1
|
Hou JY, Allen KD, Hernandez AI, Cottrell JE, Kass IS. Sevoflurane Preconditioning Rescues PKMζ Gene Expression from Broad Hypoxia-Induced mRNA Downregulation Correlating with Improved Neuronal Recovery. NEUROSCI 2025; 6:9. [PMID: 39982261 PMCID: PMC11843836 DOI: 10.3390/neurosci6010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Hypoxia due to stroke is a major cause of neuronal damage, leading to loss of cognition and other brain functions. Sevoflurane preconditioning improves recovery after hypoxia. Hypoxia interferes with protein expression at the translational level; however, its effect on mRNA levels for neuronal protein kinase and anti-apoptotic genes is unclear. To investigate the link between sevoflurane preconditioning and gene expression, hippocampal slices were treated with 4% sevoflurane for 15 min, a 5 min washout, 10 min of hypoxia, and 60 min of recovery. We used quantitative PCR to measure mRNA levels in the CA1 region of rat hippocampi. The mRNA levels for specific critical proteins were examined, as follows: Protein kinases, PKCγ (0.22), PKCε (0.38), and PKMζ (0.55) mRNAs, and anti-apoptotic, bcl-2 (0.44) and bcl-xl (0.41), were reduced 60 min after hypoxia relative to their expression in tissue not subjected to hypoxia (set to 1.0). Sevoflurane preconditioning prevented the reduction in PKMζ (0.88 vs. 1.0) mRNA levels after hypoxia. Pro-apoptotic BAD mRNA was not significantly changed after hypoxia, even with sevoflurane preconditioning (hypoxia 0.81, sevo hypoxia 0.84 vs. normoxia 1.0). However, BAD mRNA was increased by sevoflurane in non-hypoxic conditions (1.48 vs. 1.0), which may partially explain the deleterious effects of volatile anesthetics under certain conditions. The DNA repair enzyme poly ADP-ribose polymerase 1 (PARP-1) was increased by sevoflurane in tissue not subjected to hypoxia (1.23). PARP-1 mRNA was reduced in untreated tissue after hypoxia (0.21 vs. 1.0); sevoflurane did not improve PARP-1 after hypoxia (0.27). Interestingly, the mRNA level of the cognitive kinase PKMζ, a kinase essential for learning and memory, was the only one protected against hypoxic downregulation by sevoflurane preconditioning. These findings correlate with previous studies that found that sevoflurane-induced improvement of neuronal survival after hypoxia was dependent on PKMζ. Maintaining mRNA levels for critical proteins may provide an important mechanism for preserving neuronal function after stroke.
Collapse
Affiliation(s)
- Joan Y. Hou
- Anesthesiology Department, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Kim D. Allen
- Pathology Department, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (K.D.A.); (A.I.H.)
- Department of Biology, Medgar Evers College, Brooklyn, NY 11225, USA
| | - A. Iván Hernandez
- Pathology Department, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (K.D.A.); (A.I.H.)
| | - James E. Cottrell
- Anesthesiology Department, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Ira S. Kass
- Anesthesiology Department, Physiology and Pharmacology Department, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
2
|
Chang H, Chen E, Zhu T, Liu J, Chen C. Communication Regarding the Myocardial Ischemia/Reperfusion and Cognitive Impairment: A Narrative Literature Review. J Alzheimers Dis 2024; 97:1545-1570. [PMID: 38277294 PMCID: PMC10894588 DOI: 10.3233/jad-230886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
Coronary artery disease is a prevalent ischemic disease that results in insufficient blood supply to the heart muscle due to narrowing or occlusion of the coronary arteries. Various reperfusion strategies, including pharmacological thrombolysis and percutaneous coronary intervention, have been developed to enhance blood flow restoration. However, these interventions can lead to myocardial ischemia/reperfusion injury (MI/RI), which can cause unpredictable complications. Recent research has highlighted a compelling association between MI/RI and cognitive function, revealing pathophysiological mechanisms that may explain altered brain cognition. Manifestations in the brain following MI/RI exhibit pathological features resembling those observed in Alzheimer's disease (AD), implying a potential link between MI/RI and the development of AD. The pro-inflammatory state following MI/RI may induce neuroinflammation via systemic inflammation, while impaired cardiac function can result in cerebral under-perfusion. This review delves into the role of extracellular vesicles in transporting deleterious substances from the heart to the brain during conditions of MI/RI, potentially contributing to impaired cognition. Addressing the cognitive consequence of MI/RI, the review also emphasizes potential neuroprotective interventions and pharmacological treatments within the MI/RI model. In conclusion, the review underscores the significant impact of MI/RI on cognitive function, summarizes potential mechanisms of cardio-cerebral communication in the context of MI/RI, and offers ideas and insights for the prevention and treatment of cognitive dysfunction following MI/RI.
