1
|
DeVuono MV, Venkatesan T, Hillard CJ. Endocannabinoid signaling in stress, nausea, and vomiting. Neurogastroenterol Motil 2025; 37:e14911. [PMID: 39223918 PMCID: PMC11872018 DOI: 10.1111/nmo.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Classical antiemetics that target the serotonin system may not be effective in treating certain nausea and vomiting conditions like cyclic vomiting syndrome (CVS) and cannabinoid hyperemesis syndrome (CHS). As a result, there is a need for better therapies to manage the symptoms of these disorders, including nausea, vomiting, and anxiety. Cannabis is often used for its purported antiemetic and anxiolytic effects, given regulation of these processes by the endocannabinoid system (ECS). However, there is considerable evidence that cannabinoids can also produce nausea and vomiting and increase anxiety in certain instances, especially at higher doses. This paradoxical effect of cannabinoids on nausea, vomiting, and anxiety may be due to the dysregulation of the ECS, altering how it maintains these processes and contributing to the pathophysiology of CVS or CHS. PURPOSE The purpose of this review is to highlight the involvement of the ECS in the regulation of stress, nausea, and vomiting. We discuss how prolonged cannabis use, such as in the case of CHS or heightened stress, can dysregulate the ECS and affect its modulation of these functions. The review also examines the evidence for the roles of ECS and stress systems' dysfunction in CVS and CHS to better understand the underlying mechanisms of these conditions.
Collapse
Affiliation(s)
- Marieka V. DeVuono
- Department of Anatomy and Cell BiologySchulich School of Medicine & Dentistry, Western UniversityLondonOntarioCanada
| | - Thangam Venkatesan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal MedicineThe Ohio State University College of MedicineColumbusOhioUSA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
2
|
Witkin JM, Barrett JE. ANXIOLYTICS: Origins, drug discovery, and mechanisms. Pharmacol Biochem Behav 2024; 245:173858. [PMID: 39178918 DOI: 10.1016/j.pbb.2024.173858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Anxiety is a part of the human condition and has been managed by psychoactive substances for centuries. The current medical need and societal demand for anxiolytic medicines has not abated. The present overview provides a brief historical introduction to the discovery of modern age anxiolytics that include the benzodiazepines together with a discussion of the continuing medical need for new antianxiety medications. The paper also discusses the use and impact of behavioral pharmacology in the preclinical development of anxiolytics. The review then highlights the diversity of mechanisms for creating a new generation of anxiolytics through mechanisms beyond the potentiation of GABAA receptors and the blockade of monoamine uptake. A discussion then follows on the behavioral specificity of action of anxiolytics that includes the concept of creating an anxioselective drug, one that targets anxiety without producing untoward effects that include sedation and dependence. The use of anxiolytics in the treatment of other conditions such as substance use disorder is also briefly reviewed. Finally, a brief summary of the current status of anxiolytic drug development is provided. The review concludes with the idea that despite a host of anxiolytic drugs, the lack of efficacy in some patients and the side-effects and safety issues associated with some of these medications demands alternative medicines. Current preclinical and clinical research is ongoing with the goal of identifying such compounds.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA.
