2.1 Mutation on Ventricular Action Potential Profile Using Dynamic Clamp. Front Pharmacol 2022; 12:794620. [PMID: 35115940 PMCID: PMC8806151 DOI: 10.3389/fphar.2021.794620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
The congenital short QT syndrome (SQTS) is a cardiac condition that leads to abbreviated ventricular repolarization and an increased susceptibility to arrhythmia and sudden death. The SQT3 form of the syndrome is due to mutations to the KCNJ2 gene that encodes Kir2.1, a critical component of channels underlying cardiac inwardly rectifying K+ current, IK1. The first reported SQT3 KCNJ2 mutation gives rise to the D172N Kir2.1 mutation, the consequences of which have been studied on recombinant channels in vitro and in ventricular cell and tissue simulations. The aim of this study was to establish the effects of the D172N mutation on ventricular repolarization through real-time replacement of IK1 using the dynamic clamp technique. Whole-cell patch-clamp recordings were made from adult guinea-pig left ventricular myocytes at physiological temperature. Action potentials (APs) were elicited at 1 Hz. Intrinsic IK1 was inhibited with a low concentration (50 µM) of Ba2+ ions, which led to AP prolongation and triangulation, accompanied by a ∼6 mV depolarization of resting membrane potential. Application of synthetic IK1 through dynamic clamp restored AP duration, shape and resting potential. Replacement of wild-type (WT) IK1 with heterozygotic (WT-D172N) or homozygotic (D172N) mutant formulations under dynamic clamp significantly abbreviated AP duration (APD90) and accelerated maximal AP repolarization velocity, with no significant hyperpolarization of resting potential. Across stimulation frequencies from 0.5 to 3 Hz, the relationship between APD90 and cycle length was downward shifted, reflecting AP abbreviation at all stimulation frequencies tested. In further AP measurements at 1 Hz from hiPSC cardiomyocytes, the D172N mutation produced similar effects on APD and repolarization velocity; however, resting potential was moderately hyperpolarized by application of mutant IK1 to these cells. Overall, the results of this study support the major changes in ventricular cell AP repolarization with the D172N predicted from prior AP modelling and highlight the potential utility of using adult ventricular cardiomyocytes for dynamic clamp exploration of functional consequences of Kir2.1 mutations.
Collapse
Affiliation(s)
- Chunyun Du
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Randall L. Rasmusson
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University of New York, University at Buffalo, Buffalo, NY, United States
- Cytocybernetics Inc, North Tonawanda, NY, United States
| | - Glenna C. Bett
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University of New York, University at Buffalo, Buffalo, NY, United States
- Cytocybernetics Inc, North Tonawanda, NY, United States
- Department of Obstetrics and Gynecology, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, NY, United States
| | | | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- *Correspondence: Jules C. Hancox,
| |
Collapse
|
21
|
Catheter ablation of frequent monomorphic ventricular arrhythmias in Andersen-Tawil syndrome: case report and focused literature review. J Interv Card Electrophysiol 2021; 66:729-736. [PMID: 34665385 DOI: 10.1007/s10840-021-01077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND/PURPOSE Andersen-Tawil syndrome type 1 is a rare autosomal dominant disease caused by a KCNJ2 gene mutation and clinically characterized by dysmorphic features, periodic muscular paralysis, and frequent ventricular arrhythmias (VAs). Although polymorphic and bidirectional ventricular tachycardias are prevalent, PVCs are the most frequent VAs. In addition, a "dominant" morphology with RBBB pattern associated with either superior or inferior axis is seen in most of the patients. Due to the limited efficacy of most antiarrhythmic drugs, catheter ablation (CA) is an alternative in patients with monomorphic VAs. Based on our experience, we aimed to review the arrhythmogenic mechanisms and substrates for VAs, and we analyzed the potential reasons for CA failure in this group of patients. METHODS Case report and focused literature review. RESULTS Catheter ablation has been reported to be unsuccessful in all of the few cases published so far. Most of the information suggests that VAs are mainly originated from the left ventricle and probably in the Purkinje network. Although identifying well-established and accepted mapping criteria for successful ablation of a monomorphic ventricular arrhythmia, papillary muscles seem not to be the right target. CONCLUSIONS More research is needed to understand better the precise mechanism and site of origin of VAs in Andersen-Tawil syndrome patients with this particular "dominant" monomorphic ventricular pattern to establish the potential role of CA.