Collapse
Affiliation(s)
- Haiqing Chang
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Erya Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Ding L, Ning J, Wang Q, Lu B, Ke H. Retracted: Sevoflurane improves nerve regeneration and repair of neurological deficit in brain damage rats via microRNA-490-5p/CDK1 axis. Life Sci 2021; 271:119111. [PMID: 33513398 DOI: 10.1016/j.lfs.2021.119111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sevoflurane (Sevo) is neuroprotective in brain damage, thus our objective was to further investigate the impact of Sevo treatment on nerve regeneration and repair of neurological deficit in brain damage rats by regulating miR-490-5p and cyclin-dependent kinases 1 (CDK1). METHODS The rat middle cerebral artery occlusion model was established. miR-490-5p and CDK1 levels in brain tissues were tested. The behavioral changes, the number of glial fibrillary acidic protein (GFAP) positive cells, ionized calcium-binding adapter molecule-1 (Iba-1) and Nestin mRNA expression, the survival and apoptosis of neurons in peripheral tissues of infarct areas were detected by a series of assays. Furthermore, the target relationship between miR-490-5p and CDK1 was verified. RESULTS miR-490-5p was reduced and CDK1 was raised in brain tissues of brain damage rats. Sevo raised miR-490-5p and decreased CDK1 to improve neurological deficits, reduce apoptotic neurons, suppress expression levels of GFAP and Iba-1, and increase Nestin expression and the number of surviving neurons in peripheral tissue in infarct area, and alleviate the pathological changes of brain tissues of brain damage rats. CDK1 was negatively regulated by miR-490-5p. CONCLUSION Our study presents that Sevo treatment is involved in neurogenesis and repair of neurological deficit of brain damage rats via up-regulating miR-490-5p and inhibiting CDK1.
Collapse
Affiliation(s)
- Lingling Ding
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| | - Jiaqi Ning
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Qi Wang
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Bin Lu
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Hai Ke
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|
4
|
Wang F, Tong H. Precondition of sevoflurane upregulates TIMP3 expression to alleviate myocardial ischemia/reperfusion injury. Perfusion 2020; 36:717-723. [PMID: 33016228 DOI: 10.1177/0267659120960306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Previous studies have pointed out that sevoflurane (Sef) preconditioning could relieve myocardial ischemia/reperfusion (I/R) injury, but the mechanisms is still unknown. METHODS C57BL/6 mice model of myocardial I/R injury was established to evaluate the function of Sef. Briefly, Sef was inhaled before I/R operation. The levels of TIMP3, oxidative damage-related factors, and mitogen activated protein kinases (MAPKs) pathway-related factors were measured by qRT-PCR and western blot. Myocardial infarction (MI) area was detected by triphenyl tetrazolium chloride (TTC) staining assay. RESULTS Sef preconditioning reduced MI area in myocardial I/R injury mice and upregulated TIMP3 expression in myocardial tissues of I/R mice. In addition, downregulation of TIMP3 reversed the alleviating effects of Sef pretreatment on myocardial oxidative damage and inhibited the effect of Sef pretreatment on MAPKs pathway activity. CONCLUSION Sef preconditioning ameliorated myocardial I/R injury by modulating MAPKs pathway activity via upregulating TIMP3.
