1
|
Choudhari S, Kulkarni D, Patankar S, Kheur S, Sarode S. Linking inflammation and angiogenesis with fibrogenesis: Expression of FXIIIA, MMP-9, and VEGF in oral submucous fibrosis. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2024; 57:15-26. [PMID: 38246706 DOI: 10.1016/j.patol.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Interplay of Factor XIIIa (FXIIIa), a transglutaminase, responsible for cross-linking of matrix proteins, Matrix Metalloproteinase-9 (MMP-9), a gelatinase, and Vascular Endothelial Growth Factor (VEGF), an angiogenic inducer, were studied in relation to fibrogenesis and disease progression in oral submucous fibrosis (OSMF). MATERIAL AND METHODS Immunohistochemical expression of markers was studied in 60 formalin-fixed paraffin-embedded tissue blocks of OSMF and 20 normal oral mucosal tissues. FXIIIa was studied quantitatively while MMP-9 and VEGF were assessed semi-quantitatively. Expression was compared with histopathological grades of OSMF. RESULTS FXIIIa expression significantly increased in OSMF (p-value 0.000). However, expression decreased and cells became quiescent with increasing grades (p-value 0.000). MMP-9 (p-value epithelium 0.011, p-value connective tissue 0.000) and VEGF expression (p-value epithelium 0.000, connective tissue 0.000) increased in OSMF. A negative correlation between FXIIIa and MMP-9 (-0.653) in early grade (p-value of 0.021) and a positive correlation between FXIIIa and VEGF (0.595) (p-value of 0.032) was found in the moderate grade OSMF. Regression analysis showed a significant association (p<0.01) of FXIIIa in OSMF and with increasing grades of OSMF. CONCLUSION FXIIIa may play a crucial role in initiation of fibrosis in OSMF. MMP-9 may have a diverse role to play in OSMF as a regulator of fibrosis. VEGF may show an angio-fibrotic switch and contribute to fibrosis in OSMF. These cytokines may show altered function and can contribute to fibrosis and chronicity of disease due to changes in the microenvironment. Tissue stiffness in OSMF itself creates an environment that enhances the chronicity of the disease.
Collapse
Affiliation(s)
- Sheetal Choudhari
- Department of Oral Pathology & Microbiology, Yerala Dental College and Hospital, Kharghar 410210, Mumbai, India.
| | - Deepak Kulkarni
- Department of Oral and Maxillofacial Surgery, Dr. D.Y. Patil Dental College & Hospital, Pimpri 411018, Pune, India
| | - Sangeeta Patankar
- Department of Oral Pathology & Microbiology, Yerala Dental College and Hospital, Kharghar 410210, Mumbai, India
| | - Supriya Kheur
- Department of Oral Pathology & Microbiology, Dr. D.Y. Patil Dental College & Hospital, Pimpri, Pune 411018, India
| | - Sachin Sarode
- Department of Oral Pathology & Microbiology, Dr. D.Y. Patil Dental College & Hospital, Pimpri, Pune 411018, India
| |
Collapse
|
2
|
Monfort JB, Denamps J, Attencourt C, Lok C, Sevestre H, Chaby G. Early involvement of lymphatic vessels in pathophysiology of morphea. J Eur Acad Dermatol Venereol 2021; 36:e345-e346. [PMID: 34812536 DOI: 10.1111/jdv.17834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Affiliation(s)
- J B Monfort
- Service de Dermatologie, Hôpital Tenon, Paris, France
| | - J Denamps
- Service de Dermatologie, Université de Picardie Jules Verne, Hôpitaux Universitaires d'Amiens, Hôpital Sud, Amiens, France
| | - C Attencourt
- Service d'Anatomie et Cytologie Pathologiques, Université de Picardie Jules Verne, Hôpitaux Universitaires d'Amiens, Hôpital Nord, Amiens, France
| | - C Lok
- Service de Dermatologie, Université de Picardie Jules Verne, Hôpitaux Universitaires d'Amiens, Hôpital Sud, Amiens, France
| | - H Sevestre
- Service d'Anatomie et Cytologie Pathologiques, Université de Picardie Jules Verne, Hôpitaux Universitaires d'Amiens, Hôpital Nord, Amiens, France
| | - G Chaby
- Service de Dermatologie, Université de Picardie Jules Verne, Hôpitaux Universitaires d'Amiens, Hôpital Sud, Amiens, France
