1
|
Inami S, Koh K. Sleep induced by mechanosensory stimulation provides cognitive and health benefits in Drosophila. Sleep 2024; 47:zsae226. [PMID: 39331490 DOI: 10.1093/sleep/zsae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/08/2024] [Indexed: 09/29/2024] Open
Abstract
STUDY OBJECTIVES Sleep is a complex phenomenon regulated by various factors, including sensory input. Anecdotal observations have suggested that gentle rocking helps babies fall asleep, and experimental studies have verified that rocking promotes sleep in both humans and mice. Recent studies have expanded this understanding, demonstrating that gentle vibration also induces sleep in Drosophila. Natural sleep serves multiple functions, including learning and memory, synaptic downscaling, and reduction of harmful substances associated with neurodegenerative diseases. Here, we investigated whether vibration-induced sleep (VIS) provides similar cognitive and health benefits in Drosophila. METHODS We administered gentle vibration to flies that slept very little due to a forced activation of wake-promoting neurons and investigated how the vibration influenced learning and memory in the courtship conditioning paradigm. Additionally, we examined the effects of VIS on synaptic downscaling by counting synaptic varicosities of select neurons. Finally, we determined whether vibration could induce sleep in Drosophila models of Alzheimer's disease (AD) and suppress the accumulation of Amyloid β (Aβ) and Tubulin Associated Unit (TAU). RESULTS VIS enhanced performance in a courtship conditioning paradigm and reduced the number of synaptic varicosities in select neurons. Moreover, vibration improved sleep in Drosophila models of AD, reducing Aβ and TAU levels. CONCLUSIONS Mechanosensory stimulation offers a promising noninvasive avenue for enhancing sleep, potentially providing associated cognitive and health benefits.
Collapse
Affiliation(s)
- Sho Inami
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, USA
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
2
|
Inami S, Koh K. Sleep induced by mechanosensory stimulation provides cognitive and health benefits in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602891. [PMID: 39026689 PMCID: PMC11257551 DOI: 10.1101/2024.07.10.602891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Study Objectives Sleep is a complex phenomenon regulated by various factors, including sensory input. Anecdotal observations have suggested that gentle rocking helps babies fall asleep, and experimental studies have verified that rocking promotes sleep in both humans and mice. Recent studies have expanded this understanding, demonstrating that gentle vibration also induces sleep in Drosophila. Natural sleep serves multiple functions, including learning and memory, synaptic downscaling, and clearance of harmful substances associated with neurodegenerative diseases. Here, we investigated whether vibration-induced sleep provides similar cognitive and health benefits in Drosophila. Methods We administered gentle vibration to flies that slept very little due to a forced activation of wake-promoting neurons and investigated how the vibration influenced learning and memory in the courtship conditioning paradigm. Additionally, we examined the effects of VIS on synaptic downscaling by counting synapse numbers of select neurons. Finally, we determined whether vibration could induce sleep in Drosophila models of Alzheimer's disease (AD) and promote the clearance of Amyloid b (Ab) and Tubulin Associated Unit (TAU). Results Vibration-induced sleep enhanced performance in a courtship conditioning paradigm and reduced the number of synapses in select neurons. Moreover, vibration improved sleep in Drosophila models of AD, promoting the clearance of Ab and TAU. Conclusions Mechanosensory stimulation offers a promising non-invasive avenue for enhancing sleep, potentially providing associated cognitive and health benefits.
Collapse
Affiliation(s)
- Sho Inami
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| |
Collapse
|
3
|
Sheynikhovich D, Otani S, Bai J, Arleo A. Long-term memory, synaptic plasticity and dopamine in rodent medial prefrontal cortex: Role in executive functions. Front Behav Neurosci 2023; 16:1068271. [PMID: 36710953 PMCID: PMC9875091 DOI: 10.3389/fnbeh.2022.1068271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Mnemonic functions, supporting rodent behavior in complex tasks, include both long-term and (short-term) working memory components. While working memory is thought to rely on persistent activity states in an active neural network, long-term memory and synaptic plasticity contribute to the formation of the underlying synaptic structure, determining the range of possible states. Whereas, the implication of working memory in executive functions, mediated by the prefrontal cortex (PFC) in primates and rodents, has been extensively studied, the contribution of long-term memory component to these tasks received little attention. This review summarizes available experimental data and theoretical work concerning cellular mechanisms of synaptic plasticity in the medial region of rodent PFC and the link between plasticity, memory and behavior in PFC-dependent tasks. A special attention is devoted to unique properties of dopaminergic modulation of prefrontal synaptic plasticity and its contribution to executive functions.