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Kokhan VS, Anokhin PK, Abaimov DA, Shamakina IY, Soldatov VO, Deykin AV. Neurokinin‐1 receptor antagonist rolapitant suppresses anxiety and alcohol intake produced by repeated withdrawal episodes. FEBS J 2022; 289:5021-5029. [DOI: 10.1111/febs.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Viktor S. Kokhan
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology Moscow Russia
| | - Petr K. Anokhin
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology Moscow Russia
| | | | - Inna Yu. Shamakina
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology Moscow Russia
| | | | | |
Collapse
|
4
|
The imidazodiazepine, KRM-II-81: An example of a newly emerging generation of GABAkines for neurological and psychiatric disorders. Pharmacol Biochem Behav 2022; 213:173321. [PMID: 35041859 DOI: 10.1016/j.pbb.2021.173321] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
GABAkines, or positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors, are used for the treatment of anxiety, epilepsy, sleep, and other disorders. The search for improved GABAkines, with reduced safety liabilities (e.g., dependence) or side-effect profiles (e.g., sedation) constituted multiple discovery and development campaigns that involved a multitude of strategies over the past century. Due to the general lack of success in the development of new GABAkines, there had been a decades-long draught in bringing new GABAkines to market. Recently, however, there has been a resurgence of efforts to bring GABAkines to patients, the FDA approval of the neuroactive steroid brexanolone for post-partum depression in 2019 being the first. Other neuroactive steroids are in various stages of clinical development (ganaxolone, zuranolone, LYT-300, Sage-324, PRAX 114, and ETX-155). These GABAkines and non-steroid compounds (GRX-917, a TSPO binding site ligand), darigabat (CVL-865), an α2/3/5-preferring GABAkine, SAN711, an α3-preferring GABAkine, and the α2/3-preferring GABAkine, KRM-II-81, bring new therapeutic promise to this highly utilized medicinal target in neurology and psychiatry. Herein, we also discuss possible conditions that have enabled the transition to a new age of GABAkines. We highlight the pharmacology of KRM-II-81 that has the most preclinical data reported. KRM-II-81 is the lead compound in a new series of orally bioavailable imidazodiazepines entering IND-enabling safety studies. KRM-II-81 has a preclinical profile predicting efficacy against pharmacoresistant epilepsies, traumatic brain injury, and neuropathic pain. KRM-II-81 also produces anxiolytic- and antidepressant-like effects in rodent models. Other key features of the pharmacology of this compound are its low sedation rate, lack of tolerance development, and the ability to prevent the development of seizure sensitization.
Collapse
|
5
|
Reitz SL, Wasilczuk AZ, Beh GH, Proekt A, Kelz MB. Activation of Preoptic Tachykinin 1 Neurons Promotes Wakefulness over Sleep and Volatile Anesthetic-Induced Unconsciousness. Curr Biol 2020; 31:394-405.e4. [PMID: 33188746 DOI: 10.1016/j.cub.2020.10.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
Endogenous sleep and general anesthesia are distinct states that share similar traits. Of particular interest to neuroscience is the loss of consciousness that accompanies both states. Multiple lines of evidence demonstrate that general anesthetics can co-opt the neural circuits regulating arousal to produce unconsciousness. However, controversy remains as to whether the neural circuits and, more specifically, the same neurons shaping sleep and wakefulness actually do influence the anesthetic state in vivo. Hypothalamic preoptic area (POA) neurons are intimately involved in modulating spontaneous and anesthetic-induced changes in arousal. Nevertheless, recent work suggests that POA GABAergic or glutamatergic neurons capable of regulating endogenous sleep fail to influence the onset or dissipation of anesthesia. We hypothesized that the POA's broad neuronal diversity could mask convergent roles of a subset of neurons in regulating both arousal and anesthesia. Contrary to a previously published report, we show that chemogenetic activation of POA Tac1 neurons obliterates both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, strongly consolidating the waking state for hours, even during a period of elevated sleep drive. Moreover, chemogenetic activation of Tac1 POA neurons stabilizes the wake state against both isoflurane- and sevoflurane-induced unconsciousness. Tac1-activated mice display a partial resistance to entering isoflurane anesthesia and a more pronounced ability to exit both isoflurane- and sevoflurane-induced unconscious states. We conclude that POA Tac1 neurons can potently reinforce arousal both against endogenous and drug-induced unconscious states. POA Tac1 neurons thus add causal support for the involvement of arousal-regulating systems in the state of general anesthesia.