| |
Collapse
|
3
|
Zawatsky CN, Park JK, Abdalla J, Kunos G, Iyer MR, Cinar R. Peripheral Hybrid CB 1R and iNOS Antagonist MRI-1867 Displays Anti-Fibrotic Efficacy in Bleomycin-Induced Skin Fibrosis. Front Endocrinol (Lausanne) 2021; 12:744857. [PMID: 34650521 PMCID: PMC8505776 DOI: 10.3389/fendo.2021.744857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Scleroderma, or systemic sclerosis, is a multi-organ connective tissue disease resulting in fibrosis of the skin, heart, and lungs with no effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) and increased activity of inducible NO synthase (iNOS) promote tissue fibrosis including skin fibrosis, and joint targeting of these pathways may improve therapeutic efficacy. Recently, we showed that in mouse models of liver, lung and kidney fibrosis, treatment with a peripherally restricted hybrid CB1R/iNOS inhibitor (MRI-1867) yields greater anti-fibrotic efficacy than inhibiting either target alone. Here, we evaluated the therapeutic efficacy of MRI-1867 in bleomycin-induced skin fibrosis. Skin fibrosis was induced in C57BL/6J (B6) and Mdr1a/b-Bcrp triple knock-out (KO) mice by daily subcutaneous injections of bleomycin (2 IU/100 µL) for 28 days. Starting on day 15, mice were treated for 2 weeks with daily oral gavage of vehicle or MRI-1867. Skin levels of MRI-1867 and endocannabinoids were measured by mass spectrometry to assess target exposure and engagement by MRI-1867. Fibrosis was characterized histologically by dermal thickening and biochemically by hydroxyproline content. We also evaluated the potential increase of drug-efflux associated ABC transporters by bleomycin in skin fibrosis, which could affect target exposure to test compounds, as reported in bleomycin-induced lung fibrosis. Bleomycin-induced skin fibrosis was comparable in B6 and Mdr1a/b-Bcrp KO mice. However, the skin level of MRI-1867, an MDR1 substrate, was dramatically lower in B6 mice (0.023 µM) than in Mdr1a/b-Bcrp KO mice (8.8 µM) due to a bleomycin-induced increase in efflux activity of MDR1 in fibrotic skin. Furthermore, the endocannabinoids anandamide and 2-arachidonylglycerol were elevated 2-4-fold in the fibrotic vs. control skin in both mouse strains. MRI-1867 treatment attenuated bleomycin-induced established skin fibrosis and the associated increase in endocannabinoids in Mdr1a/b-Bcrp KO mice but not in B6 mice. We conclude that combined inhibition of CB1R and iNOS is an effective anti-fibrotic strategy for scleroderma. As bleomycin induces an artifact in testing antifibrotic drug candidates that are substrates of drug-efflux transporters, using Mdr1a/b-Bcrp KO mice for preclinical testing of such compounds avoids this pitfall.
Collapse
Affiliation(s)
- Charles N. Zawatsky
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Joshua K. Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Jasmina Abdalla
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Malliga R. Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
4
|
Bitar C, Chan MP. Connective Tissue Diseases in the Skin: Emerging Concepts and Updates on Molecular and Immune Drivers of Disease. Surg Pathol Clin 2021; 14:237-249. [PMID: 34023103 DOI: 10.1016/j.path.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cutaneous manifestations are common across the spectrum of autoimmune diseases. Connective tissue diseases manifesting in the skin are often difficult to classify and require integration of clinical, histopathologic, and serologic findings. This review focuses on the current understanding of the molecular and immune drivers involved in the pathogenesis of cutaneous lupus erythematosus, dermatomyositis, scleroderma/systemic sclerosis, and mixed connective tissue disease. Recent research advances have led to the emergence of new ancillary tools and useful diagnostic clues of which dermatopathologists should be aware to improve diagnostic accuracy for these diseases.
