1
|
Rosa YFP, Noé GG, Merlo MGO, Calixto RR, Vidigal APP, Silva BFD, Silva KBD, Coelho VF, Minassa VS, Sampaio KN, Beijamini V. Chlorpyrifos intermittent exposure enhances cardiovascular but not behavioural responses to contextual fear conditioning in adult rats: Possible involvement of brain oxidative-nitrosative stress. Behav Brain Res 2025; 479:115358. [PMID: 39603423 DOI: 10.1016/j.bbr.2024.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Exposure to organophosphorus compounds (OPs) may cause psychiatric, neurologic, biochemical, and cardiovascular abnormalities. Neurotoxicity of OP compounds is primarily due to irreversibly inhibition of the acetylcholinesterase (AChE) enzyme both centrally and peripherally. Chlorpyrifos (CPF) is a widely used OP classified as moderately toxic. Previously, it has been shown that CPF administration, given every other day to adult rats, impairs spatial memory and prepulse inhibition associated with brain AChE inhibition. Our group also found that intermittent treatment with CPF, simulating occupational exposure, impairs the cardiorespiratory reflexes and causes cardiac hypertrophy. Thereby, we aimed to examine whether subchronic and intermittent administration of CPF would affect the behavioural (freezing) and cardiovascular (mean arterial pressure, MAP; heart rate, HR) responses elicited during contextual fear conditioning (CFC) and extinction. Wistar adult male rats were injected with sublethal and intermittent CPF doses (4 and 7 mg/kg) three times a week for one month. Two days after the last injection, a range of tests were performed to assess depression (sucrose preference), anxiety (elevated plus-maze, EPM), locomotion (open field, OF), and conditioned fear expression and extinction. Separate cohorts of animals were euthanized to measure plasma butyrylcholinesterase (BChE), erythrocyte AChE, brain AChE activity, and markers of oxidative-nitrosative stress. Intermittent CPF treatment did not affect sucrose preference. CPF (4 and 7 mg/kg) reduced open-arms exploration in the EPM, suggesting an anxiogenic effect. The higher dose of CPF decreased the total distance travelled in the OFT, suggesting motor impairment. After a seven-day CPF-free washout period, CPF (7 mg/kg) increased the tachycardic response without affecting freezing behaviour in the CFC extinction session. CPF 7 mg/kg decreased AChE activity in the hippocampus, pre-frontal cortex and brainstem 72 after the last administration whilst transiently increasing oxidative-nitrosative stress specifically in the brainstem. Overall, our results outlined the behavioural, autonomic and biochemical abnormalities caused by an intermittent dosing regimen of CPF that elicits brain AChE inhibition and brain oxidative-nitrosative stress. This paradigm might be valuable in further exploring long-term consequences and mechanisms of OP neurotoxicity as well as comprehensive therapeutic approaches.
Collapse
Affiliation(s)
- Yuri Fernandes Pereira Rosa
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Gabriel Gavazza Noé
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Maria Gabriela Oliveira Merlo
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Raphael Rizzo Calixto
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Anna Paula Perin Vidigal
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Bruna Ferreira da Silva
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Kissylla Brisson da Silva
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Vitória Fosse Coelho
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Vítor Sampaio Minassa
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Karla Nívea Sampaio
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil; Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Vanessa Beijamini
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil; Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|
2
|
Bertacchini GL, Sonego AB, Lisboa SF, Lagatta DC, Resstel LBM. The expression of contextual fear conditioning involves the dorsal hippocampus TRPV1 receptor interacting with the NMDA/NO/cGMP signalling pathway. Br J Pharmacol 2025; 182:1107-1120. [PMID: 39533777 DOI: 10.1111/bph.17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/18/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The dorsal hippocampus (dHIP) is pivotal for learning, memory, and defensive responses. Transient receptor potential vanilloid type 1 (TRPV1) receptors in the dHIP modulate contextual fear conditioning by triggering a cascade involving glutamate release, nitric oxide (NO) formation and cyclic guanosine monophosphate (cGMP) production. The present study investigated the involvement of dHIP TRPV1 receptors and their interaction with the glutamate/NO/cGMP signalling pathway in modulating the expression of contextual fear conditioning (CFC). EXPERIMENTAL APPROACH Male Wistar rats were submitted to an aversive contextual conditioning session and, 48 h later, were re-introduced to the same aversive environment where the freezing response and autonomic activity (evidenced by increased arterial pressure and heart rate and a decrease in tail temperature) were measured. KEY RESULTS The results demonstrated that the TRPV1 antagonist 6-I-CPS in dHIP reduced the expression of CFC, whereas the agonist capsaicin had the opposite effect. Furthermore, dHIP pre-treatment with an NMDA receptor antagonist (AP7), neuronal NO synthase inhibitor (N-propyl-L-arginine), NO scavenger (c-PTIO) or guanylate cyclase inhibitor (ODQ) attenuated capsaicin-induced increases in CFC. Finally, we observed that re-exposure to the aversive chamber increased dHIP NO levels in conditioned animals compared with a non-conditioned group, which was prevented by the administration of the TRPV1 antagonist, 6-I-CPS. CONCLUSION AND IMPLICATIONS Our study revealed that TRPV1 receptors in the dHIP play a crucial role in modulating contextual fear expression by acting through the NMDA receptor/NO/cGMP signalling pathway, providing important insights into the underlying mechanisms and potential therapeutic avenues associated with these pathways.
