1
|
Hussein SA, Tolba MF, Michel HE, Albohy A, Azab SS. In silico and In vivo protective effect of biochanin-A mitigating doxorubicin- induced cognitive deficits and neuroinflammation: Insights to the role of p-Tau and miR-132. Neurotoxicology 2025; 107:22-36. [PMID: 39848501 DOI: 10.1016/j.neuro.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Doxorubicin (DOX)-induced chemobrain has been reported in several studies. Its main culprit is the induction of massive amounts of reactive oxygen species (ROS), hence triggering damage to brain tissues and thus leading to neuroinflammation. Biochanin A (BIO-A) is known to be an antioxidant, anti-inflammatory, and neuroprotective agent. An in silico study was designed to examine the potential neuroprotective effect of BIO-A. An in vivo study was used to evaluate the modulatory effect of BIO-A on cognitive impairment engendered by DOX. The insilico investigation proved the putative neuroprotective effect of BIO-A. In the in vivo study, BIO-A treatment counteracted DOX-induced memory deficits, as evidenced by improved spatial memory in rats compared to the DOX-only group. BIO-A also reversed DOX-triggered hippocampal neurodegeneration and neuroinflammation, supported by a significant decrease in tissue contents of NF-κB (p65) by 32 % and NLRP3 by 36 % versus the DOX-only group. BIO-A also abrogated DOX-induced neurodegneration, as evidenced by increasing SIRT1 content by 2-fold and BDNF content by 2-fold versus the DOX-only group in hippocampal tissues. In addition, BIO-A ameliorated DOX-augmented apoptosis in the hippocampus, as evidenced by lowering caspase-3 content in the hippocampus by 26 % versus the DOX-only group. Regarding tauopathy, BIO-A reversed DOX-increased tauopathy by 35 % versus the DOX-only group. The neuroprotectant miR-132 was increased by BIO-A in hippocampal tissues by 4-fold, contrary to the DOX-only group. Thus, BIO-A treatment modulated DOX-induced behavioral, histological, and molecular changes in the hippocampi of rats. Further studies are recommended to evaluate BIO-A in early clinical trials for the purpose of protection against chemobrain in cancer patients.
Collapse
Affiliation(s)
- Sarah A Hussein
- Center for Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mai F Tolba
- Center for Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Yang LQ, Huang AF, Xu WD. Biology of endophilin and it's role in disease. Front Immunol 2023; 14:1297506. [PMID: 38116012 PMCID: PMC10728279 DOI: 10.3389/fimmu.2023.1297506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Endophilin is an evolutionarily conserved family of protein that involves in a range of intracellular membrane dynamics. This family consists of five isoforms, which are distributed in various tissues. Recent studies have shown that Endophilin regulates diseases pathogenesis, including neurodegenerative diseases, tumors, cardiovascular diseases, and autoimmune diseases. In vivo, it regulates different biological functions such as vesicle endocytosis, mitochondrial morphological changes, apoptosis and autophagosome formation. Functional studies confirmed the role of Endophilin in development and progression of these diseases. In this study, we have comprehensively discussed the complex function of Endophilin and how the family contributes to diseases development. It is hoped that this study will provide new ideas for targeting Endophilin in diseases.
Collapse
Affiliation(s)
- Lu-Qi Yang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Liao X, Han Y, Shen C, Liu J, Wang Y. Targeting the NLRP3 inflammasome for the treatment of hypertensive target organ damage: Role of natural products and formulations. Phytother Res 2023; 37:5622-5638. [PMID: 37690983 DOI: 10.1002/ptr.8009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIM Hypertension is a major global health problem that causes target organ damage (TOD) in the heart, brain, kidney, and blood vessels. The mechanisms of hypertensive TOD are not fully understood, and its treatment is challenging. This review provides an overview of the current knowledge on the role of Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in hypertensive TOD and the natural products and formulations that inhibit it. METHODS We searched PubMed, Web of Science, Google Scholar, and CNKI for relevant articles using the keywords "hypertension," "target organ damage," "NLRP3 inflammasome," "natural products," and "formulations." We reviewed the effects of the NLRP3 inflammasome on hypertensive TOD in different organs and discussed the natural products and formulations that modulate it. KEY RESULTS In hypertensive TOD, the NLRP3 inflammasome is activated by various stimuli such as oxidative stress and inflammation. Activation of NLRP3 inflammasome leads to the production of pro-inflammatory cytokines that exacerbate tissue damage and dysfunction. Natural products and formulations, including curcumin, resveratrol, triptolide, and allicin, have shown protective effects against hypertensive TOD by inhibiting the NLRP3 inflammasome. CONCLUSIONS AND IMPLICATIONS The NLRP3 inflammasome is a promising therapeutic target in hypertensive TOD. Natural products and formulations that inhibit the NLRP3 inflammasome may provide novel drug candidates or therapies for hypertensive TOD. Further studies are needed to elucidate the molecular mechanisms and optimize the dosages of these natural products and formulations and evaluate their clinical efficacy and safety.