Collapse
Affiliation(s)
- Sarah L Reitz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrzej Z Wasilczuk
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gretel H Beh
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Reduced avoidance coping in male, but not in female rats, after mild traumatic brain injury: Implications for depression. Behav Brain Res 2019; 373:112064. [PMID: 31278968 DOI: 10.1016/j.bbr.2019.112064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022]
Abstract
Although there is evidence that traumatic brain injury (mTBI) induces emotional sequelae in rats, it is unclear whether the phenotype is reminiscent of major depressive disorder (MDD) or posttraumatic stress disorder (PTSD). Three behavioral protocols with oppositional indicators for MDD or PTSD were assessed: acoustic startle responses (ASRs), eyeblink conditioning, and instrumental escape/avoidance (E/A) learning. Female and male rats were exposed to lateral fluid percussion injury (LFPi) consistent with mild TBI (mTBI) or sham (SHAM) surgery. Experiment 1 suggested that the acquisition of the classically conditioned eyeblink responses was unaffected by mTBI infemale and male rats. In Experiment 2, male and female mTBI rats acquired instrumental escape responses similar to their SHAM counterparts. Avoidance expression of female mTBI rats did not differ appreciably from female SHAM rats. However, male mTBI rats expressed avoidance at a lower rate than male SHAM rats over training. Poor coping in male rats emerged with repeated exposure to stress, suggesting that depressive behaviors in mTBI develop over time and with continued demand from stress. Severely attenuated ASRs were evident in female and male mTBI rats compared to respective SHAM rats throughout testing across the two experiments. Overall, signs among the three bidirectional assessments during the subacute period after mTBI were more indicative of MDD-like, than PTSD-like sequelae.
Collapse
|
7
|
Nyman M, Eskola O, Kajander J, Jokinen R, Penttinen J, Karjalainen T, Nummenmaa L, Hirvonen J, Burns D, Hargreaves R, Solin O, Hietala J. Brain neurokinin-1 receptor availability in never-medicated patients with major depression - A pilot study. J Affect Disord 2019; 242:188-194. [PMID: 30193189 DOI: 10.1016/j.jad.2018.08.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Neurotransmitter substance P (SP) and its preferred neurokinin-1 receptor (NK1R) have been implicated in the treatment of affective and addiction disorders. Despite promising preclinical data on antidepressant action, the clinical trials of NK1R antagonists in major depression have been disappointing. There are no direct in vivo imaging studies on NK1R characteristics in patients with a major depressive disorder (MDD). METHODS In this cross-sectional case-control study, we recruited nine never-medicated patients with moderate to severe MDD and nine matched healthy controls. NK1R availability (NK1R binding potential, BPND) was measured with in vivo 3-D positron emission tomography and a specific NK1 receptor tracer [18F]SPA-RQ. Clinical symptoms were assessed with the 17-item Hamilton Rating Scale for Depression (HAM-D17). RESULTS NK1R-BPND did not differ statistically significantly between patients with MDD and healthy controls. HAM-D17 total scores (range 21-32) correlated positively with NK1R-BPND in cortical and limbic areas. HAM-D17 subscale score for anxiety symptoms correlated positively with NK1R-BPND in specific brain areas implicated in fear and anxiety. LIMITATIONS Small sample size. Low variability in the clinical HAM-D subscale ratings may affect the observed correlations. CONCLUSIONS Our preliminary results do not support a different baseline expression of NK1Rs in a representative sample of never-medicated patients with MDD during a current moderate/severe depressive episode. The modulatory effect of NK1Rs on affective symptoms is in line with early positive results on antidepressant action of NK1 antagonists. However, the effect is likely to be too weak for treatment of MDD with NK1R antagonists alone in clinical practice.
