1
|
Deprez K, Van de Steene T, Verloock L, Tanghe E, Gommé L, Verlaek M, Goethals M, van Campenhout K, Plets D, Joseph W. 50 Hz Temporal Magnetic Field Monitoring from High-Voltage Power Lines: Sensor Design and Experimental Validation. SENSORS (BASEL, SWITZERLAND) 2024; 24:5325. [PMID: 39205019 PMCID: PMC11487399 DOI: 10.3390/s24165325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
A low-cost, tri-axial 50 Hz magnetic field monitoring sensor was designed, calibrated and verified. The sensor was designed using off-the-shelf components and commercially available coils. It can measure 50 Hz magnetic fields originating from high-voltage power lines from 0.08 µT to 364 µT, divided into two measurement ranges. The sensor was calibrated both on-board and in-lab. The on-board calibration takes the circuit attenuation, noise and parasitic components into account. In the in-lab calibration, the output of the developed sensor is compared to the benchmark, a narrowband EHP-50. The sensor was then verified in situ under high-voltage power lines at two independent measurement locations. The measured field values during this validation were between 0.10 µT and 13.43 µT, which is in agreement with other reported measurement values under high-voltage power lines in literature. The results were compared to the benchmark, for which average deviations of 6.2% and 1.4% were found, at the two independent measurement locations. Furthermore, fields up to 113.3 µT were measured in a power distribution sub-station to ensure that both measurement ranges were verified. Our network, four active sensors in the field, had high uptimes of 96%, 82%, 81% and, 95% during a minimum 3-month interval. In total, over 6 million samples were gathered with field values that ranged from 0.08 µT to 45.48 µT. This suggests that the proposed solution can be used for this monitoring, although more extensive long-term testing with more sensors is required to confirm the uptime under multiple circumstances.
Collapse
Affiliation(s)
- Kenneth Deprez
- Department of Information Technology, Ghent University/imec WAVES, 9052 Ghent, Belgium
| | - Tom Van de Steene
- Department of Information Technology, Ghent University/imec WAVES, 9052 Ghent, Belgium
| | - Leen Verloock
- Department of Information Technology, Ghent University/imec WAVES, 9052 Ghent, Belgium
| | - Emmeric Tanghe
- Department of Information Technology, Ghent University/imec WAVES, 9052 Ghent, Belgium
| | - Liesbeth Gommé
- Department of Environment & Spatial Development, Flemish Planning Bureau for the Environment and Spatial Development, 1000 Brussels, Belgium
| | - Mart Verlaek
- Department of Environment & Spatial Development, Flemish Planning Bureau for the Environment and Spatial Development, 1000 Brussels, Belgium
| | - Michel Goethals
- Department of Environment & Spatial Development, Flemish Planning Bureau for the Environment and Spatial Development, 1000 Brussels, Belgium
| | - Karen van Campenhout
- Department of Environment & Spatial Development, Flemish Planning Bureau for the Environment and Spatial Development, 1000 Brussels, Belgium
| | - David Plets
- Department of Information Technology, Ghent University/imec WAVES, 9052 Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology, Ghent University/imec WAVES, 9052 Ghent, Belgium
| |
Collapse
|
2
|
Eskandani R, Zibaii MI. Unveiling the biological effects of radio-frequency and extremely-low frequency electromagnetic fields on the central nervous system performance. BIOIMPACTS : BI 2023; 14:30064. [PMID: 39104617 PMCID: PMC11298025 DOI: 10.34172/bi.2023.30064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/26/2023] [Indexed: 08/07/2024]
Abstract
Introduction Radiofrequency electromagnetic radiation (RF-EMR) and extremely low-frequency electromagnetic fields (ELF-EMF) have emerged as noteworthy sources of environmental pollution in the contemporary era. The potential biological impacts of RF-EMR and ELF-EMF exposure on human organs, particularly the central nervous system (CNS), have garnered considerable attention in numerous research studies. Methods This article presents a comprehensive yet summarized review of the research on the explicit/implicit effects of RF-EMR and ELF-EMF exposure on CNS performance. Results Exposure to RF-EMR can potentially exert adverse effects on the performance of CNS by inducing changes in the permeability of the blood-brain barrier (BBB), neurotransmitter levels, calcium channel regulation, myelin protein structure, the antioxidant defense system, and metabolic processes. However, it is noteworthy that certain reports have suggested that RF-EMR exposure may confer cognitive benefits for various conditions and disorders. ELF-EMF exposure has been associated with the enhancement of CNS performance, marked by improved memory retention, enhanced learning ability, and potential mitigation of neurodegenerative diseases. Nevertheless, it is essential to acknowledge that ELF-EMF exposure has also been linked to the induction of anxiety states, oxidative stress, and alterations in hormonal regulation. Moreover, ELF-EMR exposure alters hippocampal function, notch signaling pathways, the antioxidant defense system, and synaptic activities. Conclusion The RF-EMR and ELF-EMF exposures exhibit both beneficial and adverse effects. Nevertheless, the precise conditions and circumstances under which detrimental or beneficial effects manifest (either individually or simultaneously) remain uncertain.