Collapse
Affiliation(s)
- Gabriela L Bertacchini
- State University of Mato Grosso do Sul - Medicine UEMS, Campo Grande, Brazil
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Andreza B Sonego
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Sabrina F Lisboa
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Davi C Lagatta
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Leonardo B M Resstel
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Gomes-de-Souza L, Busnardo C, Santos A, Paz HS, Resstel LB, Planeta CS, Nunes-de-Souza RL, Crestani CC. Functional lateralization in the medial prefrontal cortex control of contextual conditioned emotional responses in rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111015. [PMID: 38653363 DOI: 10.1016/j.pnpbp.2024.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
A functional lateralization has been reported in control of emotional responses by the medial prefrontal cortex (mPFC). However, a hemisphere asymmetry in involvement of the mPFC in expression of fear conditioning responses has never been reported. Therefore, we investigated whether control by mPFC of freezing and cardiovascular responses during re-exposure to an aversively conditioned context is lateralized. For this, rats had guide cannulas directed to the mPFC implanted bilaterally or unilaterally in the right or left hemispheres. Vehicle or the non-selective synaptic inhibitor CoCl2 was microinjected into the mPFC 10 min before re-exposure to a chamber where the animals had previously received footshocks. A catheter was implanted into the femoral artery before the fear retrieval test for cardiovascular recordings. We observed that bilateral microinjection of CoCl2 into the mPFC reduced both the freezing behavior (enhancing locomotion and rearing) and arterial pressure and heart rate increases during re-exposure to the aversively conditioned context. Unilateral microinjection of CoCl2 into the right hemisphere of the mPFC also decreased the freezing behavior (enhancing locomotion and rearing), but without affecting the cardiovascular changes. Conversely, unilateral synaptic inhibition in the left mPFC did not affect either behavioral or cardiovascular responses during fear retrieval test. Taken together, these results suggest that the right hemisphere of the mPFC is necessary and sufficient for expression of freezing behavior to contextual fear conditioning. However, the control of cardiovascular responses and freezing behavior during fear retrieval test is somehow dissociated in the mPFC, being the former bilaterally processed.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Cristiane Busnardo
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Adrielly Santos
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Higor S Paz
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Leonardo B Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cleopatra S Planeta
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Ricardo L Nunes-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
4
|
Cannabidiol attenuates fear memory expression in female rats via hippocampal 5-HT 1A but not CB1 or CB2 receptors. Neuropharmacology 2023; 223:109316. [PMID: 36334768 DOI: 10.1016/j.neuropharm.2022.109316] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Growing evidence from male rodent and human studies suggests that cannabidiol (CBD) modulates the expression of aversive memories and anxiety-related responses. The limited data on whether and how CBD influences these aspects in females could have therapeutic implications given the increased susceptibility of women to anxiety- and stress-related disorders relative to men. Female studies are also essential to examine inherent aspects that potentially contribute to differences in responsiveness to CBD. Here we addressed these questions in adult female rats. Contextually fear-conditioned animals acutely treated with CBD (1.0-10 mg/kg) were tested 45 min later. In subsequent experiments, we investigated the estrous cycle effects and the contribution of dorsal hippocampus (DH) serotonin 1A (5-HT1A) and cannabinoid types 1 (CB1) and 2 (CB2) receptors to CBD-induced effects on memory retrieval/expression. The effects of pre-retrieval systemic or intra-DH CBD administration on subsequent fear extinction were also assessed. Lastly, we evaluated the open arms avoidance and stretched-attend postures in females exposed to the elevated plus-maze after systemic CBD treatment. CBD 3.0 and 10 mg/kg administered before conditioned context exposure reduced females' freezing. This action remained unchanged across the estrous cycle and involved DH 5-HT1A receptors activation. Pre-retrieval CBD impaired memory reconsolidation and lowered fear during early extinction. CBD applied directly to the DH was sufficient to reproduce the effects of systemic CBD treatment. CBD 3.0 and 10 mg/kg reduced anxiety-related responses scored in the elevated plus-maze. Our findings demonstrate that CBD attenuates the behavioral manifestation of learned fear and anxiety in female rats.
Collapse
|
5
|
da Silva LA, Diniz CRAF, Uliana DL, da Silva-Júnior AF, Bertacchini GL, Resstel LBM. The interaction between hippocampal cholinergic and nitrergic neurotransmission coordinates NMDA-dependent behavior and autonomic changes induced by contextual fear retrieval. Psychopharmacology (Berl) 2022; 239:3297-3311. [PMID: 35978221 DOI: 10.1007/s00213-022-06213-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
RATIONALE Re-exposing an animal to an environment previously paired with an aversive stimulus evokes large alterations in behavioral and cardiovascular parameters. Dorsal hippocampus (dHC) receives important cholinergic inputs from the basal forebrain, and respective acetylcholine (ACh) levels are described to influence defensive behavior. Activation of muscarinic M1 and M3 receptors facilitates autonomic and behavioral responses along threats. Evidence show activation of cholinergic receptors promoting formation of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) in dHC. Altogether, the action of ACh and NO on conditioned responses appears to converge within dHC. OBJECTIVES As answer about how ACh and NO interact to modulate defensive responses has so far been barely addressed, we aimed to shed additional light on this topic. METHODS Male Wistar rats had guide cannula implanted into the dHC before being submitted to the contextual fear conditioning (3footshocks/085 mA/2 s). A catheter was implanted in the femoral artery the next day for cardiovascular recordings. Drugs were delivered into dHC 10 min before contextual re-exposure, which occurred 48 h after the conditioning procedure. RESULTS Neostigmine (Neo) amplified the retrieval of conditioned responses. Neo effects (1 nmol) were prevented by the prior infusion of a M1-M3 antagonist (fumarate), a neuronal nitric oxide synthase inhibitor (NPLA), a NO scavenger (cPTIO), a guanylyl cyclase inhibitor (ODQ), and a NMDA antagonist (AP-7). Pretreatment with a selective M1 antagonist (pirenzepine) only prevented the increase in autonomic responses induced by Neo. CONCLUSION The results show that modulation in the retrieval of contextual fear responses involves coordination of the dHC M1-M3/NO/cGMP/NMDA pathway.
Collapse
Affiliation(s)
- Leandro Antero da Silva
- Department of Pharmacology, School of Medicine, Universidade de Sao Paulo, Campus USP, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil
- State University of Mato Grosso Do Sul - Medicine UEMS, Mato Grosso Do Sul, Campo Grande, Brazil
| | - Cassiano Ricardo Alves Faria Diniz
- Department of Pharmacology, School of Medicine, Universidade de Sao Paulo, Campus USP, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil
| | - Daniela Lescano Uliana
- Department of Pharmacology, School of Medicine, Universidade de Sao Paulo, Campus USP, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA, 15260, USA
| | - Antonio Furtado da Silva-Júnior
- Department of Pharmacology, School of Medicine, Universidade de Sao Paulo, Campus USP, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil
| | - Gabriela Luiz Bertacchini
- Department of Pharmacology, School of Medicine, Universidade de Sao Paulo, Campus USP, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil
| | - Leonardo Barbosa Moraes Resstel
- Department of Pharmacology, School of Medicine, Universidade de Sao Paulo, Campus USP, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
6
|
Diniz CRAF, da Silva LA, Bertachini GL, da Silva-Júnior AF, Resstel LBM. Dorsal hippocampal muscarinic cholinergic receptors orchestrate behavioral and autonomic changes induced by contextual fear retrieval. Pharmacol Biochem Behav 2022; 218:173425. [DOI: 10.1016/j.pbb.2022.173425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023]
|
7
|
Krueger JN, Wilmot JH, Teratani-Ota Y, Puhger KR, Nemes SE, Crestani AP, Lafreniere MM, Wiltgen BJ. Amnesia for context fear is caused by widespread disruption of hippocampal activity. Neurobiol Learn Mem 2020; 175:107295. [PMID: 32822864 PMCID: PMC8562570 DOI: 10.1016/j.nlm.2020.107295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022]
Abstract
The hippocampus plays an essential role in the formation and retrieval of episodic memories in humans and contextual memories in animals. However, amnesia is not always observed when this structure is compromised. To determine why this is the case, we compared the effects of several different circuit manipulations on memory retrieval and hippocampal activity. Mice were first trained on context fear conditioning and then optogenetic and chemogenetic tools were used to alter activity during memory retrieval. We found that retrieval was only impaired when manipulations caused widespread changes (increases or decreases) in hippocampal activity. Widespread increases occurred when pyramidal cells were excited and widespread decreases were found when GABAergic neurons were stimulated. Direct hyperpolarization of excitatory neurons only moderately reduced activity and did not produce amnesia. Surprisingly, widespread decreases in hippocampal activity did not prevent retrieval if they occurred gradually prior to testing. This suggests that intact brain regions can express contextual memories if they are given adequate time to compensate for the loss of the hippocampus.