Collapse
Affiliation(s)
- Mikko Nyman
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland; Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Olli Eskola
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Turku, Finland
| | - Jaana Kajander
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland
| | - Riitta Jokinen
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Jukka Penttinen
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | | | | | - Jussi Hirvonen
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland; Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Donald Burns
- Imaging Research, Merck Research Laboratories, West Point, PA, USA
| | | | - Olof Solin
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland
| | - Jarmo Hietala
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
8
|
Wang S, Feng D, Li Y, Wang Y, Sun X, Li X, Li C, Chen Z, Du X. The different baseline characteristics of cognitive behavior test between Mongolian gerbils and rats. Behav Brain Res 2018; 352:28-34. [PMID: 28963044 DOI: 10.1016/j.bbr.2017.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
The Mongolian gerbil is a popular laboratory animal useful across many research fields. In the area of cognitive behavioral research the gerbil have been shown exhibit an anxiety-like profile on the elevated plus-maze, and they could be useful as an animal model for testing anxiolytics and antidepressants. However, there are few reports that thoroughly describe the behavioral characteristics of the gerbils in common cognitive behavior tests. In the present study, we used 7 behavior tests to detect the baseline characteristics of the gerbils and compare them to the Sprague Dawley rats. Collectively, the gerbils showed significantly different behavior characteristics in the open field test, elevated plus maze, grip strength, social interaction and fear conditioning compared to the rats. However, no difference was found between gerbils and rats in sucrose preference or Barnes maze test. The data showed that the Mongolian gerbil exhibited higher social interaction and exploratory activity, but lower conditioning fear and grip strength compared with the rats. These results indicate that the gerbil may be a sensitive animal model in behavioral brain research particularly in the areas of anxiety and fear.
Collapse
Affiliation(s)
- Shiyuan Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dandan Feng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yinyin Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ying Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Department of Laboratory Animal, Capital Medical University, Beijing, 100069, China
| | - Xiuping Sun
- Institute of Laboratory Animal Sciences, Cams&Pumc, Beijing, 100021, China
| | - Xianglei Li
- Institute of Laboratory Animal Sciences, Cams&Pumc, Beijing, 100021, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Department of Laboratory Animal, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Frick A, Åhs F, Palmquist ÅM, Pissiota A, Wallenquist U, Fernandez M, Jonasson M, Appel L, Frans Ö, Lubberink M, Furmark T, von Knorring L, Fredrikson M. Overlapping expression of serotonin transporters and neurokinin-1 receptors in posttraumatic stress disorder: a multi-tracer PET study. Mol Psychiatry 2016; 21:1400-7. [PMID: 26619809 DOI: 10.1038/mp.2015.180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/10/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023]
Abstract
The brain serotonergic system is colocalized and interacts with the neuropeptidergic substance P/neurokinin-1 (SP/NK1) system. Both these neurochemical systems have independently been implicated in stress and anxiety, but interactions between them might be crucial for human anxiety conditions. Here, we examined the serotonin and substance P/neurokinin-1 (SP/NK1) systems individually as well as their overlapping expression in 16 patients with posttraumatic stress disorder (PTSD) and 16 healthy controls. Participants were imaged with the highly selective radiotracers [(11)C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile (DASB) and [(11)C]GR205171 assessing serotonin transporter (SERT) and NK1 receptor availability, respectively. Voxel-wise analyses in the amygdala, our a priori-defined region of interest, revealed increased number of NK1 receptors, but not SERT in the PTSD group. Symptom severity, as indexed by the Clinician-administered PTSD Scale, was negatively related to SERT availability in the amygdala, and NK1 receptor levels moderated this relationship. Exploratory, voxel-wise whole-brain analyses revealed increased SERT availability in the precentral gyrus and posterior cingulate cortex of PTSD patients. Patients, relative to controls, displayed lower degree of overlapping expression between SERT and NK1 receptors in the putamen, thalamus, insula and lateral orbitofrontal gyrus, lower overlap being associated with higher PTSD symptom severity. Expression overlap also explained more of the symptomatology than did either system individually, underscoring the importance of taking interactions between the neurochemical systems into account. Thus, our results suggest that aberrant serotonergic-SP/NK1 couplings contribute to the pathophysiology of PTSD and, consequently, that normalization of these couplings may be therapeutically important.