Collapse
Affiliation(s)
- Ramin Eskandani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Ismail Zibaii
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran 19839-69411, Iran
| |
Collapse
|
3
|
McCullough LE, Maliniak ML, Amin AB, Baker JM, Baliashvili D, Barberio J, Barrera CM, Brown CA, Collin LJ, Freedman AA, Gibbs DC, Haddad MB, Hall EW, Hamid S, Harrington KRV, Holleman AM, Kaufman JA, Khan MA, Labgold K, Lee VC, Malik AA, Mann LM, Marks KJ, Nelson KN, Quader ZS, Ross-Driscoll K, Sarkar S, Shah MP, Shao IY, Smith JP, Stanhope KK, Valenzuela-Lara M, Van Dyke ME, Vyas KJ, Lash TL. Epidemiology beyond its limits. SCIENCE ADVANCES 2022; 8:eabn3328. [PMID: 35675391 PMCID: PMC9176748 DOI: 10.1126/sciadv.abn3328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
In 1995, journalist Gary Taubes published an article in Science titled "Epidemiology faces its limits," which questioned the utility of nonrandomized epidemiologic research and has since been cited more than 1000 times. He highlighted numerous examples of research topics he viewed as having questionable merit. Studies have since accumulated for these associations. We systematically evaluated current evidence of 53 example associations discussed in the article. Approximately one-quarter of those presented as doubtful are now widely viewed as causal based on current evaluations of the public health consensus. They include associations between alcohol consumption and breast cancer, residential radon exposure and lung cancer, and the use of tanning devices and melanoma. This history should inform current debates about the reproducibility of epidemiologic research results.
Collapse
Affiliation(s)
- Lauren E. McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Maret L. Maliniak
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Avnika B. Amin
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Julia M. Baker
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Davit Baliashvili
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Julie Barberio
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Chloe M. Barrera
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Lindsay J. Collin
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alexa A. Freedman
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - David C. Gibbs
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Maryam B. Haddad
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Eric W. Hall
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Sarah Hamid
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Aaron M. Holleman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John A. Kaufman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mohammed A. Khan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Katie Labgold
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Veronica C. Lee
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amyn A. Malik
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Laura M. Mann
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kristin J. Marks
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kristin N. Nelson
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Zerleen S. Quader
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | | | - Monica P. Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Iris Y. Shao
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jonathan P. Smith
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Kaitlyn K. Stanhope
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Marisol Valenzuela-Lara
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Miriam E. Van Dyke
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kartavya J. Vyas
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Timothy L. Lash
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
4
|
Maffei ME. Magnetic Fields and Cancer: Epidemiology, Cellular Biology, and Theranostics. Int J Mol Sci 2022; 23:1339. [PMID: 35163262 PMCID: PMC8835851 DOI: 10.3390/ijms23031339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023] Open
Abstract