Collapse
Affiliation(s)
- Xiaolin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuanshan Han
- Scientific Research Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Chuanpu Shen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University Hefei, Hefei, China
| | - Jianjun Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Dong W, Peng Q, Liu Z, Xie Z, Guo X, Li Y, Chen C. Estrogen plays an important role by influencing the NLRP3 inflammasome. Biomed Pharmacother 2023; 167:115554. [PMID: 37738797 DOI: 10.1016/j.biopha.2023.115554] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is an important part of the natural immune system that plays an important role in many diseases. Estrogen is a sex hormone that plays an important role in controlling reproduction and regulates many physiological and pathological processes. Recent studies have indicated that estrogen is associated with disease progression. Estrogen can ameliorate some diseases (e. g, sepsis, mood disturbances, cerebral ischemia, some hepatopathy, Parkinson's disease, amyotrophic lateral sclerosis, inflammatory bowel disease, spinal cord injury, multiple sclerosis, myocardial ischemia/reperfusion injury, osteoarthritis, and renal fibrosis) by inhibiting the NLRP3 inflammasome. Estrogen can also promote the development of diseases (e.g., ovarian endometriosis, dry eye disease, and systemic lupus erythematosus) by upregulating the NLRP3 inflammasome. In addition, estrogen has a dual effect on the development of cancers and asthma. However, the mechanism of these effects is not summarized. This article reviewed the progress in understanding the effects of estrogen on the NLRP3 inflammasome and its mechanisms in recent years to provide a theoretical basis for an in-depth study.
Collapse
Affiliation(s)
- Wanglin Dong
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhuoxin Liu
- Clinical College of Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China.
| | - Xiajun Guo
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Yuanyuan Li
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
5
|
Deng Y, Liao Y, Huang P, Yao Y, Liu W, Gu Y, Weng G. IRAK-M deficiency exacerbates dopaminergic neuronal damage in a mouse model of sub-acute Parkinson's disease. Neuroreport 2023; 34:463-470. [PMID: 37161987 DOI: 10.1097/wnr.0000000000001913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Emerging evidence has proved that inflammatory responses aggravate the pathological progression of Parkinson's disease. This study aimed to identify the role of Interleukin-1 receptor-associated kinase-M (IRAK-M) as an important negative regulator of innate immunity, in the pathological progression of Parkinson's disease. In the present study, a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection was administered to prepare the acute and sub-acute Parkinson's disease mouse models. Western blot analysis was utilized to examine the protein expressions of tyrosine hydroxylase and IRAK-M. The mRNA expression levels of IRAK-M, interleukin (IL)-6, IL-β, and cyclooxygenase-2 were evaluated via using reverse transcription quantitative PCR (RT-qPCR). The expression of tyrosine hydroxylase-positive neurons in corpus striatum and substantia nigra pars compacta (SNc) tissues was detected using immunohistochemistry. The results showed that the protein and mRNA levels of IRAK-M were considerably upregulated in corpus striatum and SNc tissues in the sub-acute Parkinson's disease model. Furthermore, IRAK-M knockout significantly enhanced the MPTP-induced loss of tyrosine hydroxylase-positive fibers in corpus striatum and tyrosine hydroxylase-positive neurons in SNc, and intensified the effect of MPTP on the activation of microglial cells and the expression of inflammatory cytokines. In addition, sub-acute Parkinson's disease mice with IRAK-M deletion exhibited worse motor abilities than those of wild-type littermates. Overall, the present study suggested that IRAK-M reduces dopaminergic neuron damage in sub-acute Parkinson's disease by suppressing inflammation, which may provide a new therapeutic target for Parkinson's disease treatment.