Collapse
Affiliation(s)
- A Frick
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - F Åhs
- Department of Psychology, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Å M Palmquist
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - A Pissiota
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - U Wallenquist
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - M Fernandez
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - M Jonasson
- Department of Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - L Appel
- Department of Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - Ö Frans
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - M Lubberink
- Department of Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - T Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - L von Knorring
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - M Fredrikson
- Department of Psychology, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Gerbils exhibit stable open-arms exploration across repeated testing on the elevated plus-maze. Behav Processes 2016; 122:104-9. [DOI: 10.1016/j.beproc.2015.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/21/2015] [Accepted: 11/20/2015] [Indexed: 11/22/2022]
|
11
|
Sosulina L, Strippel C, Romo-Parra H, Walter AL, Kanyshkova T, Sartori SB, Lange MD, Singewald N, Pape HC. Substance P excites GABAergic neurons in the mouse central amygdala through neurokinin 1 receptor activation. J Neurophysiol 2015; 114:2500-8. [PMID: 26334021 DOI: 10.1152/jn.00883.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 08/19/2015] [Indexed: 11/22/2022] Open
Abstract
Substance P (SP) is implicated in stress regulation and affective and anxiety-related behavior. Particularly high expression has been found in the main output region of the amygdala complex, the central amygdala (CE). Here we investigated the cellular mechanisms of SP in CE in vitro, taking advantage of glutamic acid decarboxylase-green fluorescent protein (GAD67-GFP) knockin mice that yield a reliable labeling of GABAergic neurons, which comprise 95% of the neuronal population in the lateral section of CE (CEl). In GFP-positive neurons within CEl, SP caused a membrane depolarization and increase in input resistance, associated with an increase in action potential firing frequency. Under voltage-clamp conditions, the SP-specific membrane current reversed at -101.5 ± 2.8 mV and displayed inwardly rectifying properties indicative of a membrane K(+) conductance. Moreover, SP responses were blocked by the neurokinin type 1 receptor (NK1R) antagonist L-822429 and mimicked by the NK1R agonist [Sar(9),Met(O2)(11)]-SP. Immunofluorescence staining confirmed localization of NK1R in GFP-positive neurons in CEl, predominantly in PKCδ-negative neurons (80%) and in few PKCδ-positive neurons (17%). Differences in SP responses were not observed between the major types of CEl neurons (late firing, regular spiking, low-threshold bursting). In addition, SP increased the frequency and amplitude of GABAergic synaptic events in CEl neurons depending on upstream spike activity. These data indicate a NK1R-mediated increase in excitability and GABAergic activity in CEl neurons, which seems to mostly involve the PKCδ-negative subpopulation. This influence can be assumed to increase reciprocal interactions between CElon and CEloff pathways, thereby boosting the medial CE (CEm) output pathway and contributing to the anxiogenic-like action of SP in the amygdala.
Collapse
Affiliation(s)
- L Sosulina
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany; Neuronal Networks Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - C Strippel
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - H Romo-Parra
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - A L Walter
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - T Kanyshkova
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - S B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy, and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Insbruck, Austria; and
| | - M D Lange
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Insbruck, Austria; and
| | - H-C Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany;
| |
Collapse
|
12
|
|
13
|
Poma SZ, Merlo-Pich E, Bettica P, Bani M, Fina P, Ziviani L, Milleri S. Anxiolytic effects of vestipitant in a sub-group of healthy volunteers known to be sensitive to CO2 challenge. J Psychopharmacol 2014; 28:491-7. [PMID: 24108409 DOI: 10.1177/0269881113507641] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pharmacological properties of two NK1 antagonists were studied in comparison with a benzodiazepine during a 7% CO2 challenge in a population of healthy volunteers selected for a high sensitivity to the challenge. In total, 19 healthy subjects, pre-screened for their responsiveness to the 7% CO2 test, took part in the randomised, double-blind, cross-over, incomplete block design study. After receiving treatment or placebo, the volunteers were subjected to three 7% CO2 challenges each for a time of 20 min. The treatment consisted of the administration of the following three active drugs: a single dose of benzodiazepine alprazolam (0.75 mg) and a single dose of the NK1 antagonists vestipitant (GW597599) (15 mg) and vofopitant (GR205171) (25 mg). Anxiety during the challenge was evaluated with Visual Analogue Scale-Anxiety (VAS-A) and with Panic Symptom List (PSL III-R). Respiratory parameters, heart rate and skin conductance were also recorded. Compared with placebo, vestipitant showed a significant reduction (p<0.05) in anxiety assessed on the VAS-A scale (ΔVAS-A%) while alprazolam significantly (p<0.01) attenuated the PSL III-R total score. Vofopitant did not show any anxiolytic effect. In the comparison analysis between placebo and drugs, none of the respiratory and other physiological parameters showed a statistically significant difference.