Collapse
Affiliation(s)
- Jamie N Krueger
- Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, United States.
| | - Jacob H Wilmot
- Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Yusuke Teratani-Ota
- Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Kyle R Puhger
- Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Sonya E Nemes
- Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, United States.
| | - Ana P Crestani
- Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Marrisa M Lafreniere
- Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, United States.
| | - Brian J Wiltgen
- Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, United States; Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| |
Collapse
|
8
|
Ferreira‐Junior NC, Lagatta DC, Kuntze LB, Fujiwara EA, Firmino EMS, Borges‐Assis AB, Resstel LBM, Sampaio KN. Dorsal hippocampus cholinergic and nitrergic neurotransmission modulates the cardiac baroreflex function in rats. Eur J Neurosci 2020; 51:991-1010. [DOI: 10.1111/ejn.14599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/01/2022]
Affiliation(s)
| | - Davi Campos Lagatta
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | - Luciana Bärg Kuntze
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | - Eduardo Akira Fujiwara
- Department of Pharmaceutical Sciences Federal University of Espírito Santo Vitória Brazil
| | - Egidi Mayara Silva Firmino
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | - Anna Bárbara Borges‐Assis
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | | | - Karla Nívea Sampaio
- Department of Pharmaceutical Sciences Federal University of Espírito Santo Vitória Brazil
| |
Collapse
|
9
|
Hartmann A, Fassini A, Scopinho A, Correa FM, Guimarães FS, Lisboa SF, Resstel LB. Role of the endocannabinoid system in the dorsal hippocampus in the cardiovascular changes and delayed anxiety-like effect induced by acute restraint stress in rats. J Psychopharmacol 2019; 33:606-614. [PMID: 30789299 DOI: 10.1177/0269881119827799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The dorsal hippocampus has a central role in modulating cardiovascular responses and behavioral adaptation to stress. The dorsal hippocampus also plays a key role in stress-associated mental disorders. The endocannabinoid system is widely expressed in the dorsal hippocampus and modulates defensive behaviors under stressful conditions. The endocannabinoid anandamide activates cannabinoid type 1 receptors and is metabolized by the fatty acid amide hydrolase enzyme. AIMS We sought to verify whether cannabinoid type 1 receptors modulate stress-induced cardiovascular changes, and if pharmacological fatty acid amide hydrolase inhibition in the dorsal hippocampus would prevent the cardiovascular responses and the delayed anxiogenic-like behavior evoked by restraint stress in rats via cannabinoid type 1 receptors. METHODS Independent groups received intra-dorsal-hippocampal injections of N-(piperidin-1yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-hpyrazole-3-carboxamide (AM251; cannabinoid type 1 receptor antagonist/inverse agonist, 10-300 pmol) and/or cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597; fatty acid amide hydrolase inhibitor, 10 pmol) before the restraint stress session. Cardiovascular response during restraint stress or later behavioral parameters were evaluated. RESULTS Acute restraint stress altered the cardiovascular response, characterized by increased heart rate and mean arterial pressure, as well as decreased tail cutaneous temperature. It also induced a delayed anxiogenic-like effect, evidenced by reduced open arm exploration in the elevated plus maze 24 h after stress. AM251 exacerbated the stress-induced cardiovascular responses after injection into the dorsal hippocampus. In contrast, local injection of URB597 prevented the cardiovascular response and the delayed (24 h) behavioral consequences of restraint stress, effects attenuated by pretreatment with AM251. CONCLUSION Our data corroborate previous results indicating that the hippocampal endocannabinoid system modulates the outcome of stress exposure and suggest that this could involve modulation of the cardiovascular response during stress exposure.
Collapse
Affiliation(s)
- Alice Hartmann
- 1 Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,2 Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline Fassini
- 1 Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - América Scopinho
- 1 Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Fernando Ma Correa
- 1 Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Francisco S Guimarães
- 1 Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,2 Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sabrina F Lisboa
- 1 Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,2 Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,3 Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Bm Resstel
- 1 Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,2 Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
10
|
Differential roles of hippocampal nNOS and iNOS in the control of baroreflex function in conscious rats. Brain Res 2018; 1710:109-116. [PMID: 30605625 DOI: 10.1016/j.brainres.2018.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/28/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022]
Abstract
The baroreflex is a prominent moment-to-moment mechanism regulating the blood pressure. The hippocampus is a limbic structure in which has been pointed out as part of central network regulating baroreflex. However, the local neurochemical mechanisms involved in control of baroreflex function are not completely understood. Thus, this study aimed to investigate the involvement of nitrergic neurotransmission present in the dorsal hippocampus in baroreflex control of heart rate in conscious rats. For this, we evaluated the effect of bilateral microinjection into the dorsal hippocampus of either the nitric oxide (NO) scavenger carboxy-PTIO, the selective neuronal nitric oxide synthase (nNOS) inhibitor Nω-Propyl-l-arginine (NPLA) or the selective inducible nitric oxide synthase (iNOS) inhibitor 1400 W in bradycardia evoked by blood pressure increases in response to intravenous infusion of phenylephrine, and tachycardia caused by blood pressure decreases evoked by intravenous infusion of sodium nitroprusside. Bilateral microinjection of carboxy-PTIO into the dorsal hippocampus decreased the baroreflex tachycardic response without affecting the reflex bradycardia. Hippocampus treatment with NPLA increased the baroreflex bradycardia gain without affecting the reflex tachycardia. Bilateral hippocampal treatment with 1400 W decreased the reflex tachycardia and increased the baroreflex bradycardic response. Overall, these findings provide evidence that hippocampal nitrergic mechanisms acting in a NOS isoform-specific manner plays a prominent role in control of baroreflex function. Indeed, the results indicate that nNOS and iNOS exerts an inhibitory influence on reflex bradycardia, whereas iNOS mediates the reflex tachycardia.
Collapse
|
11
|
Nucleus Reuniens Is Required for Encoding and Retrieving Precise, Hippocampal-Dependent Contextual Fear Memories in Rats. J Neurosci 2018; 38:9925-9933. [PMID: 30282726 DOI: 10.1523/jneurosci.1429-18.2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/24/2023] Open
Abstract
The nucleus reuniens (RE) is a ventral midline thalamic nucleus that interconnects the medial prefrontal cortex (mPFC) and hippocampus (HPC). Considerable data indicate that HPC-mPFC circuits are involved in contextual and spatial memory; however, it is not clear whether the RE mediates the acquisition or retrieval of these memories. To examine this question, we inactivated the RE with muscimol before either the acquisition or retrieval of pavlovian fear conditioning in rats; freezing served as the index of fear. We found that RE inactivation before conditioning impaired the acquisition of contextual freezing, whereas inactivation of the RE before retrieval testing increased the generalization of freezing to a novel context; inactivation of the RE did not affect either the acquisition or expression of auditory fear conditioning. Interestingly, contextual conditioning impairments were absent when retrieval testing was also conducted after RE inactivation. Contextual memories acquired under RE inactivation were hippocampal independent, insofar as contextual freezing in rats conditioned under RE inactivation was insensitive to intrahippocampal infusions of the NMDA receptor antagonist aminophosphonovalerate. Together, these data reveal that the RE supports hippocampal-dependent encoding of precise contextual memories that allow discrimination of dangerous contexts from safe contexts. When the RE is inactive, however, alternate neural systems acquire an impoverished contextual memory that is expressed only when the RE is off-line.SIGNIFICANCE STATEMENT The midline thalamic nucleus reuniens (RE) coordinates communication between the hippocampus and medial prefrontal cortex, brain areas that are critical for contextual and spatial memory. Here we show that temporary pharmacological inactivation of RE impairs the acquisition and precision of contextual fear memories after pavlovian fear conditioning in rats. However, inactivating the RE before retrieval testing restored contextual memory in rats conditioned after RE inactivation. Critically, we show that imprecise contextual memories acquired under RE inactivation are learned independently of the hippocampus. These data reveal that the RE is required for hippocampal-dependent encoding of precise contextual memories to support the discrimination of safe and dangerous contexts.