Collapse
Affiliation(s)
- Carole Bitar
- Department of Pathology, University of Michigan, 2800 Plymouth Road, NCRC Building 35, Ann Arbor, MI 48109, USA
| | - May P Chan
- Department of Pathology, University of Michigan, 2800 Plymouth Road, NCRC Building 35, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Lee J, Park H, Yoon H, Chung J, Cho S. CD34 stromal expression is inversely proportional to smooth muscle actin expression and extent of morphea. J Eur Acad Dermatol Venereol 2018; 32:2208-2216. [DOI: 10.1111/jdv.15120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/01/2018] [Indexed: 01/17/2023]
Affiliation(s)
- J.S. Lee
- Department of Dermatology; Seoul Metropolitan Government - Seoul National University Boramae Medical Center; Seoul Korea
- Institute of Human-Environmental Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
| | - H.S. Park
- Department of Dermatology; Seoul Metropolitan Government - Seoul National University Boramae Medical Center; Seoul Korea
- Institute of Human-Environmental Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
| | - H.S. Yoon
- Department of Dermatology; Seoul Metropolitan Government - Seoul National University Boramae Medical Center; Seoul Korea
- Institute of Human-Environmental Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
| | - J.H. Chung
- Institute of Human-Environmental Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
- Department of Dermatology; Seoul National University College of Medicine; Seoul Korea
| | - S. Cho
- Department of Dermatology; Seoul Metropolitan Government - Seoul National University Boramae Medical Center; Seoul Korea
- Institute of Human-Environmental Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
- Department of Biomedical Science; Seoul National University Graduate School; Seoul Korea
- Department of Dermatology; Seoul National University College of Medicine; Seoul Korea
| |
Collapse
|
6
|
Deregulated PSGL-1 Expression in B Cells and Dendritic Cells May Be Implicated in Human Systemic Sclerosis Development. J Invest Dermatol 2018; 138:2123-2132. [PMID: 29689251 DOI: 10.1016/j.jid.2018.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/13/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune disorder with high morbidity and mortality, is difficult to diagnose early, and has no curative treatment. PSGL-1 is a leukocyte receptor whose deficiency in mice promotes an SSc-like disease. ADAM8, a metalloprotease that cleaves PSGL-1, is implicated in inflammatory processes. Our goal was to evaluate whether PSGL-1 and ADAM8 contribute to the pathogenesis of human SSc. We found that patients with SSc presented increased PSGL-1 expression on monocytes, dendritic cells, and T cells and decreased expression of PSGL-1 on B cells. PSGL-1 on monocytes from SSc patients failed to induce Syk phosphorylation or IL-10 production after interaction with P-selectin. Up to 60% of the IL-10-producing B cells expressed PSGL-1, pointing to a regulatory role for PSGL-1 in B cells, and PSGL-1+ B cells from SSc patients had decreased IL-10 production. ADAM8 expression was increased on antigen-presenting cells and T lymphocytes of SSc patients. Patients treated with calcium antagonists had lower levels of ADAM8 on APCs and T lymphocytes. Multivariate analysis indicated that the high percentage of ADAM8-expressing plasmacytoid dendritic cells discriminated patients from healthy donors. High PSGL-1 expression on dendritic cells was associated with the presence of interstitial lung disease.
Collapse
|
7
|
Affandi AJ, Carvalheiro T, Radstake TRDJ, Marut W. Dendritic cells in systemic sclerosis: Advances from human and mice studies. Immunol Lett 2017; 195:18-29. [PMID: 29126878 DOI: 10.1016/j.imlet.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis (SSc) is a complex heterogeneous fibrotic autoimmune disease with an unknown exact etiology, and characterized by three hallmarks: fibrosis, vasculopathy, and immune dysfunction. Dendritic cells (DCs) are specialized cells in pathogen sensing with high potency of antigen presentation and capable of releasing mediators to shape the immune response. Altered DCs distributions and their impaired functions may account for their role in breaking the immune tolerance and driving inflammation in SSc, and the direct contribution of DCs in promoting endothelial dysfunction and fibrotic process has only begun to be understood. Plasmacytoid dendritic cells in particular have been implicated due to their high production of type I interferon as well as other cytokines and chemokines, including the pro-inflammatory and anti-angiogenic CXCL4. Furthermore, a deeper understanding of human and mouse DC biology has clarified their identification and function in different tissues, and novel DC subsets have only recently been discovered. In this review, we highlight key findings and recent advances exploring DC role in the pathogenesis of SSc and other related autoimmune diseases, and consideration of their potential use as targeted therapy in SSc.