Collapse
Affiliation(s)
- Yidong Deng
- Neurointerventional Department, Hainan General Hospital, Haikou, Hainan
| | - Yuangao Liao
- Department of Neurology, Huanggang Central Hospital of Yangtze University, Huanggang, Hubei
| | | | - Yujian Yao
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, PR China
| | - Weihua Liu
- Department of Encephalopathy, Hainan Provincial Hospital of Traditional Chinese Medicine
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, PR China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine
- Department of Encephalopathy, Hainan Provincial Hospital of Traditional Chinese Medicine
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, PR China
| | - Guohu Weng
- Department of Encephalopathy, Hainan Provincial Hospital of Traditional Chinese Medicine
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, PR China
| |
Collapse
|
6
|
Singh L, Kaur N, Bhatti R. Neuroprotective potential of biochanin-A and review of the molecular mechanisms involved. Mol Biol Rep 2023; 50:5369-5378. [PMID: 37039995 DOI: 10.1007/s11033-023-08397-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023]
Abstract
Biochanin-A is a naturally occurring plant phytoestrogen, which mimics specific the agonistic activity of estrogens. Biochanin-A is known to possess numerous activities, including neuroprotective, anti-diabetic, hepatoprotective, anti-inflammatory, antioxidant, and antimicrobial activities, along with the anticancer activity. Neuroinflammation is thought to play a pivotal pathological role in neurodegenerative disease. Sustained neuroinflammatory processes lead to progressive neuronal damage in Parkinson's and Alzheimer's disease. Activation of PI3K/Akt cascade and inhibition of MAPK signaling cascade have been observed to be responsible for conferring protection against neuroinflammation in neurodegenerative diseases. An increased oxidative stress promotes neuronal apoptosis via potentiating the TLR-4/NF-κB and inhibiting PI3K/Akt signaling mediated increase in pro-apoptotic and decreases in antiapoptotic proteins. Various authors have explored biochanin-A's neuroprotective effect by using various cell lines and animal models. Biochanin-A has been reported to mediate its neuroprotective via reducing the level of oxidants, inflammatory mediators, MAPK, TLR-4, NF-κB, NADPH oxidase, AchE, COX-2 and iNOS. Whereas, it has been observed to increase the level of anti-oxidants, along with phosphorylation of PI3K and Akt proteins. The current review has been designed to provide insights into the neuroprotective effect of biochanin-A and possible signaling pathways leading to protection against neuroinflammation and apoptosis in the central nervous system. This review will be helpful in guiding future researchers to further explore biochanin A at a mechanistic level to obtain useful lead molecules.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Navneet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
7
|
Yan J, Qiu P, Zhang X, Zhang Y, Mi L, Peng C, Pan X, Peng F. Biochanin A from Chinese Medicine: An Isoflavone with Diverse Pharmacological Properties. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1623-1643. [PMID: 34530697 DOI: 10.1142/s0192415x21500750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biochanin A (BCA) is a dietary isoflavone, isolated from the leaves and stems of Trifolium pratense L and many other herbs of Chinese medicine. Recent findings indicated BCA as a promising drug candidate with diverse bioactive effects. On the purpose of evaluating the possibility of BCA in clinical application, this review is trying to provide a comprehensive summary of the pharmacological actions of BCA. The publications collected from PubMed, ScienceDirect, and Wiley databases were summarized for the last 10 years. Then, the potential therapeutic use of BCA on the treatment of various diseases was discussed according to its pharmacological properties, namely, anticancer, anti-inflammatory, anti-bacterial, anti-diabetic, and anti-obesity effects as well as neuroprotective, hepatoprotective, cardioprotective, and osteoprotective effects. BCA might mainly regulate the MAPK, PI3K, NRF2, and NF-kB pathways, respectively, to exert its bioactive effects. However, the limited definitive targets, poor biological availability, and insufficient safety evaluation might block the clinical application of BCA. This review may provide new insights for the development of BCA in the application of related diseases.
Collapse
Affiliation(s)
- Jia Yan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery, System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced, Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Panda Qiu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery, System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced, Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Xinyu Zhang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery, System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced, Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yuanyuan Zhang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery, System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced, Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Linjing Mi
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery, System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced, Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, P. R. China
| | - Xiaoqi Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, P. R. China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery, System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced, Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|