Collapse
|
12
|
Ferreira-Junior NC, Lagatta DC, Resstel LBM. Glutamatergic, GABAergic, and endocannabinoid neurotransmissions within the dorsal hippocampus modulate the cardiac baroreflex function in rats. Pflugers Arch 2017; 470:395-411. [DOI: 10.1007/s00424-017-2083-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/04/2017] [Accepted: 10/20/2017] [Indexed: 01/18/2023]
|
13
|
Ferreira-Junior NC, Lagatta DC, Fabri DR, Alves FHF, Corrêa FMA, Resstel LBM. Hippocampal subareas arranged in the dorsoventral axis modulate cardiac baroreflex function in a site-dependent manner in rats. Exp Physiol 2016; 102:14-24. [DOI: 10.1113/ep085827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Nilson Carlos Ferreira-Junior
- Department of Pharmacology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP 14049-900 Brazil
| | - Davi Campos Lagatta
- Department of Pharmacology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP 14049-900 Brazil
| | - Denise Resende Fabri
- Department of Pharmacology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP 14049-900 Brazil
| | - Fernando Henrique Ferrari Alves
- Department of Pharmacology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP 14049-900 Brazil
| | - Fernando Morgan Aguiar Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP 14049-900 Brazil
| | - Leonardo Barbosa Moraes Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP 14049-900 Brazil
| |
Collapse
|
14
|
Dorsal hippocampus cannabinoid type 1 receptors modulate the expression of contextual fear conditioning in rats: Involvement of local glutamatergic/nitrergic and GABAergic neurotransmissions. Eur Neuropsychopharmacol 2016; 26:1579-89. [PMID: 27591981 DOI: 10.1016/j.euroneuro.2016.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/04/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022]
Abstract
The cannabinoid receptor type 1 (CB1) is highly expressed in the dorsal portion of hippocampus - a brain region that has been involved in the control of conditioned emotional response (CER) in the contextual fear conditioning (CFC) model. These responses are characterized by increased freezing behavior and autonomic parameters. Moreover, CB1 receptors activation negatively modulate the release of several neurotransmitters, including glutamate and GABA, which also have been related to modulation of CER. Therefore, our aim was to investigate the involvement of CB1 receptors in the dorsal hippocampus on CER expression. Independent groups of male Wistar rats submitted to the contextual fear conditioning received bilateral intra-hippocampal injections (500 nL/side) of the following drugs or vehicle before re-exposure to the aversive context: AM251 (CB1 antagonist; 0.1, 0.3 and 1nmol); AP7 (NMDA antagonist; 1nmol)+AM251 (0.3nmol); NPLA (0.01nmol; nNOS inhibitor)+AM251 (0.3nmol); Bicuculline (1.3pmol; GABAA antagonist)+AM251 (0.1 and 1nmol). In the present paper, AM251 (0.3nmol) increased CER, while this response was prevented by both AP7 and NPLA pretreatment. After pretreatment with Bicuculline, the lower and higher ineffective doses of AM251 were able to increase the CER, supporting the balance between GABAergic and glutamatergic mechanisms controlling this response. Our results suggest that increased CER evoked by CB1 blockade in the dorsal hippocampus depends on NMDA receptor activation and NO formation. Moreover, a fine-tune control promoted by GABAergic and glutamatergic mechanisms in this brain area modulate the CER after CB1 blockade.
Collapse
|
15
|
Kuntze LB, Ferreira-Junior NC, Lagatta DC, Resstel LBM. Ventral hippocampus modulates bradycardic response to peripheral chemoreflex activation in awake rats. Exp Physiol 2016; 101:482-93. [PMID: 26700468 DOI: 10.1113/ep085393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does reversible synaptic inactivation by CoCl2 in the dorsal (DH) or ventral (VH) portions of the hippocampus have a modulatory effect on cardiovascular and respiratory responses evoked by chemoreflex activation in awake rats? What is the main finding and its importance? Using i.v. infusion of KCN to activate the peripheral chemoreflex before and after microinjection of CoCl2 into VH, we showed that the bradycardic response was increased, but not the pressor and tachypnoeic responses even if the tidal volume had been increased. Thus, VH but not DH may be involved in the modulation of the parasympathoexcitatory component of the peripheral chemoreflex. In rats, peripheral chemoreflex activation evokes pressor and bradycardic responses as well as a tachypnoeic response. Studies have shown that limbic structures, such as the hippocampus, can modulate autonomic reflexes. Evidence suggests that the dorsal (DH) and the ventral (VH) portions of the hippocampus are structurally and functionally distinct; therefore, in the present study we tested the hypothesis that local neurotransmission of the DH and VH are involved in the neural pathways of the cardiovascular and ventilatory responses to chemoreflex activation. Thus, the goal of the present study was to compare the chemoreflex responses elicited by i.v. injection of KCN (40 μg per rat) in awake rats before and after DH and VH synaptic transmission was temporarily inhibited by bilateral microinjections of 500 nl of the unspecific synapse blocker, CoCl2 (1 mm). Bilateral inhibition of VH, but not DH, 10 min before KCN infusion was able to enhance the bradycardic response (P < 0.05), with no changes in the typical pressor and tachypnoeic responses evoked by chemoreflex activation (P > 0.05). Furthermore, the tidal volume was significantly increased (P < 0.05) even though no other respiratory parameter had been significantly changed (P > 0.05), suggesting that VH can exert a tonic modulatory action on tidal volume. Therefore, the present study reports, for the first time, that DH neurotransmission did not exert an influence on chemoreflex responses, whereas VH mediates, at least in part, the parasympathoexcitatory component of the peripheral chemoreflex.