Collapse
Affiliation(s)
- Fen Wang
- Department of Cardiovascular Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hua Tong
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Gold S, Forryan S. Postoperative cognitive decline: A current problem with a difficult future. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2019. [DOI: 10.1016/j.tacc.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
POLUSHIN YUS, POLUSHIN АYU, YUKINА GYU, KOZHEMYAKINА MV. POSTOPERATIVE COGNITIVE DYSFUNCTION – WHAT WE KNOW AND WHERE WE GO. ВЕСТНИК АНЕСТЕЗИОЛОГИИ И РЕАНИМАТОЛОГИИ 2019. [DOI: 10.21292/2078-5658-2019-16-1-19-28] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Sevoflurane Blocks the Induction of Long-term Potentiation When Present during, but Not When Present Only before, the High-frequency Stimulation. Anesthesiology 2018; 128:555-563. [DOI: 10.1097/aln.0000000000002057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background
This study tests the hypothesis that sevoflurane blocks long-term potentiation only if it is present during the high-frequency stimulation that induces long-term potentiation.
Methods
Long-term potentiation, an electrophysiologic correlate of memory, was induced by high-frequency stimulation and measured as a persistent increase in the field excitatory postsynaptic potential slope in the CA1 region.
Results
Long-term potentiation was induced in the no sevoflurane group (171 ± 58% vs. 96 ± 11%; n = 13, mean ± SD); when sevoflurane (4%) was present during the high-frequency stimulation, long-term potentiation was blocked (92 ± 22% vs. 99 ± 7%, n = 6). While sevoflurane reduced the size of the field excitatory postsynaptic potential to single test stimuli by 59 ± 17%, it did not significantly reduce the size of the field excitatory postsynaptic potentials during the 100 Hz high-frequency stimulation. If sevoflurane was removed from the artificial cerebrospinal fluid superfusing the slices 10 min before the high-frequency stimulation, then long-term potentiation was induced (185 ± 48%, n = 7); this was not different from long-term potentiation in the no sevoflurane slices (171 ± 58). Sevoflurane before, but not during, ⊖-burst stimulation, a physiologic stimulus, did not block the induction of long-term potentiation (151 ± 37% vs. 161 ± 34%, n = 7).
Conclusions
Sevoflurane blocks long-term potentiation formation if present during the high-frequency stimulation; this blockage of long-term potentiation does not persist if sevoflurane is discontinued before the high-frequency stimulation. These results may explain why short periods of insufficient sevoflurane anesthesia may lead to recall of painful or traumatic events during surgery.
Collapse
|
8
|
Safavynia SA, Goldstein PA. The Role of Neuroinflammation in Postoperative Cognitive Dysfunction: Moving From Hypothesis to Treatment. Front Psychiatry 2018; 9:752. [PMID: 30705643 PMCID: PMC6345198 DOI: 10.3389/fpsyt.2018.00752] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication of the surgical experience and is common in the elderly and patients with preexisting neurocognitive disorders. Animal and human studies suggest that neuroinflammation from either surgery or anesthesia is a major contributor to the development of POCD. Moreover, a large and growing body of literature has focused on identifying potential risk factors for the development of POCD, as well as identifying candidate treatments based on the neuroinflammatory hypothesis. However, variability in animal models and clinical cohorts makes it difficult to interpret the results of such studies, and represents a barrier for the development of treatment options for POCD. Here, we present a broad topical review of the literature supporting the role of neuroinflammation in POCD. We provide an overview of the cellular and molecular mechanisms underlying the pathogenesis of POCD from pre-clinical and human studies. We offer a brief discussion of the ongoing debate on the root cause of POCD. We conclude with a list of current and hypothesized treatments for POCD, with a focus on recent and current human randomized clinical trials.