Humans are exposed to a complex mix of man-made electric and magnetic fields (MFs) at many different frequencies, at home and at work. Epidemiological studies indicate that there is a positive relationship between residential/domestic and occupational exposure to extremely low frequency electromagnetic fields and some types of cancer, although some other studies indicate no relationship. In this review, after an introduction on the MF definition and a description of natural/anthropogenic sources, the epidemiology of residential/domestic and occupational exposure to MFs and cancer is reviewed, with reference to leukemia, brain, and breast cancer. The in vivo and in vitro effects of MFs on cancer are reviewed considering both human and animal cells, with particular reference to the involvement of reactive oxygen species (ROS). MF application on cancer diagnostic and therapy (theranostic) are also reviewed by describing the use of different magnetic resonance imaging (MRI) applications for the detection of several cancers. Finally, the use of magnetic nanoparticles is described in terms of treatment of cancer by nanomedical applications for the precise delivery of anticancer drugs, nanosurgery by magnetomechanic methods, and selective killing of cancer cells by magnetic hyperthermia. The supplementary tables provide quantitative data and methodologies in epidemiological and cell biology studies. Although scientists do not generally agree that there is a cause-effect relationship between exposure to MF and cancer, MFs might not be the direct cause of cancer but may contribute to produce ROS and generate oxidative stress, which could trigger or enhance the expression of oncogenes.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
5
|
Karimi A, Ghadiri Moghaddam F, Valipour M. Insights in the biology of extremely low-frequency magnetic fields exposure on human health. Mol Biol Rep 2020; 47:5621-5633. [DOI: 10.1007/s11033-020-05563-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
|
6
|
Su L, Zhao C, Jin Y, Lei Y, Lu L, Chen G. Association between parental occupational exposure to extremely low frequency magnetic fields and childhood nervous system tumors risk: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1406-1414. [PMID: 30045521 DOI: 10.1016/j.scitotenv.2018.06.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/27/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Previous epidemiological studies suggested association between parental occupational exposure to extremely low frequency magnetic fields (ELF-MF) and risk of childhood nervous system tumors, but the results were inconsistent. We conducted a meta-analysis of case-control and cohort studies to re-evaluate this association. METHODS Relevant studies were identified by searching PubMed and Web of Science databases as well as by manual searching. Summary odds ratio (OR) with 95% confidence interval (CI) were pooled with a fixed-effects or random-effects model. RESULTS A total of 22 eligible articles (21 case-control studies and 1 cohort study) were included for the quantitative analysis. The results showed that parental occupational ELF-MF exposure was significantly associated with an increased risk of childhood nervous system tumors (OR = 1.11, 95% CI = 1.02-1.21), and this association remained in studies on central nervous system (CNS) tumors (OR = 1.13, 95% CI = 1.02-1.27) but not neuroblastoma (OR = 1.02, 95% CI = 0.92-1.14). Furthermore, maternal (OR = 1.14, 95% CI = 1.05-1.23) but not paternal (OR = 1.05, 95% CI = 0.98-1.13) occupational ELF-MF exposure significantly increased risk of childhood nervous system tumors. Increased risk of childhood CNS tumors was significant associated with maternal (OR = 1.16, 95% CI = 1.06-1.26) but not paternal (OR = 1.15, 95% CI = 0.98-1.34) occupational ELF-MF exposure. CONCLUSION In conclusion, our results provide limited evidence for the association between maternal occupational exposure to ELF-MF and increased risk of childhood CNS tumors, which should be explained with cautions. Future studies are needed to further evaluate the association of paternal occupational ELF-MF exposure with risk of childhood CNS tumors.