Collapse
|
22
|
Maggi L, Bonanno S, Altamura C, Desaphy JF. Ion Channel Gene Mutations Causing Skeletal Muscle Disorders: Pathomechanisms and Opportunities for Therapy. Cells 2021; 10:cells10061521. [PMID: 34208776 PMCID: PMC8234207 DOI: 10.3390/cells10061521] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle ion channelopathies (SMICs) are a large heterogeneous group of rare genetic disorders caused by mutations in genes encoding ion channel subunits in the skeletal muscle mainly characterized by myotonia or periodic paralysis, potentially resulting in long-term disabilities. However, with the development of new molecular technologies, new genes and new phenotypes, including progressive myopathies, have been recently discovered, markedly increasing the complexity in the field. In this regard, new advances in SMICs show a less conventional role of ion channels in muscle cell division, proliferation, differentiation, and survival. Hence, SMICs represent an expanding and exciting field. Here, we review current knowledge of SMICs, with a description of their clinical phenotypes, cellular and molecular pathomechanisms, and available treatments.
Collapse
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
- Correspondence:
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| |
Collapse
|
23
|
Reilly L, Eckhardt LL. Cardiac potassium inward rectifier Kir2: Review of structure, regulation, pharmacology, and arrhythmogenesis. Heart Rhythm 2021; 18:1423-1434. [PMID: 33857643 PMCID: PMC8328935 DOI: 10.1016/j.hrthm.2021.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Potassium inward rectifier channel Kir2 is an important component of terminal cardiac repolarization and resting membrane stability. This functionality is part of balanced cardiac excitability and is a defining feature of excitable cardiac membranes. “Gain-of-function” or “loss-of-function” mutations in KCNJ2, the gene encoding Kir2.1, cause genetic sudden cardiac death syndromes, and loss of the Kir2 current IK1 is a major contributing factor to arrhythmogenesis in failing human hearts. Here we provide a contemporary review of the functional structure, physiology, and pharmacology of Kir2 channels. Beyond the structure and functional relationships, we will focus on the elements of clinically used drugs that block the channel and the implications for treatment of atrial fibrillation with IK1-blocking agents. We will also review the clinical disease entities associated with KCNJ2 mutations and the growing area of research into associated arrhythmia mechanisms. Lastly, the presence of Kir2 channels has become a tipping point for electrical maturity in induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) and highlights the significance of understanding why Kir2 in iPS-CMs is important to consider for Comprehensive In Vitro Proarrhythmia Assay and drug safety testing.
Collapse
Affiliation(s)
- Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
24
|
Yim J, Kim KB, Kim M, Lee GD, Kim M. Andersen-Tawil Syndrome With Novel Mutation in KCNJ2: Case Report. Front Pediatr 2021; 9:790075. [PMID: 35174115 PMCID: PMC8842678 DOI: 10.3389/fped.2021.790075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Andersen-Tawil syndrome (ATS) is a rare autosomal dominant disorder characterized by a classic symptom triad: periodic paralysis, ventricular arrhythmias associated with prolonged QT interval, and dysmorphic skeletal and facial features. Pathogenic variants of the inwardly rectifying potassium channel subfamily J member 2 (KCNJ2) gene have been linked to the ATS. Herein, we report a novel KCNJ2 causative variant in a proband and her father showing different ATS-associated symptoms. A 15-year-old girl was referred because of episodic weakness and periodic paralysis in both legs for 2-3 months. The symptoms occurred either when she was tired or after strenuous exercise. These attacks made walking or climbing stairs difficult and lasted from one to several days. She had a short stature (142 cm, <3rd percentile) and weighed 40 kg. The proband also showed orbital hypertelorism, dental crowding, mandibular hypoplasia, fifth-digit clinodactyly, and small hands. Scoliosis in the thoracolumbar region was detected by chest X-ray. Since she was 7 years old, she had been treated for arrhythmia-associated long QT interval and underwent periodic echocardiography. Brain MRI revealed cerebrovascular abnormalities indicating absence or hypoplasia of bilateral internal carotid arteries, and compensation of other collateral vessels was observed. There were no specific findings related to intellectual development. The proband's father also had a history of periodic paralysis similar to the proband. He did not show any cardiac symptoms. Interestingly, he was diagnosed with hyperthyroidism during an evaluation for paralytic symptoms. Clinical exome sequencing revealed a novel heterozygous missense variant: Chr17(GRCh37):g.68171593A>T, NM_000891.2:c.413A>T, p.(Glu138Val) in KCNJ2 in the proband and the proband's father.
Collapse
Affiliation(s)
- Jisook Yim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyoung Bo Kim
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Minsun Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Gun Dong Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|