Collapse
Affiliation(s)
- Seyed A Safavynia
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States.,Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Neuroscience Graduate Program, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
9
|
Bhamidipati D, Goldhammer JE, Sperling MR, Torjman MC, McCarey MM, Whellan DJ. Cognitive Outcomes After Coronary Artery Bypass Grafting. J Cardiothorac Vasc Anesth 2017; 31:707-718. [DOI: 10.1053/j.jvca.2016.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 12/17/2022]
|
10
|
Frick T, Springe D, Grandgirard D, Leib SL, Haenggi M. An improved simple rat model for global cerebral ischaemia by induced cardiac arrest. Neurol Res 2016; 38:373-80. [PMID: 26344664 DOI: 10.1179/1743132815y.0000000090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Cerebral hypoxic-ischaemic injury following cardiac arrest is a devastating disease affecting thousands of patients each year. There is a complex interaction between post-resuscitation injury after whole-body ischaemia-reperfusion and cerebral damage which cannot be explored in in vitro systems only; there is a need for animal models. In this study, we describe and evaluate the feasibility and efficiency of our simple rodent cardiac arrest model. > METHODS Ten wistar rats were subjected to 9 and 10 minutes of cardiac arrest. Cardiac arrest was introduced with a mixture of the short-acting beta-blocking drug esmolol and potassium chloride. RESULTS All animals could be resuscitated within 1 minute, and survived until day 5. General health score and neurobehavioural testing indicated substantial impairment after cardiac arrest, without differences between groups. Histological examination of the hippocampus CA1 segment, the most vulnerable segment of the cerebrum, demonstrated extensive damage in the cresyl violet staining, as well as in the Fluoro-Jade B staining and in the Iba-1 staining, indicating recruitment of microglia after the hypoxic-ischaemic event. Again, there were no differences between the 9- and 10-minute cardiac arrest groups. DISCUSSION We were able to establish a simple and reproducible 9- and 10-minute rodent cardiac arrest model with a well-defined no-flow-time. Extensive damage can be found in the hippocampus CA1 segment. The lack of difference between 9- and 10-minute cardiac arrest time in the neuropsychological, the open field test and the histological evaluations is mainly due to the small sample size.
Collapse
Affiliation(s)
- Tamara Frick
- a Department of Intensive Care Medicine , University Hospital - Inselspital, University of Bern , Switzerland
| | - Dirk Springe
- a Department of Intensive Care Medicine , University Hospital - Inselspital, University of Bern , Switzerland
| | - Denis Grandgirard
- b Neuroinfection Laboratory, Institute for Infectious Diseases , University of Bern , Switzerland
| | - Stephen L Leib
- b Neuroinfection Laboratory, Institute for Infectious Diseases , University of Bern , Switzerland.,c Biology Division, Spiez Laboratory, Federal Office for Civil Protection , Switzerland
| | - Matthias Haenggi
- a Department of Intensive Care Medicine , University Hospital - Inselspital, University of Bern , Switzerland
| |
Collapse
|
11
|
Do different anesthesia regimes affect hippocampal apoptosis and neurologic deficits in a rodent cardiac arrest model? BMC Anesthesiol 2015; 15:2. [PMID: 25972075 PMCID: PMC4429377 DOI: 10.1186/1471-2253-15-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022] Open
Abstract
Background Different anesthesia regimes are commonly used in experimental models of cardiac arrest, but the effects of various anesthetics on clinical outcome parameters are unknown. We conducted a study in which we subjected rats to cardiac arrest under medetomidine/ketamine or sevoflurane/fentanyl anesthesia. Methods Asystolic cardiac arrest for 8 minutes was induced in 73 rats with a mixture of potassium chloride and esmolol. Daily behavioral and neurological examination included the open field test (OFT), the tape removal test (TRT) and a neurodeficit score (NDS). Animals were randomized for sacrifice on day 2 or day 5 and brains were harvested for histology in the hippocampus cornus ammonis segment CA1. The inflammatory markers IL-6, TNF-α, MCP-1 and MIP-1α were assessed in cerebrospinal fluid (CSF). Proportions of survival were tested with the Fisher’s exact test, repeated measurements were assessed with the Friedman’s test; the baseline values were tested using Mann–Whitney U test and the difference of results of repeated measures were compared. Results In 31 animals that survived beyond 24 hours neither OFT, TRT nor NDS differed between the groups; histology was similar on day 2. On day 5, significantly more apoptosis in the CA1 segment of the hippocampus was found in the sevoflurane/fentanyl group. MCP-1 was higher on day 5 in the sevoflurane/fentanyl group (p = 0.04). All other cyto- and chemokines were below detection threshold. Conclusion In our cardiac arrest model neurological function was not influenced by different anesthetic regimes; in contrast, anesthesia with sevoflurane/fentanyl results in increased CSF inflammation and histologic damage at day 5 post cardiac arrest.