Collapse
Affiliation(s)
- Liling Su
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, China; Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuning Zhao
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yumin Jin
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Lei
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, China
| | - Liqin Lu
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China.
| | - Guangdi Chen
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Abstract
There has been an exponential increase in the use of electronic devices over the past few decades. This has led to increased exposure to electromagnetic fields (EMF). Electric fields result from differences in voltage, whereas magnetic fields result from the flow of electric current. Higher-frequency waves of EMF have more energy than lower-frequency waves, and thus generally tend to be more harmful. An EMF activates cellular stress response and also causes breaks in DNA strands. There are many methodological barriers to effectively measuring the associations of EMF and childhood cancers. The consensus from multiple studies is that there is no causal role of extremely low-frequency EMFs in childhood cancers, including brain cancer. A recent study showed a link between EMF radiation and the development of malignant tumors in rats. In light of that study, the American Academy of Pediatrics set out new recommendations to decrease the adverse effects of cellphone exposure on children. [Pediatr Ann. 2017;46(4):e172-e174.].
Collapse
|
8
|
Quach P, El Sherif R, Gomes J, Krewksi D. A systematic review of the risk factors associated with the onset and progression of primary brain tumours. Neurotoxicology 2016; 61:214-232. [PMID: 27212451 DOI: 10.1016/j.neuro.2016.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022]
Abstract
The overall aim of this systematic review was to identify risk factors for onset and natural progression, which were shown to increase, decrease, or have a null association with risk of primary brain tumour. For onset, the project was separated into two phases. The first phase consisted of a systematic search of existing systematic reviews and meta-analyses. Moderate to high methodological quality reviews were incorporated and summarized with relevant observational studies published since 2010, identified from a systematic search performed in phase 2. For natural progression, only the first phase was conducted. Standard systematic review methodology was utilized. Based on this review, various genetic variants, pesticide exposures, occupational farming/hairdressing, cured meat consumption and personal hair dye use appear to be associated with increased risk of onset amongst adults. The specific EGF polymorphsm 61-A allele within Caucasian populations and having a history of allergy was associated with a decreased risk. For progression, M1B-1 antigen was shown to increase the risk. High birth weight, pesticide exposure (childhood exposure, and parental occupational exposure) and maternal consumption of cured meat during pregnancy may also increase the risk of onset of childhood brain tumours. Conversely, maternal intake of pre-natal supplements (folic acid) appeared to decrease risk. Children with neurofibromatosis 2 were considered to have worse overall and relapse free survival compared to neurofibromatosis 1, as were those children who had grade III tumours compared to lesser grades.
Collapse
Affiliation(s)
- Pauline Quach
- School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Reem El Sherif
- Department of Family Medicine, McGill University, Montreal, QC, Canada
| | - James Gomes
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Canada
| | - Daniel Krewksi
- School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, ON, Canada; McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Risk Sciences International, Ottawa, ON, Canada
| |
Collapse
|
9
|
Johnson KJ, Cullen J, Barnholtz-Sloan JS, Ostrom QT, Langer CE, Turner MC, McKean-Cowdin R, Fisher JL, Lupo PJ, Partap S, Schwartzbaum JA, Scheurer ME. Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol Biomarkers Prev 2014; 23:2716-36. [PMID: 25192704 PMCID: PMC4257885 DOI: 10.1158/1055-9965.epi-14-0207] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Childhood brain tumors are the most common pediatric solid tumor and include several histologic subtypes. Although progress has been made in improving survival rates for some subtypes, understanding of risk factors for childhood brain tumors remains limited to a few genetic syndromes and ionizing radiation to the head and neck. In this report, we review descriptive and analytical epidemiology childhood brain tumor studies from the past decade and highlight priority areas for future epidemiology investigations and methodological work that is needed to advance our understanding of childhood brain tumor causes. Specifically, we summarize the results of a review of studies published since 2004 that have analyzed incidence and survival in different international regions and that have examined potential genetic, immune system, developmental and birth characteristics, and environmental risk factors. Cancer Epidemiol Biomarkers Prev; 23(12); 2716-36. ©2014 AACR.