Collapse
Affiliation(s)
- Luciana Bärg Kuntze
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14090-090, Brazil
| | - Nilson Carlos Ferreira-Junior
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14090-090, Brazil
| | - Davi Campos Lagatta
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14090-090, Brazil
| | - Leonardo Barbosa Moraes Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14090-090, Brazil
| |
Collapse
|
16
|
Gouveia MK, Miguel TT, Busnardo C, Scopinho AA, Corrêa FM, Nunes-de-Souza RL, Crestani CC. Dissociation in control of physiological and behavioral responses to emotional stress by cholinergic neurotransmission in the bed nucleus of the stria terminalis in rats. Neuropharmacology 2016; 101:379-88. [DOI: 10.1016/j.neuropharm.2015.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/03/2015] [Accepted: 10/10/2015] [Indexed: 11/25/2022]
|
17
|
Fedoce AG, Ferreira-Junior NC, Reis DG, Corrêa FMA, Resstel LBM. M3 muscarinic receptor in the ventral medial prefrontal cortex modulating the expression of contextual fear conditioning in rats. Psychopharmacology (Berl) 2016; 233:267-80. [PMID: 26518024 DOI: 10.1007/s00213-015-4109-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/03/2015] [Indexed: 01/16/2023]
Abstract
RATIONALE Basal forebrain cholinergic neurons modulate the activation of cortical neurons by several stimuli such as fear and anxiety. However, the role of the muscarinic receptor in the medial prefrontal cortex (MPFC) in the modulation of the conditioned emotional response (CER) evoked in the model contextual conditioned fear remains unclear. OBJECTIVES The objective of this study is to test the hypothesis that inhibition of the muscarinic receptor in ventral MPFC modulates CER observed during animal's re-exposure to the aversive context. METHODS Rats implanted with cannulae aimed at the prelimbic (PL) or the infralimbic (IL) were submitted to a high-intensity contextual fear conditioning protocol. Before the test session, they received microinjections of the hemicholinium (choline reuptake blocker), atropine (muscarinic antagonist), J104129 fumarate (M1-M3 muscarinic antagonists), pirenzepine (M1 muscarinic antagonist), neostigmine (inhibitor acetylcholinesterase enzyme), or the systemic administration of the FG7142 (inverse benzodiazepine agonist). Additional independent groups received the neostigmine or FG7142 before the ineffective doses of J104129 fumarate in the low-intensity protocol of contextual fear conditioning. RESULTS In the high-intensity protocol, the administration of hemicholinium (1 nmol), atropine (0.06-6 nmol), J104129 fumarate (6 nmol), or pirenzepine (6 nmol) attenuated the expression of CER in rats. However, in the low-intensity protocol, only J10129 fumarate (0.06 nmol) reduced the expression of the CER. Finally, neostigmine (0.1-1 nmol) or FG7142 (8 mg/Kg) increased CER expression, an effect inhibited by the low dose of the J10129 fumarate. CONCLUSIONS These results indicated that the blockade of M3 muscarinic receptor in the vMPFC attenuates the CER expression.
Collapse
Affiliation(s)
- A G Fedoce
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil
| | - N C Ferreira-Junior
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil
| | - D G Reis
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil
| | - F M A Corrêa
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil
| | - L B M Resstel
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
18
|
Lisboa SF, Borges AA, Nejo P, Fassini A, Guimarães FS, Resstel LB. Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: additional evidence. Prog Neuropsychopharmacol Biol Psychiatry 2015; 59:76-83. [PMID: 25595265 DOI: 10.1016/j.pnpbp.2015.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 02/08/2023]
Abstract
Endocannabinoids (ECBs) such as anandamide (AEA) act by activating cannabinoid type 1 (CB1) or 2 (CB2) receptors. The anxiolytic effect of drugs that facilitate ECB effects is associated with increase in AEA levels in several encephalic areas, including the prefrontal cortex (PFC). Activation of CB1 receptors by CB1 agonists injected directly into these areas is usually anxiolytic. However, depending on the encephalic region being investigated and on the stressful experiences, opposite effects were observed, as reported in the ventral HIP. In addition, contradictory results have been reported after CB1 activation in the dorsal HIP (dHIP). Therefore, in the present paper we have attempted to verify if directly interfering with ECB metabolism/reuptake in the prelimbic (PL) portion of the medial PFC (MPFC) and dHIP would produce different effects in two conceptually distinct animal models: the elevated plus maze (EPM) and the Vogel conflict test (VCT). We observed that drugs which interfere with ECB reuptake/metabolism in both the PL and in the dentate gyrus of the dHIP induced anxiolytic-like effect, in both the EPM and in the VCT via CB1 receptors, suggesting that CB1 signaling in these brain regions modulates defensive responses to both innate and learned threatening stimuli. This data further strengthens previous results indicating modulation of hippocampal and MPFC activity via CB1 by ECBs, which could be therapeutically targeted to treat anxiety disorders.
Collapse
Affiliation(s)
- Sabrina F Lisboa
- Pharmacology Department, Medical School of Ribeirão Preto - University of São Paulo (FMRP/USP), Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil.
| | - Anna A Borges
- Pharmacology Department, Medical School of Ribeirão Preto - University of São Paulo (FMRP/USP), Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Priscila Nejo
- Pharmacology Department, Medical School of Ribeirão Preto - University of São Paulo (FMRP/USP), Brazil
| | - Aline Fassini
- Pharmacology Department, Medical School of Ribeirão Preto - University of São Paulo (FMRP/USP), Brazil
| | - Francisco S Guimarães
- Pharmacology Department, Medical School of Ribeirão Preto - University of São Paulo (FMRP/USP), Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Leonardo B Resstel
- Pharmacology Department, Medical School of Ribeirão Preto - University of São Paulo (FMRP/USP), Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| |
Collapse
|
19
|
Abstract
Stress in life is unavoidable, affecting everyone on a daily basis. Psychological stress in mammals triggers a rapidly organized response for survival, but it may also cause a variety of behavioral disorders and damage cognitive function. Stress is associated with biases in cognitive processing; some of the most enduring memories are formed by traumatic events. Our understanding of how cognition is shaped by stress is still relatively primitive; however, evidence is rapidly accumulating that the 'mature' brain has a great capacity for plasticity and that there are numerous ways through which pharmacological therapeutics could rescue cognitive function and regain cognitive balance. In this review, we discuss recent advances in our understanding of the interplay between stress and cognitive processes and potential therapeutic approaches to stress-related behavioral and cognitive disorders.
Collapse
|
20
|
The expression of contextual fear conditioning involves activation of a NMDA receptor-nitric oxide-cGMP pathway in the dorsal hippocampus of rats. Eur Neuropsychopharmacol 2014; 24:1676-86. [PMID: 25174523 DOI: 10.1016/j.euroneuro.2014.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 12/23/2022]
Abstract
The dorsal portion of the hippocampus is a limbic structure that is involved in fear conditioning modulation in rats. Moreover, evidence shows that the local dorsal hippocampus glutamatergic system, nitric oxide (NO) and cGMP modulate behavioral responses during aversive situations. Therefore, the present study investigated the involvement of dorsal hippocampus NMDA receptors and the NO/cGMP pathway in contextual fear conditioning expression. Male Wistar rats were submitted to an aversive contextual conditioning session and 48 h later they were re-exposed to the aversive context in which freezing, cardiovascular responses (increase of both arterial pressure and heart rate) and decrease of tail temperature were recorded. The intra-dorsal hippocampus administration of the NMDA receptor antagonist AP7, prior to the re-exposure to the aversive context, attenuated fear-conditioned responses. The re-exposure to the context evoked an increase in NO concentration in the dorsal hippocampus of conditioned animals. Similar to AP7 administration, we observed a reduction of contextual fear conditioning after dorsal hippocampus administration of either the neuronal NO synthase inhibitor N-propyl-L-arginine, the NO scavenger c-PTIO or the guanylate cyclase inhibitor ODQ. Therefore, the present findings suggest the possible existence of a dorsal hippocampus NMDA/NO/cGMP pathway modulating the expression of contextual fear conditioning in rats.