Collapse
|
14
|
Sreepathi H, Ferraguti F. Subpopulations of neurokinin 1 receptor-expressing neurons in the rat lateral amygdala display a differential pattern of innervation from distinct glutamatergic afferents. Neuroscience 2012; 203:59-77. [PMID: 22210508 PMCID: PMC3280357 DOI: 10.1016/j.neuroscience.2011.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/21/2011] [Accepted: 12/02/2011] [Indexed: 11/29/2022]
Abstract
Substance P by acting on its preferred receptor neurokinin 1 (NK1) in the amygdala appears to be critically involved in the modulation of fear and anxiety. The present study was undertaken to identify neurochemically specific subpopulations of neuron expressing NK1 receptors in the lateral amygdaloid nucleus (LA), a key site for regulating these behaviors. We also analyzed the sources of glutamatergic inputs to these neurons. Immunofluorescence analysis of the co-expression of NK1 with calcium binding proteins in LA revealed that ~35% of NK1-containing neurons co-expressed parvalbumin (PV), whereas no co-localization was detected in the basal amygdaloid nucleus. We also show that neurons expressing NK1 receptors in LA did not contain detectable levels of calcium/calmodulin kinase IIα, thus suggesting that NK1 receptors are expressed by interneurons. By using a dual immunoperoxidase/immunogold-silver procedure at the ultrastructural level, we found that in LA ~75% of glutamatergic synapses onto NK1-expressing neurons were labeled for the vesicular glutamate transporter 1 indicating that they most likely are of cortical, hippocampal, or intrinsic origin. The remaining ~25% were immunoreactive for the vesicular glutamate transporter 2 (VGluT2), and may then originate from subcortical areas. On the other hand, we could not detect VGluT2-containing inputs onto NK1/PV immunopositive neurons. Our data add to previous localization studies by describing an unexpected variation between LA and basal nucleus of the amygdala (BA) in the neurochemical phenotype of NK1-expressing neurons and reveal the relative source of glutamatergic inputs that may activate these neurons, which in turn regulate fear and anxiety responses.