Collapse
Affiliation(s)
- Kimberly J Johnson
- Brown School Masters of Public Health Program, Washington University in St. Louis, St. Louis, Missouri
| | - Jennifer Cullen
- American Childhood Cancer Organization, Kensington, Maryland
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Quinn T Ostrom
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Chelsea E Langer
- Centre for Research in Environmental Epidemiology, Carrer Doctor Aiguader, Barcelona, Spain. Universitat Pompeu Fabra, Plaça de la Mercè, Barcelona, Spain. CIBER Epidemiología y Salud Pública, Carrer Casanova, Barcelona, Spain
| | - Michelle C Turner
- Centre for Research in Environmental Epidemiology, Carrer Doctor Aiguader, Barcelona, Spain. Universitat Pompeu Fabra, Plaça de la Mercè, Barcelona, Spain. CIBER Epidemiología y Salud Pública, Carrer Casanova, Barcelona, Spain. McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Roberta McKean-Cowdin
- Department of Preventive Medicine, University of Southern California, USC/Norris Comprehensive Cancer Center, Los Angeles, California
| | - James L Fisher
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, Ohio
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas. Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Sonia Partap
- Division of Neurology, Stanford University, Palo Alto, California
| | - Judith A Schwartzbaum
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, Ohio
| | - Michael E Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas. Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
10
|
Li CY, Liu CC, Chang YH, Chou LP, Ko MC. A population-based case-control study of radiofrequency exposure in relation to childhood neoplasm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 435-436:472-478. [PMID: 22885353 DOI: 10.1016/j.scitotenv.2012.06.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 06/01/2023]
Abstract
This population-based case-control study in Taiwan considered incident cases aged 15 years or less and admitted in 2003 to 2007 for all neoplasm (ICD-9-CM: 140-239) (n=2606), including 939 leukemia and 394 brain neoplasm cases. Controls were randomly selected, with a case/control ratio of 1:30 and matched on year of birth, from all non-neoplasm children insured in the same year when the index case was admitted. Annual summarized power (ASP, watt-year) was calculated for each of the 71,185 mobile phone base stations (MPBS) in service between 1998 and 2007. Then, the annual power density (APD, watt-year/km(2)) of each township (n=367) was computed as a ratio of the total ASP of all MPBS in a township to the area of that particular township. Exposure of each study subject to radio frequency (RF) was indicated by the averaged APD within 5 years prior to the neoplasm diagnosis (cases) or July 1st of the year when the index case was admitted (controls) in the township where the subject lived. Unconditional logistic regression model with generalized estimation equation was employed to calculate the covariate-adjusted odds ratio [AOR] of childhood neoplasm in relation to RF exposure. A higher than median averaged APD (approximately 168 WYs/km(2)) was significantly associated with an increased AOR for all neoplasms (1.13; 1.01 to 1.28), but not for leukemia (1.23; 0.99 to 1.52) or brain neoplasm (1.14, 0.83 to 1.55). This study noted a significantly increased risk of all neoplasms in children with higher-than-median RF exposure to MPBS. The slightly elevated risk was seen for leukemia and brain neoplasm, but was not statistically significant. These results may occur due to several methodological limitations.
Collapse
Affiliation(s)
- Chung-Yi Li
- Department and Graduate Institute of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Schüz J. Exposure to extremely low-frequency magnetic fields and the risk of childhood cancer: update of the epidemiological evidence. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:339-42. [PMID: 21946043 DOI: 10.1016/j.pbiomolbio.2011.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 12/31/2022]
Abstract
There is an ongoing scientific controversy whether the observed association between exposure to residential extremely low-frequency magnetic fields (ELF-MF) and the risk of childhood leukaemia observed in epidemiological studies is causal or due to methodological shortcomings of those studies. Recent pooled analysis confirm results from previous studies, namely an approximately two-fold risk increase at ELF-MF exposures ≥0.4 μT, and demonstrate consistency of studies across countries, with different design, different methods of exposure assessment, and different systems of power transmission and distribution. On the other hand, recent pooled analyses for childhood brain tumour show little evidence for an association with ELF-MF, also at exposures ≥0.4 μT. Overall, the assessment that ELF-MF are a possible carcinogen and may cause childhood leukaemia remains valid. Ongoing research activities, mainly experimental and few new epidemiological studies, hopefully provide additional insight to bring clarity to a research area that has remained inconclusive.