Collapse
|
21
|
Medial prefrontal cortex Transient Receptor Potential Vanilloid Type 1 (TRPV1) in the expression of contextual fear conditioning in Wistar rats. Psychopharmacology (Berl) 2014; 231:149-57. [PMID: 23922023 DOI: 10.1007/s00213-013-3211-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Contextual fear is evoked by re-exposing an animal to an environment that has been previously paired with an aversive or unpleasant stimulus. It can be assessed by freezing and cardiovascular changes such as increase in mean arterial pressure and heart rate. A marked increase in neuronal activity is associated with contextual fear conditioning, especially in limbic structures involved with defense reactions, such as the ventral portion of medial prefrontal cortex. OBJECTIVE Given the fact that transient receptor potential vanilloid type 1 (TRPV1) receptors could be involved in the expression of defensive behavior, the present work tested the hypothesis that TRPV1 manipulation in the ventromedial prefrontal cortex (vMPFC) modulates the expression of contextual conditioned fear. METHODS Male Wistar rats received bilateral microinjections into the vMPFC of the TRPV1 receptor antagonists capsazepine (1, 10, and 60 nmol/200 nL) or 6-iodonordihydrocapsaicin (3 nmol/200 nL), and the TRPV1 agonist capsaicin (1 nmol/200 nL) preceded by vehicle or 6-iodonordihydrocapsaicin before re-exposure to the experimental chamber for 10 min, 48 h after conditioning in two different protocols distinct by their aversiveness. RESULTS Both antagonists reduced the freezing and cardiovascular responses in the high aversive protocol. Capsaicin caused an increase in fear-associated responses that could be blocked by 6-iodonordihydrocapsaicin. CONCLUSIONS Our results indicate that TRPV1 receptors located in the vMPFC have a tonic involvement in the modulation of the expression of contextual fear conditioning.
Collapse
|
22
|
Chiou RJ, Kuo CC, Yen CT. Comparisons of terminal densities of cardiovascular function-related projections from the amygdala subnuclei. Auton Neurosci 2013; 181:21-30. [PMID: 24412638 DOI: 10.1016/j.autneu.2013.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 11/16/2013] [Accepted: 12/10/2013] [Indexed: 02/05/2023]
Abstract
The amygdala is important in higher-level control of cardiovascular functions. In this study, we compared cardiovascular-related projections among the subnuclei of the amygdala. Biotinylated dextran amine was injected into the central, medial, and basolateral nuclei of the amygdala, and the distributions and densities of anterograde-labeled terminal boutons were analyzed. We found that the medial, basolateral, and central nuclei all had projections into the cardiovascular-related areas of the hypothalamus. However, only the central nucleus had a significant direct projection into the medulla. By contrast, the medial nucleus had limited projections, and the basolateral nucleus had no terminals extending into the medulla. We concluded that the medial, central, and basolateral nuclei of the amygdala may influence cardiovascular-related nuclei through monosynaptic connections with cardiovascular-related nuclei in the hypothalamus and medulla.
Collapse
Affiliation(s)
- Ruei-Jen Chiou
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Chung-Chih Kuo
- Department of Physiology, School of Medicine, Tzu Chi University, 701 Chung-Yang Road, Section 3, Hualien 97004, Taiwan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan.
| |
Collapse
|
23
|
Moraes-Neto TB, Scopinho AA, Biojone C, Corrêa FMA, Resstel LBM. Involvement of dorsal hippocampus glutamatergic and nitrergic neurotransmission in autonomic responses evoked by acute restraint stress in rats. Neuroscience 2013; 258:364-73. [PMID: 24269610 DOI: 10.1016/j.neuroscience.2013.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/16/2013] [Accepted: 11/10/2013] [Indexed: 10/26/2022]
Abstract
The dorsal hippocampus (DH) is a structure of the limbic system that is involved in emotional, learning and memory processes. There is evidence indicating that the DH modulates cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint stress (RS) is an unavoidable stress situation that evokes marked and sustained autonomic changes, which are characterized by elevated blood pressure (BP), intense heart rate (HR) increase and a decrease in cutaneous temperature. In the present study, we investigated the involvement of an N-methyl-D-aspartate (NMDA) glutamate receptor/nitric oxide (NO) pathway of the DH in the modulation of autonomic (arterial BP, HR and tail skin temperature) responses evoked by RS in rats. Bilateral microinjection of the NMDA receptor antagonist AP-7 (10 nmol/500 nL) into the DH attenuated RS-evoked autonomic responses. Moreover, RS evoked an increase in the content of NO₂/NO₃ in the DH, which are products of the spontaneous oxidation of NO under physiological conditions that can provide an indirect measurement of NO production. Bilateral microinjection of N-propyl-L-arginine (0.1 nmol/500 nL; N-propyl, a neuronal NO synthase (nNOS) inhibitor) or carboxy-PTIO (2 nmol/500 nL; c-PTIO, an NO scavenger) into the DH also attenuated autonomic responses evoked by RS. Therefore, our findings suggest that a glutamatergic system present in the DH is involved in the autonomic modulation during RS, acting via NMDA receptors and nNOS activation. Furthermore, the present results suggest that NMDA receptor/nNO activation has a facilitatory influence on RS-evoked autonomic responses.
Collapse
Affiliation(s)
- T B Moraes-Neto
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - A A Scopinho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - C Biojone
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - F M A Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil.
| |
Collapse
|
24
|
Costa HHV, Vilela FC, Giusti-Paiva A. Continuous central infusion of cannabinoid receptor agonist WIN 55,212-2 decreases maternal care in lactating rats: Consequences for fear conditioning in adulthood males. Behav Brain Res 2013; 257:31-8. [DOI: 10.1016/j.bbr.2013.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 12/11/2022]
|
25
|
Dorsal and ventral hippocampus modulate autonomic responses but not behavioral consequences associated to acute restraint stress in rats. PLoS One 2013; 8:e77750. [PMID: 24147071 PMCID: PMC3798415 DOI: 10.1371/journal.pone.0077750] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/06/2013] [Indexed: 11/19/2022] Open
Abstract
Recent evidence has suggested that the dorsal (DH) and the ventral (VH) poles of the hippocampus are structurally, molecularly and functionally different regions. While the DH is preferentially involved in the modulation of spatial learning and memory, the VH modulates defensive behaviors related to anxiety. Acute restraint is an unavoidable stress situation that evokes marked and sustained autonomic changes, which are characterized by elevated blood pressure (BP), intense heart rate (HR) increases, skeletal muscle vasodilatation and cutaneous vasoconstriction, which are accompanied by a rapid skin temperature drop followed by body temperature increases. In addition to those autonomic responses, animals submitted to restraint also present behavioral changes, such as reduced exploration of the open arms of an elevated plus-maze (EPM), an anxiogenic-like effect. In the present work, we report a comparison between the effects of pharmacological inhibition of DH and VH neurotransmission on autonomic and behavioral responses evoked by acute restraint stress in rats. Bilateral microinjection of the unspecific synaptic blocker cobalt chloride (CoCl2, 1mM) into the DH or VH attenuated BP and HR responses, as well as the decrease in the skin temperature, elicited by restraint stress exposure. Moreover, DH or VH inhibition before restraint did not change the delayed increased anxiety behavior observed 24 h later in the EPM. The present results demonstrate for the first time that both DH and VH mediate stress-induced autonomic responses to restraint but they are not involved in the modulation of the delayed emotional consequences elicited by such stress.