Collapse
Affiliation(s)
- Denis Sheynikhovich
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France,*Correspondence: Denis Sheynikhovich ✉
| | - Satoru Otani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jing Bai
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
4
|
Kadriu B, Musazzi L, Johnston JN, Kalynchuk LE, Caruncho HJ, Popoli M, Zarate CA. Positive AMPA receptor modulation in the treatment of neuropsychiatric disorders: A long and winding road. Drug Discov Today 2021; 26:2816-2838. [PMID: 34358693 DOI: 10.1016/j.drudis.2021.07.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
Glutamatergic transmission is widely implicated in neuropsychiatric disorders, and the discovery that ketamine elicits rapid-acting antidepressant effects by modulating α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) signaling has spurred a resurgence of interest in the field. This review explores agents in various stages of development for neuropsychiatric disorders that positively modulate AMPARs, both directly and indirectly. Despite promising preclinical research, few direct and indirect AMPAR positive modulators have progressed past early clinical development. Challenges such as low potency have created barriers to effective implementation. Nevertheless, the functional complexity of AMPARs sets them apart from other drug targets and allows for specificity in drug discovery. Additional effective treatments for neuropsychiatric disorders that work through positive AMPAR modulation may eventually be developed.
Collapse
Affiliation(s)
- Bashkim Kadriu
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Jenessa N Johnston
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Carlos A Zarate
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Borbély É, Payrits M, Hunyady Á, Mező G, Pintér E. Important regulatory function of transient receptor potential ankyrin 1 receptors in age-related learning and memory alterations of mice. GeroScience 2019; 41:643-654. [PMID: 31327098 PMCID: PMC6885083 DOI: 10.1007/s11357-019-00083-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Expression of the transient receptor potential ankyrin 1 (TRPA1) receptor has been demonstrated not only in the dorsal root and trigeminal ganglia but also in different brain regions (e.g., hippocampus, hypothalamus, and cortex). However, data concerning their role in neurodegenerative and age-related diseases of the CNS is still indistinct. The aim of our study was to investigate the potential role of TRPA1 in a mouse model of senile dementia. For the investigation of changes during aging, we used male young (3-4-month-old) and old (18-month-old) wild-type (TRPA1+/+;WT) and TRPA1 receptor gene-deleted (TRPA1-/-) mice. Novel object recognition (NOR) test as well as Y maze (YM), radial arm maze (RAM), and Morris water maze (MWM) tests were used to assess the decline of memory and learning skills. In the behavioral studies, significant memory loss was detected in aged TRPA1+/+ mice with the NOR and RAM, but there was no difference measured by YM and MWM tests regarding the age and gene. TRPA1-/- showed significantly reduced memory loss, which could be seen as higher discrimination index in the NOR and less exploration time in the RAM. Furthermore, young TRPA1-/- animals showed significantly less reference memory error in the RAM and notably higher mobility in NOR, RAM, and YM compared with the age-matched WTs. Our present work has provided the first evidence that TRPA1 receptors mediate deteriorating effects in the old age memory decline. Understanding the underlying mechanisms could open new perspectives in the pharmacotherapy of dementia.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Maja Payrits
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Gréta Mező
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary.
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary.
| |
Collapse
|
6
|
Bretin S, Krazem A, Henkous N, Froger-Colleaux C, Mocaer E, Louis C, Perdaems N, Marighetto A, Beracochea D. Synergistic enhancing-memory effect of donepezil and S 47445, an AMPA positive allosteric modulator, in middle-aged and aged mice. Psychopharmacology (Berl) 2018; 235:771-787. [PMID: 29167913 PMCID: PMC5847048 DOI: 10.1007/s00213-017-4792-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022]
Abstract
Positive allosteric modulators of AMPA receptors (AMPA-PAMs) are described to facilitate cognitive processes in different memory-based models. Among them, S 47445 is a novel potent and selective AMPA-PAM. In order to assess its efficacy after repeated administration, S 47445 effect was evaluated in two aging-induced memory dysfunction tasks in old mice, one short-term working memory model evaluated in a radial maze task and one assessing contextual memory performance. S 47445 was shown to improve cognition in both models sensitive to aging. In fact, administration of S 47445 at 0.3 mg/kg (s.c.) reversed the age-induced deficits of the working memory model whatever the retention interval. Moreover, in the contextual task, S 47445 also reversed the age-induced deficit at all tested doses (from 0.03 to 0.3 mg/kg, p.o.). Since donepezil, an acetylcholinesterase inhibitor, induces only moderate symptomatic effects on memory in Alzheimer's disease patients, an alternative strategy for treatment of cognitive symptoms could be to act simultaneously on both glutamatergic AMPA receptors and cholinergic pathways by combining pharmacological treatments. The present study further examined such effects by assessing combinations of S 47445 and donepezil given orally during 9 days in aged C57/Bl6J mice using contextual memory task (CSD) and the working memory model of serial alternation task (AT). Interestingly, a significant synergistic memory-enhancing effect was observed with the combination of donepezil at 0.1 mg/kg with S 47445 at 0.1 mg/kg p.o. in the CSD or with S 47445 at 0.1 and 0.3 mg/kg in AT in comparison to compounds given alone and without any pharmacokinetic interaction.