Collapse
Affiliation(s)
- Joachim Schüz
- International Agency for Research on Cancer (IARC), Section of Environment and Radiation, Lyon, France.
| |
Collapse
|
12
|
Baldi I, Coureau G, Jaffré A, Gruber A, Ducamp S, Provost D, Lebailly P, Vital A, Loiseau H, Salamon R. Occupational and residential exposure to electromagnetic fields and risk of brain tumors in adults: a case-control study in Gironde, France. Int J Cancer 2011; 129:1477-84. [PMID: 21792884 DOI: 10.1002/ijc.25765] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 10/13/2010] [Indexed: 11/06/2022]
Abstract
The etiology of brain tumors remains largely unknown. Among potential risk factors, exposure to electromagnetic fields is suspected. We analyzed the relationship between residential and occupational exposure to electromagnetic field and brain tumors in adults. A case-control study was carried out in southwestern France between May 1999 and April 2001. A total of 221 central nervous system tumors (105 gliomas, 67 meningiomas, 33 neurinomas and 16 others) and 442 individually age- and sex-matched controls selected from general population were included. Electromagnetic field exposure [extremely low frequency (ELF) and radiofrequency separately was assessed in occupational settings through expert judgement based on complete job calendar, and at home by assessing the distance to power lines with the help of a geographical information system. Confounders such as education, use of home pesticide, residency in a rural area and occupational exposure to chemicals were taken into account. Separate analyses were performed for gliomas, meningiomas and acoustic neurinomas. A nonsignificant increase in risk was found for occupational exposure to electromagnetic fields [odds ratio (OR = 1.52, 0.92-2.51)]. This increase became significant for meningiomas, especially when considering ELF separately [OR = 3.02; 95 percent confidence interval (95% CI) =1.10-8.25]. The risk of meningioma was also higher in subjects living in the vicinity of power lines (<100 m), even if not significant (OR = 2.99, 95% CI 0.86-10.40). These data suggest that occupational or residential exposure to ELF may play a role in the occurrence of meningioma.
Collapse
Affiliation(s)
- Isabelle Baldi
- Laboratoire Santé Travail Environnement (EA 3672), Institut de Santé Publique, d'Épidémiologie et du Développement, IFR99, Université Victor Segalen Bordeaux 2, Bordeaux, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Indoor environment and children's health: recent developments in chemical, biological, physical and social aspects. Int J Hyg Environ Health 2011; 215:1-18. [PMID: 21889403 DOI: 10.1016/j.ijheh.2011.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 12/11/2022]
Abstract
Much research is being carried out into indoor exposure to harmful agents. This review focused on the impact on children's health, taking a broad approach to the indoor environment and including chemical, microbial, physical and social aspects. Papers published from 2006 onwards were reviewed, with regards to scientific context. Most of publications dealt with chemical exposure. Apart from the ongoing issue of combustion by-products, most of these papers concerned semi volatile organic compounds (such as phthalates). These may be associated with neurotoxic, reprotoxic or respiratory effects and may, therefore, be of particular interest so far as children are concerned. In a lesser extent, volatile organic compounds (such as aldehydes) that have mainly respiratory effects are still studied. Assessing exposure to metals is still of concern, with increasing interest in bioaccessibility. Most of the papers on microbial exposure focused on respiratory tract infections, especially asthma linked to allergens and bio-aerosols. Physical exposure includes noise and electromagnetic fields, and articles dealt with the auditory and non auditory effects of noise. Articles on radiofrequency electromagnetic fields mainly concerned questions about non-thermal effects and papers on extremely low-frequency magnetic fields focused on the characterization of exposure. The impact of the indoor environment on children's health cannot be assessed merely by considering the effect of these different types of exposure: this review highlights new findings and also discusses the interactions between agents in indoor environments and also with social aspects.