Collapse
|
12
|
Yin J, Wang SL, Liu XB. The effects of general anaesthesia on memory in children: a comparison between propofol and sevoflurane. Anaesthesia 2014; 69:118-23. [PMID: 24443851 DOI: 10.1111/anae.12504] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2013] [Indexed: 11/27/2022]
Affiliation(s)
- J. Yin
- Department of Anesthesia; Second People's Hospital of Wuhu; Wuhu Anhui China
| | - S.-L. Wang
- Department of Anesthesia; Second People's Hospital of Wuhu; Wuhu Anhui China
| | - X.-B. Liu
- Department of Anesthesia; Second People's Hospital of Wuhu; Wuhu Anhui China
| |
Collapse
|
13
|
Abstract
Postoperative cognitive dysfunction (POCD) is a severe long-term complication after surgical procedures. POCD is mainly seen among geriatric patients. Hospitalization, extent of surgery, and systemic inflammatory response might contribute to POCD. The possible influence of the type of anesthesia is discussed. POCD is often not recognized; thus, incidence rates are likely to be underestimated (19-40%). POCD is associated with major consequences for the individual patient, e.g., delayed long-term recovery, reduced quality of life, and an increased mortality rate. Multiple risk factors have been identified over the last decade. However, the exact etiology is still unknown. This mini-review summarizes the recent developments concerning POCD prevention, diagnosis, and treatment.
Collapse
|
14
|
Schoen J, Husemann L, Tiemeyer C, Lueloh A, Sedemund-Adib B, Berger KU, Hueppe M, Heringlake M. Cognitive function after sevoflurane- vs propofol-based anaesthesia for on-pump cardiac surgery: a randomized controlled trial. Br J Anaesth 2011; 106:840-50. [DOI: 10.1093/bja/aer091] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Bittner EA, Yue Y, Xie Z. Brief review: anesthetic neurotoxicity in the elderly, cognitive dysfunction and Alzheimer's disease. Can J Anaesth 2011; 58:216-223. [PMID: 21174183 PMCID: PMC4248669 DOI: 10.1007/s12630-010-9418-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/26/2010] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Postoperative cognitive decline in the elderly has emerged as a major health concern. In addition, there is a growing interest in the potential relationship between general anesthetic exposure and the onset and progression of Alzheimer's disease (AD). The available evidence of a possible association between anesthesia, surgery, and long-term cognitive effects, including AD, deserves consideration. In this review, we summarize the evidence for anesthesia-induced neurotoxicity in the elderly, while highlighting the limitations of existing data, and we put the literature into perspective for the clinician. PRINCIPAL FINDINGS A growing body of evidence suggests that general anesthetics may be neurotoxic to both young and aging brains. Much of the evidence originates from in vitro and in vivo studies with cells, rodents, and nonhuman primates. Despite the animal data suggesting a relationship between anesthesia and neurotoxicity in the elderly, a definitive link remains elusive in humans. CONCLUSIONS The possible relation between anesthetic neurotoxicity, postoperative cognitive dysfunction, and AD remains elusive. It remains unclear whether postoperative cognitive decline in the elderly is related more to perioperative stress and related medical co-morbidities.
Collapse
Affiliation(s)
- Edward A. Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yun Yue
- Department of Anesthesia, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 114 16th St., 3750, Charlestown, MA 02129-2060, USA
| |
Collapse
|
16
|
Zhang H. Does anesthetic provide similar neuroprotection to therapeutic hypothermia after cardiac arrest? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:137. [PMID: 20398330 PMCID: PMC2887150 DOI: 10.1186/cc8923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the previous issue of Critical Care, Meybohm and colleagues provide evidence to support hypothermia as a kind of therapeutic option for patients suffering cardiac arrest. Although anesthetics had been used to induce hypothermia, sevoflurane post-conditioning fails to confer additional anti-inflammatory effects after cardiac arrest. Further research in this area is warranted.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, PR China.
| |
Collapse
|
17
|
Neuroinflammation and postoperative cognitive dysfunction: can anaesthesia be therapeutic? Eur J Anaesthesiol 2010; 27:3-5. [PMID: 19996712 DOI: 10.1097/eja.0b013e3283318ef9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|