Collapse
|
26
|
Cox D, Czerniawski J, Ree F, Otto T. Time course of dorsal and ventral hippocampal involvement in the expression of trace fear conditioning. Neurobiol Learn Mem 2013; 106:316-23. [PMID: 23747568 DOI: 10.1016/j.nlm.2013.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 05/21/2013] [Accepted: 05/24/2013] [Indexed: 11/25/2022]
Abstract
While a number of early studies demonstrated that hippocampal damage attenuates the expression of recent, but not remotely trained tasks, an emerging body of evidence has shown that damage to, or inactivation of, the hippocampus often impairs recall across a wide range of training-testing intervals. Collectively, these data suggest that the time course of hippocampal involvement in the storage or recall of previously-acquired memories may differ according to hippocampal subregion and the particular learning task under consideration. The present study examined the contributions of dorsal (DH) and ventral (VH) hippocampus to the expression of previously-acquired trace fear conditioning, a form of Pavlovian conditioning in which the offset of an initially neutral cue or cues and the onset of an aversive stimulus is separated by a temporal (trace) interval. Specifically, either saline or the GABA-A agonist muscimol was infused into DH or VH prior to testing either 1, 7, 28, or 42 days after trace fear conditioning. The results revealed a marked dissociation: pre-testing inactivation of DH failed to impair performance at any time-point, while pre-testing inactivation of VH impaired performance at all time-points. Importantly, pre-testing inactivation of VH had no effect on the performance of previously-acquired delay conditioning, suggesting that the deficits observed in trace conditioning cannot be attributed to a deficit in performance of the freezing response. Collectively, these data suggest that VH, but not DH, remains a neuroanatomical locus critical to the recall or expression of trace fear conditioning over an extended period of time.
Collapse
Affiliation(s)
- David Cox
- Program in Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, 152 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
27
|
Deolindo MV, Reis DG, Crestani CC, Tavares RF, Resstel LBM, Corrêa FMA. NMDA receptors in the lateral hypothalamus have an inhibitory influence on the tachycardiac response to acute restraint stress in rats. Eur J Neurosci 2013; 38:2374-81. [DOI: 10.1111/ejn.12246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/14/2013] [Accepted: 04/03/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Milena V. Deolindo
- Department of Pharmacology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Daniel G. Reis
- Department of Pharmacology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Carlos C. Crestani
- Department of Natural Active Principles and Toxicology; School of Pharmaceutical Sciences; São Paulo State University - UNESP; Araraquara Brazil
| | - Rodrigo F. Tavares
- Department of Pharmacology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Leonardo B. M. Resstel
- Department of Pharmacology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - Fernando M. A. Corrêa
- Department of Pharmacology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
28
|
Alves FHF, Gomes FV, Reis DG, Crestani CC, Corrêa FMA, Guimarães FS, Resstel LBM. Involvement of the insular cortex in the consolidation and expression of contextual fear conditioning. Eur J Neurosci 2013; 38:2300-7. [PMID: 23574437 DOI: 10.1111/ejn.12210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 11/29/2022]
Abstract
The insular cortex (IC) has been reported to be involved in the modulation of memory and autonomic and defensive responses. However, there is conflicting evidence about the role of the IC in fear conditioning. To explore the IC involvement in both behavioral and autonomic responses induced by contextual fear conditioning, we evaluated the effects of the reversible inhibition of the IC neurotransmission through bilateral microinjections of the non-selective synapse blocker CoCl2 (1 mm) 10 min before or immediately after the conditioning session or 10 min before re-exposure to the aversive context. In the conditioning session, rats were exposed to a footshock chamber (context) and footshocks were used as the unconditioned stimulus. Forty-eight hours later, the animals were re-exposed to the aversive context for 10 min, but no shock was given. Behavioral (freezing) as well as cardiovascular (arterial pressure and heart rate increases) responses induced by re-exposure to the aversive context were analysed. It was observed that the local IC neurotransmission inhibition attenuated freezing and the mean arterial pressure and heart rate increase of the groups that received the CoCl2 either immediately after conditioning or 10 min before re-exposure to the aversive context, but not when the CoCl2 was injected before the conditioning session. These findings suggest the involvement of the IC in the consolidation and expression of contextual aversive memory. However, the IC does not seem to be essential for the acquisition of memory associated with aversive context.