Collapse
Affiliation(s)
- S Bretin
- Institut de Recherches Internationales Servier, Pôle d'Innovation Thérapeutique Neuropsychiatrie, Suresnes, France
| | - A Krazem
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, UMR CNRS 5287, Allée Geoffroy Saint-Hilaire, Bat B2, 33613, Pessac, France
| | - N Henkous
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, UMR CNRS 5287, Allée Geoffroy Saint-Hilaire, Bat B2, 33613, Pessac, France
| | - C Froger-Colleaux
- Froger-Colleaux C, Porsolt Research Laboratory, Z.A de Glatiné, 53940, Le Genest-Saint-Isle, France
| | - E Mocaer
- Institut de Recherches Internationales Servier, Pôle d'Innovation Thérapeutique Neuropsychiatrie, Suresnes, France
| | - C Louis
- Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Neuropsychiatrie, Croissy-Sur-Seine, France
| | - N Perdaems
- Pôle Expertise en Pharmacocinétique, Orléans, France
| | - A Marighetto
- INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U1215, 33077, Bordeaux, France
| | - D Beracochea
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, UMR CNRS 5287, Allée Geoffroy Saint-Hilaire, Bat B2, 33613, Pessac, France.
| |
Collapse
|
7
|
Marighetto A, Brayda-Bruno L, Etchamendy N. Studying the impact of aging on memory systems: contribution of two behavioral models in the mouse. Curr Top Behav Neurosci 2015; 10:67-89. [PMID: 21805395 DOI: 10.1007/7854_2011_151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present chapter, we describe our own attempts to improve our understanding of the pathophysiology of memory in aging. First, we tried to improve animal models of memory degradations occurring in aging, and develop common behavioral tools between mice and humans. Second, we began to use these behavioral tools to identify the molecular/intracellular changes occurring within the integrate network of memory systems in order to bridge the gap between the molecular and system level of analysis. The chapter is divided into three parts (i) modeling aging-related degradation in declarative memory (DM) in mice, (ii) assessing the main components of working memory (WM) with a common radial-maze task in mice and humans and (iii) studying the role of the retinoid cellular signaling path in aging-related changes in memory systems.
Collapse
Affiliation(s)
- Aline Marighetto
- Neurocentre Magendie-Inserm U862, 146 Rue Leo Saignat, 33077, Bordeaux-Cedex, France,
| | | | | |
Collapse
|
8
|
Yefimenko N, Portero-Tresserra M, Martí-Nicolovius M, Guillazo-Blanch G, Vale-Martínez A. The AMPA receptor modulator S18986 in the prelimbic cortex enhances acquisition and retention of an odor-reward association. Neurosci Lett 2013; 548:105-9. [PMID: 23707650 DOI: 10.1016/j.neulet.2013.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/05/2013] [Accepted: 05/13/2013] [Indexed: 12/31/2022]
Abstract
Systemic administration of S18986, a positive allosteric modulator of AMPA receptors, improves cognition. The present study further characterizes the drug's memory-enhancing properties and is the first to investigate its intracerebral effects on learning and memory. The results showed that rats receiving a single dose of S18986 (3 μg/site) into the prelimbic cortex, prior to olfactory discrimination acquisition, exhibited significantly shorter latencies and fewer errors to make the correct response, both in the acquisition and two drug-free retention tests. Such findings corroborate the involvement of glutamate receptors in odor-reward learning and confirm the role of the AMPAkine S18986 as a cognitive enhancer.
Collapse
Affiliation(s)
- Natalya Yefimenko
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
9
|
Vandesquille M, Krazem A, Louis C, Lestage P, Béracochéa D. S 18986 reverses spatial working memory impairments in aged mice: comparison with memantine. Psychopharmacology (Berl) 2011; 215:709-20. [PMID: 21274701 DOI: 10.1007/s00213-011-2168-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 01/04/2011] [Indexed: 12/25/2022]
Abstract
RATIONALE Normal or pathological ageing is characterized by working-memory dysfunction paired with a marked reduction in several neurotransmitters activity. The development of therapeutic strategy centered on the glutamatergic system known to bear a critical role in cognitive functions, is therefore of major importance in the treatment of mild forms of AD or age-related memory dysfunctions. OBJECTIVES In Experiment 1, we investigated the effects of ageing on spatial working memory measured by sequential alternation (SA). Thus, the decay of alternation rates over a series of trials separated by varying intertrial temporal intervals (ITI, from 5 sec to 180 sec) was studied in mice of different age groups. In Experiment 2, we investigated the memory-enhancing potential of S 18986--a modulator of AMPA receptors--on age-related SA impairments, in comparison with memantine--an antagonist of NMDA receptors--. RESULTS In Experiment 1, aged mice responded at chance with shorter ITI's and exhibited greater levels of interference in the SA task as compared to young adult mice. In Experiment 2, (1) S 18986 at 0.03 and 0.1 mg/kg reversed the memory deficit in aged mice but did not modify performance in young adult mice; (2) memantine at 10 mg/kg also increased SA rates in aged mice but did not improve performance in young adult mice. CONCLUSION The SA task is a useful tool to reveal age-induced time-dependent working memory impairments. As compared to memantine, S 18986--a compound targeting AMPA receptors--contributes a valuable therapy in the treatment of age-related cognitive dysfunctions or mild forms of AD.