Collapse
Affiliation(s)
- Alsya J Affandi
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tiago Carvalheiro
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wioleta Marut
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Factor XIII Subunit A in the Skin: Applications in Diagnosis and Treatment. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3571861. [PMID: 28894750 PMCID: PMC5574300 DOI: 10.1155/2017/3571861] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/26/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023]
Abstract
The role of factor XIII subunit A (FXIII-A) is not restricted to hemostasis. FXIII-A is also present intracellularly in several human cells and serves as a diagnostic marker in a wide range of dermatological diseases from inflammatory conditions to malignancies. In this review, we provide a guide on the still controversial interpretation of dermal cell types expressing FXIII-A and assess the previously described mechanisms behind their accumulation under physiological and pathological conditions of the human skin. We summarize the intracellular functions of FXIII-A as well as its possible sources in the extracellular space of the dermis with a focus on its relevance to skin homeostasis and disease pathogenesis. Finally, the potential role of FXIII-A in wound healing, as a field with long-term therapeutic implications, is also discussed.
Collapse
|
9
|
Nazari B, Rice LM, Stifano G, Barron AMS, Wang YM, Korndorf T, Lee J, Bhawan J, Lafyatis R, Browning JL. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2650-64. [PMID: 27565038 DOI: 10.1016/j.ajpath.2016.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 05/02/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
Tissue injury triggers the activation and differentiation of multiple cell types to minimize damage and initiate repair processes. In systemic sclerosis, these repair processes appear to run unchecked, leading to aberrant remodeling and fibrosis of the skin and multiple internal organs, yet the fundamental pathological defect remains unknown. We describe herein a transition wherein the abundant CD34(+) dermal fibroblasts present in healthy human skin disappear in the skin of systemic sclerosis patients, and CD34(-), podoplanin(+), and CD90(+) fibroblasts appear. This transition is limited to the upper dermis in several inflammatory skin diseases, yet in systemic sclerosis, it can occur in all regions of the dermis. In vitro, primary dermal fibroblasts readily express podoplanin in response to the inflammatory stimuli tumor necrosis factor and IL-1β. Furthermore, we show that on acute skin injury in both human and murine settings, this transition occurs quickly, consistent with a response to inflammatory signaling. Transitioned fibroblasts partially resemble the cells that form the reticular networks in organized lymphoid tissues, potentially linking two areas of fibroblast research. These results allow for the visualization and quantification of a basic stage of fibroblast differentiation in inflammatory and fibrotic diseases in the skin.
Collapse
Affiliation(s)
- Banafsheh Nazari
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Lisa M Rice
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Giuseppina Stifano
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Alexander M S Barron
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts; Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
| | - Yu Mei Wang
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Tess Korndorf
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Jungeun Lee
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Jag Bhawan
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Robert Lafyatis
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts; Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jeffrey L Browning
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts; Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
10
|
Wermuth PJ, Jimenez SA. The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clin Transl Med 2015; 4:2. [PMID: 25852818 PMCID: PMC4384891 DOI: 10.1186/s40169-015-0047-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 12/15/2022] Open
Abstract
The systemic and organ-specific human fibrotic disorders collectively represent one of the most serious health problems world-wide causing a large proportion of the total world population mortality. The molecular pathways involved in their pathogenesis are complex and despite intensive investigations have not been fully elucidated. Whereas chronic inflammatory cell infiltration is universally present in fibrotic lesions, the central role of monocytes and macrophages as regulators of inflammation and fibrosis has only recently become apparent. However, the precise mechanisms involved in the contribution of monocytes/macrophages to the initiation, establishment, or progression of the fibrotic process remain largely unknown. Several monocyte and macrophage subpopulations have been identified, with certain phenotypes promoting inflammation whereas others display profibrotic effects. Given the unmet need for effective treatments for fibroproliferative diseases and the crucial regulatory role of monocyte/macrophage subpopulations in fibrogenesis, the development of therapeutic strategies that target specific monocyte/macrophage subpopulations has become increasingly attractive. We will provide here an overview of the current understanding of the role of monocyte/macrophage phenotype subpopulations in animal models of tissue fibrosis and in various systemic and organ-specific human fibrotic diseases. Furthermore, we will discuss recent approaches to the design of effective anti-fibrotic therapeutic interventions by targeting the phenotypic differences identified between the various monocyte and macrophage subpopulations.
Collapse
Affiliation(s)
- Peter J Wermuth
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Bluemle Life Science Building Suite 509, 233 South 10th Street, Philadelphia, PA 19107-5541 USA
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Bluemle Life Science Building Suite 509, 233 South 10th Street, Philadelphia, PA 19107-5541 USA
| |
Collapse
|
11
|
|