Collapse
Affiliation(s)
- Fernando H F Alves
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
29
|
Moustafa AA, Wufong E, Servatius RJ, Pang KCH, Gluck MA, Myers CE. Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: a computational model. Brain Res 2012. [PMID: 23178699 DOI: 10.1016/j.brainres.2012.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A recurrent-network model provides a unified account of the hippocampal region in mediating the representation of temporal information in classical eyeblink conditioning. Much empirical research is consistent with a general conclusion that delay conditioning (in which the conditioned stimulus CS and unconditioned stimulus US overlap and co-terminate) is independent of the hippocampal system, while trace conditioning (in which the CS terminates before US onset) depends on the hippocampus. However, recent studies show that, under some circumstances, delay conditioning can be hippocampal-dependent and trace conditioning can be spared following hippocampal lesion. Here, we present an extension of our prior trial-level models of hippocampal function and stimulus representation that can explain these findings within a unified framework. Specifically, the current model includes adaptive recurrent collateral connections that aid in the representation of intra-trial temporal information. With this model, as in our prior models, we argue that the hippocampus is not specialized for conditioned response timing, but rather is a general-purpose system that learns to predict the next state of all stimuli given the current state of variables encoded by activity in recurrent collaterals. As such, the model correctly predicts that hippocampal involvement in classical conditioning should be critical not only when there is an intervening trace interval, but also when there is a long delay between CS onset and US onset. Our model simulates empirical data from many variants of classical conditioning, including delay and trace paradigms in which the length of the CS, the inter-stimulus interval, or the trace interval is varied. Finally, we discuss model limitations, future directions, and several novel empirical predictions of this temporal processing model of hippocampal function and learning.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Moustafa AA, Gilbertson MW, Orr SP, Herzallah MM, Servatius RJ, Myers CE. A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals. Brain Cogn 2012; 81:29-43. [PMID: 23164732 DOI: 10.1016/j.bandc.2012.10.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/26/2012] [Accepted: 10/09/2012] [Indexed: 02/06/2023]
Abstract
Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- School of Social Sciences and Psychology, Marcs Institute for Brain and Behaviour, University of Western Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
31
|
Sparks FT, Lehmann H, Sutherland RJ. Between-systems memory interference during retrieval. Eur J Neurosci 2011; 34:780-6. [DOI: 10.1111/j.1460-9568.2011.07796.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Cannabinoid CB1 receptors in the medial prefrontal cortex modulate the expression of contextual fear conditioning. Int J Neuropsychopharmacol 2010; 13:1163-73. [PMID: 20587131 DOI: 10.1017/s1461145710000684] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ventral portion of the medial prefrontal cortex (vMPFC) has been related to the expression of contextual fear conditioning. This study investigated the possible involvement of CB1 receptors in this aversive response. Male Wistar rats were submitted to a contextual aversive conditioning session and 48 h later re-exposed to the aversive context in which freezing and cardiovascular responses (increase of arterial pressure and heart rate) were recorded. The expression of CB1 receptor-mRNA in the vMPFC was also measured using real time-PCR. In the first experiment intra-vMPFC administration of the CB1 receptor agonist anandamide (AEA, 5 pmol/200 nl) or the AEA transport inhibitor AM404 (50 pmol/200 nl) prior to re-exposure to the aversive context attenuated the fear-conditioned responses. These effects were prevented by local pretreatment with the CB1 receptor antagonist AM251 (100 pmol/200 nl). Using the same conditioning protocol in another animal group, we observed that CB1 receptor mRNA expression increased in the vMPFC 48 h after the conditioning session. Although AM251 did not cause any effect by itself in the first experiment, this drug facilitated freezing and cardiovascular responses when the conditioning session employed a lesser aversive condition. These results indicated that facilitation of cannabinoid-mediated neurotransmission in the vMPFC by local CB1 receptor activation attenuates the expression of contextual fear responses. Together they suggest that local endocannabinoid-mediated neurotransmission in the vMPFC can modulate these responses.
Collapse
|
33
|
Caetano AL, Viel TA, Bittencourt MFQP, Araujo MS, De Angelis K, Buck HS. Change in central kinin B2 receptor density after exercise training in rats. Auton Neurosci 2010; 158:71-8. [PMID: 20637711 DOI: 10.1016/j.autneu.2010.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 05/29/2010] [Accepted: 06/23/2010] [Indexed: 11/29/2022]
Abstract
Cardiovascular responses elicited by the stimulation of kinin B2 receptors in the IV cerebral ventricle, paratrigeminal nucleus or in the thoracic spinal cord are similar to those observed during an exercise bout. Considering that the kalikrein-kinin system (KKS) could act on the cardiovascular modulation during behavioral responses as physical exercise or stress, this study evaluated the central B2 receptor densities of Wistar (W) and spontaneously hypertensive rats (SHR) after chronic moderate exercise. Animals were exercise-trained for ten weeks on a treadmill. Afterwards, systolic blood pressure decreased in both trained strains. Animals were killed and the medulla and spinal cord extracted for B2 receptor autoradiography. Trained animals were compared to their sedentary controls. Sedentary groups showed specific binding sites for Hoe-140 (fmol/mg of tissue) in laminas 1 and 2 of the spinal cord, nucleus of the solitary tract (NTS), area postrema (AP), spinal trigeminal tract (sp5) and paratrigeminal nucleus (Pa5). In trained W a significant increase (p<0.05) in specific binding was observed in the Pa5 (31.3%) and NTS (28.2%). Trained SHR showed a significant decrease in receptor density in lamina 2 (21.9%) of the thoracic spinal cord and an increase in specific binding in Pa5 (36.1%). We suggest that in the medulla, chronic exercise could hyper stimulate the KKS enhancing their efficiency through the increase of B2 receptor density, involving this receptor in central cardiovascular control during exercise or stress. In the lamina 2, B2 receptor might be involved in the exercise-induced hypotension.
Collapse
Affiliation(s)
- Ariadiny Lima Caetano
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, Sao Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Sutherland RJ, Sparks FT, Lehmann H. Hippocampus and retrograde amnesia in the rat model: a modest proposal for the situation of systems consolidation. Neuropsychologia 2010; 48:2357-69. [PMID: 20430043 PMCID: PMC2900526 DOI: 10.1016/j.neuropsychologia.2010.04.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/19/2010] [Indexed: 12/12/2022]
Abstract
The properties of retrograde amnesia after damage to the hippocampus have been explicated with some success using a rat model of human medial temporal lobe amnesia. We review the results of this experimental work with rats focusing on several areas of consensus in this growing literature. We evaluate the theoretically significant hypothesis that hippocampal retrograde amnesia normally exhibits a temporal gradient, affecting recent, but sparing remote memories. Surprisingly, the evidence does not provide much support for the idea that there is a lengthy process of systems consolidation following a learning episode. Instead, recent and remote memories tend to be equally affected. The extent of damage to the hippocampus is a significant factor in this work since it is likely that spared hippocampal tissue can support at least partial memory retrieval. With extensive hippocampal damage gradients are flat or, in the case of memory tasks with flavour/odour retrieval cues, the retrograde amnesia covers a period of about 1-3 days. There is consistent evidence that at the time of learning the hippocampus interferes with or overshadows memory acquisition by other systems. This contributes to the breadth and severity of retrograde amnesia relative to anterograde amnesia in the rat. The fact that multiple, distributed learning episodes can overcome this overshadowing is consistent with a parallel dual-store theory or a Distributed Reinstatement Theory in which each learning episode triggers a short period of memory replay that provides a brief hippocampal-dependent systems consolidation.
Collapse
Affiliation(s)
- Robert J Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada.
| | | | | |
Collapse
|
35
|
Reis DG, Scopinho AA, Guimaraes FS, Correa FM, Resstel LB. Involvement of the lateral septal area in the expression of fear conditioning to context. Learn Mem 2010; 17:134-8. [DOI: 10.1101/lm.1534710] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Resstel LBM, Moreira FA, Guimarães FS. Endocannabinoid system and fear conditioning. VITAMINS AND HORMONES 2009; 81:421-40. [PMID: 19647121 DOI: 10.1016/s0083-6729(09)81016-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The endocannabinoid system has been proposed to modulate neuronal functions involved in distinct types of defensive reactions, possibly counteracting the harmful consequences of stressful stimuli. However, the precise brain sites for this action remain to be further explored. This chapter summarizes the data about the role of the endocannabinoid system in the processing of conditioned fear as well as the potential neural subtract for its actions.
Collapse
Affiliation(s)
- Leonardo B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | |
Collapse
|
37
|
Tavares R, Corrêa F, Resstel L. Opposite role of infralimbic and prelimbic cortex in the tachycardiac response evoked by acute restraint stress in rats. J Neurosci Res 2009; 87:2601-7. [DOI: 10.1002/jnr.22070] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|