Collapse
Affiliation(s)
- Matthias Vandesquille
- Institut de Neurosciences Intégratives et Cognitives d'Aquitaine, Universités de Bordeaux, IMR CNRS 5287, Avenue des Facultés, 33405, Talence, France
| | | | | | | | | |
Collapse
|
10
|
Bernard K, Danober L, Thomas JY, Lebrun C, Muñoz C, Cordi A, Desos P, Lestage P, Morain P. DRUG FOCUS: S 18986: A positive allosteric modulator of AMPA-type glutamate receptors pharmacological profile of a novel cognitive enhancer. CNS Neurosci Ther 2011; 16:e193-212. [PMID: 21050420 DOI: 10.1111/j.1755-5949.2009.00088.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) type glutamate receptors are critical for synaptic plasticity and induction of long-term potentiation (LTP), considered as one of the synaptic mechanisms underlying learning and memory. Positive allosteric modulators of AMPA receptors could provide a therapeutic approach to the treatment of cognitive disorders resulting from aging and/or neurodegenerative diseases, such as Alzheimer disease (AD). Several AMPA potentiators have been described in the last decade, but for the moment their clinical efficacy has not been demonstrated due to the complexity of the target, AMPA receptors, and the difficulty in studying cognition in animals and humans. A better understanding of the mechanism of action of this type of drug remains an important issue, if knowledge of these compounds is to be increased and if this novel therapeutic approach is to be an interesting research area. Among the AMPA potentiators, S 18986 is emerging as a new selective positive allosteric modulator of AMPA-type glutamate receptors. S 18986, as with other positive AMPA receptor modulators, increased induction and maintenance of LTP in the hippocampus as well as the expression of brain-derived neurotrophic factor (BDNF) both in vitro and in vivo. Its cognitive-enhancing properties have been demonstrated in various behavioral models (procedural, spatial, "episodic," working, and relational/declarative memory) in young-adult and aged rodents. It is interesting to note that memory-enhancing effects appeared more robust in middle-aged animals compared with aged ones and in "episodic" and spatial memory tasks. From these results, S 18986 is expected to treat memory deficits associated with early cerebral aging and neurological diseases in elderly people.
Collapse
Affiliation(s)
- Katy Bernard
- Institut de Recherches Internationales Servier, Courbevoie, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Floresco SB, Jentsch JD. Pharmacological enhancement of memory and executive functioning in laboratory animals. Neuropsychopharmacology 2011; 36:227-50. [PMID: 20844477 PMCID: PMC3055518 DOI: 10.1038/npp.2010.158] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 02/07/2023]
Abstract
Investigating how different pharmacological compounds may enhance learning, memory, and higher-order cognitive functions in laboratory animals is the first critical step toward the development of cognitive enhancers that may be used to ameliorate impairments in these functions in patients suffering from neuropsychiatric disorders. Rather than focus on one aspect of cognition, or class of drug, in this review we provide a broad overview of how distinct classes of pharmacological compounds may enhance different types of memory and executive functioning, particularly those mediated by the prefrontal cortex. These include recognition memory, attention, working memory, and different components of behavioral flexibility. A key emphasis is placed on comparing and contrasting the effects of certain drugs on different cognitive and mnemonic functions, highlighting methodological issues associated with this type of research, tasks used to investigate these functions, and avenues for future research. Viewed collectively, studies of the neuropharmacological basis of cognition in rodents and non-human primates have identified targets that will hopefully open new avenues for the treatment of cognitive disabilities in persons affected by mental disorders.
Collapse
Affiliation(s)
- Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
12
|
Prevention of ketamine-induced working memory impairments by AMPA potentiators in a nonhuman primate model of cognitive dysfunction. Behav Brain Res 2010; 212:41-8. [DOI: 10.1016/j.bbr.2010.03.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/27/2010] [Accepted: 03/19/2010] [Indexed: 12/15/2022]
|
13
|
|