Collapse
|
14
|
Kheifets L, Ahlbom A, Crespi CM, Feychting M, Johansen C, Monroe J, Murphy MFG, Oksuzyan S, Preston-Martin S, Roman E, Saito T, Savitz D, Schüz J, Simpson J, Swanson J, Tynes T, Verkasalo P, Mezei G. A pooled analysis of extremely low-frequency magnetic fields and childhood brain tumors. Am J Epidemiol 2010; 172:752-61. [PMID: 20696650 PMCID: PMC2984256 DOI: 10.1093/aje/kwq181] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 05/18/2010] [Indexed: 11/14/2022] Open
Abstract
Pooled analyses may provide etiologic insight about associations between exposure and disease. In contrast to childhood leukemia, no pooled analyses of childhood brain tumors and exposure to extremely low-frequency magnetic fields (ELF-MFs) have been conducted. The authors carried out a pooled analysis based on primary data (1960-2001) from 10 studies of ELF-MF exposure and childhood brain tumors to assess whether the combined results, adjusted for potential confounding, indicated an association. The odds ratios for childhood brain tumors in ELF-MF exposure categories of 0.1-<0.2 μT, 0.2-<0.4 μT, and ≥0.4 μT were 0.95 (95% confidence interval: 0.65, 1.41), 0.70 (95% CI: 0.40, 1.22), and 1.14 (95% CI: 0.61, 2.13), respectively, in comparison with exposure of <0.1 μT. Other analyses employing alternate cutpoints, further adjustment for confounders, exclusion of particular studies, stratification by type of measurement or type of residence, and a nonparametric estimate of the exposure-response relation did not reveal consistent evidence of increased childhood brain tumor risk associated with ELF-MF exposure. These results provide little evidence for an association between ELF-MF exposure and childhood brain tumors.
Collapse
Affiliation(s)
- Leeka Kheifets
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, California 90095-1772, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ruiz-Gómez MJ, Sendra-Portero F, Martínez-Morillo M. Effect of 2.45 mT sinusoidal 50 Hz magnetic field on Saccharomyces cerevisiae strains deficient in DNA strand breaks repair. Int J Radiat Biol 2010; 86:602-11. [PMID: 20545572 DOI: 10.3109/09553001003734519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate whether extremely-low frequency magnetic field (MF) exposure produce alterations in the growth, cell cycle, survival and DNA damage of wild type (wt) and mutant yeast strains. MATERIALS AND METHODS wt and high affinity DNA binding factor 1 (hdf1), radiation sensitive 52 (rad52), rad52 hdf1 mutant Saccharomyces cerevisiae strains were exposed to 2.45 mT, sinusoidal 50 Hz MF for 96 h. MF was generated by a pair of Helmholtz coils. During this time the growth was monitored by measuring the optical density at 600 nm and cell cycle evolution were analysed by microscopic morphological analysis. Then, yeast survival was assayed by the drop test and DNA was extracted and electrophoresed. RESULTS A significant increase in the growth was observed for rad52 strain (P = 0.005, Analysis of Variance [ANOVA]) and close to significance for rad52 hdf1 strain (P = 0.069, ANOVA). In addition, the surviving fraction values obtained for MF-exposed samples were in all cases less than for the controls, being the P value obtained for the whole set of MF-treated strains close to significance (P = 0.066, Student's t-test). In contrast, the cell cycle evolution and the DNA pattern obtained for wt and the mutant strains were not altered after exposure to MF. CONCLUSIONS The data presented in the current report show that the applied MF (2.45 mT, sinusoidal 50 Hz, 96 h) induces alterations in the growth and survival of S. cerevisiae strains deficient in DNA strand breaks repair. In contrast, the MF treatment does not induce alterations in the cell cycle and does not cause DNA damage.
Collapse
Affiliation(s)
- Miguel J Ruiz-Gómez
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain.
| | | | | |
Collapse
|
16
|
Rağbetlı MC, Aydinlioğlu A, Koyun N, Rağbetlı C, Bektas Ş, Ozdemır S. The effect of mobile phone on the number of Purkinje cells: A stereological study. Int J Radiat Biol 2010; 86:548-54. [DOI: 10.3109/09553001003734527] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Affiliation(s)
- Jan Beyea
- Consulting in the Public Interest, Lambertville, NJ 08530, USA
| |
Collapse
|
18
|
Saito T, Nitta H, Kubo O, Yamamoto S, Yamaguchi N, Akiba S, Honda Y, Hagihara J, Isaka K, Ojima T, Nakamura Y, Mizoue T, Ito S, Eboshida A, Yamazaki S, Sokejima S, Kurokawa Y, Kabuto M. Power-frequency magnetic fields and childhood brain tumors: a case-control study in Japan. J Epidemiol 2009; 20:54-61. [PMID: 19915304 PMCID: PMC3900780 DOI: 10.2188/jea.je20081017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background The strength of the association between brain tumors in children and residential power-frequency magnetic fields (MF) has varied in previous studies, which may be due in part to possible misclassification of MF exposure. This study aimed to examine this association in Japan by improving measurement techniques, and by extending measurement to a whole week. Methods This population-based case-control study encompassed 54% of Japanese children under 15 years of age. After excluding ineligible targeted children, 55 newly diagnosed brain tumor cases and 99 sex-, age-, and residential area-matched controls were included in the analyses. The MF exposures of each set of matching cases and controls were measured in close temporal proximity to control for seasonal variation; the average difference was 12.4 days. The mean interval between diagnosis and MF measurements was 1.1 years. The weekly mean MF level was defined as the exposure. The association was evaluated using conditional logistic regression analysis that controlled for possible confounding factors. Results The odds ratios (95% CI) for exposure categories of 0.1 to 0.2, 0.2 to 0.4, and above 0.4 µT, against a reference category of <0.1 µT, were 0.74 (0.17–3.18), 1.58 (0.25–9.83), and 10.9 (1.05–113), respectively, after adjusting for maternal education. This dose-response pattern was stable when other variables were included in the model as possible confounding factors. Conclusions A positive association was found between high-level exposure—above 0.4 µT—and the risk of brain tumors. This association could not be explained solely by confounding factors or selection bias.
Collapse
Affiliation(s)
- Tomohiro Saito
- Department of Health Policy, National Research Institute for Child Health and Development, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schüz J, Lagorio S, Bersani F. Electromagnetic fields and epidemiology: An overview inspired by the fourth course at the International School of Bioelectromagnetics. Bioelectromagnetics 2009; 30:511-24. [DOI: 10.1002/bem.20510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Maternal occupational exposure to extremely low frequency magnetic fields and the risk of brain cancer in the offspring. Cancer Causes Control 2009; 20:945-55. [PMID: 19224378 DOI: 10.1007/s10552-009-9311-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To examine the contribution of maternal occupational exposure to extremely low frequency magnetic fields (ELF-MF) shortly before and during pregnancy on the incidence of childhood brain tumors. METHODS A total of 548 incident cases and 760 healthy controls recruited between 1980 and 2002 from two Canadian provinces (Québec and Ontario) were included in this study, and their mothers were interviewed. Quantitative occupational ELF-MF exposure in microTesla units was estimated using individual exposure estimations or a job exposure matrix. We used three metrics to analyze exposure: cumulative, average, and maximum level attained. RESULTS Using the average exposure metric measured before conception, an increased risk was observed for astroglial tumors (OR = 1.5, 95% CI = 1.0-2.4). During the entire pregnancy period, a significantly increased risk was observed for astroglial tumors as well as for all childhood brain tumors with the average metric (OR = 1.6, 95% CI = 1.1-2.5 and OR = 1.5, 95% CI = 1.1-2.2, respectively). Based on job titles, a twofold risk increase was observed for astroglial tumors (OR = 2.3, 95% CI = 0.8-6.3) and for all childhood brain tumors (OR = 2.3, 95% CI = 1.0-5.4) among sewing machine operators. CONCLUSIONS Results are suggestive of a possible association between maternal occupational ELF-MF exposure and certain brain tumors in their offspring.
Collapse
|