Collapse
Key Words
- nk1 receptor
- amygdala
- interneuron
- glutamate
- parvalbumin
- ba, basal nucleus of the amygdala
- bla, basolateral complex of the amygdala
- bp, band pass
- camkiiα, calcium/calmodulin kinase iiα
- cb, calbindin-d28k
- cbp, calcium binding protein
- cr, calretinin
- dab, 3,3′-diaminobenzidine
- gad67, glutamate decarboxylase isoform of 67 kda
- hrp, horseradish peroxidase
- la, lateral nucleus of the amygdala
- li, like immunoreactivity
- ngs, normal goat serum
- nk1, neurokinin 1
- pbs, phosphate buffered saline
- pv, parvalbumin
- rt, room temperature
- sp, substance p
- tbs, tris-buffered saline
- tbs-t, 0.1% v/v triton x-100 in tbs
- vglut, vesicular glutamate transporter
Collapse
Affiliation(s)
| | - F. Ferraguti
- Department of Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| |
Collapse
|
15
|
Tillisch K, Labus J, Nam B, Bueller J, Smith S, Suyenobu B, Siffert J, McKelvy J, Naliboff B, Mayer E. Neurokinin-1-receptor antagonism decreases anxiety and emotional arousal circuit response to noxious visceral distension in women with irritable bowel syndrome: a pilot study. Aliment Pharmacol Ther 2012; 35:360-7. [PMID: 22221140 PMCID: PMC4073664 DOI: 10.1111/j.1365-2036.2011.04958.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Irritable bowel syndrome is characterised by chronic abdominal pain and frequent comorbid anxiety. The substance P ⁄ neurokinin-1 receptor system is implicated in the regulation of both pain and anxiety, suggesting a potential therapeutic target in IBS. AIM To determine whether inhibition of the neurokinin-1 receptor (NK1R) will change pain ratings and brain responses to experimental visceral pain and anxiety symptoms in women with IBS or not. METHODS Rome II positive IBS women were recruited for a double-blind, placebo-controlled, cross-over study of NK1R antagonist AV608. Treatment periods were 3 weeks with a 2-week washout period. Functional MRI during a visceral distension paradigm was performed before first treatment and after treatment blocks. SPM8 was used to compare brain activity during painful and nonpainful visceral stimuli in regions associated with emotional arousal and interoception. Negative affect, anxiety symptoms and pain ratings were assessed. RESULTS Eleven subjects completed the study and eight subjects provided fMRI data. AV608, compared with placebo, was associated with reduced anxiety, negative affect, and pain ratings. During AV608 treatment, the amygdala, hippocampus and anterior cingulate gyrus showed decreased activity during visceral distension. AV608 was also associated with decreases in activity in brain regions associated with interoception (posterior insula, anterior mid-cingulate gyrus). CONCLUSIONS Chronic treatment with AV608 in IBS is associated with improved mood and pain ratings and activity of emotional arousal related brain regions. This suggests that further exploration of NK1R antagonists is warranted in visceral pain disorders, particularly in patients with comorbid anxiety symptoms.
Collapse
Affiliation(s)
- K Tillisch
- Center for Neurobiology of Stress, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gerbils. THE LABORATORY RABBIT, GUINEA PIG, HAMSTER, AND OTHER RODENTS 2012. [PMCID: PMC7158315 DOI: 10.1016/b978-0-12-380920-9.00052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The gerbil is usually nonaggressive and is one of the easiest rodents to maintain and handle. Its disposition, curious nature, relative freedom from naturally occurring infectious diseases, and adaptability to its environment have contributed to its popularity as a laboratory animal. Gerbils are found in deserts and semiarid geographical regions of the world. The Mongolian gerbils that are available today originated from 20 pairs of captured animals that were maintained in 1935 in a closed, random-bred colony at the Kitasato Institute in Japan. Gerbils have several unique anatomical and physiological features. Mature gerbils are smaller than rats, but larger than mice. Mongolian gerbils are attracted to saliva and use salivary cues to discriminate between siblings and nonsiblings, and females use oral cues in the selection of sociosexual partners. Gerbils have been used as experimental models in a number of areas of biomedical research. Gerbils are excellent subjects for laboratory animal research as they are susceptible to bacterial, viral, and parasitic pathogens that affect humans and other species. Gerbils may have spontaneous seizures secondary to stress such as handling, cage change, abrupt noises, or changes in the environment. Cystic ovaries are seen commonly in female gerbils over 1 year of age. Gerbils have unique characteristics, which make them appropriate for a number of animal models. Classically, gerbils have been used in research involving stroke, parasitology, infectious diseases, epilepsy, brain development and behavior, and hearing.
Collapse
|
17
|
Cryan JF, Sweeney FF. The age of anxiety: role of animal models of anxiolytic action in drug discovery. Br J Pharmacol 2011; 164:1129-61. [PMID: 21545412 PMCID: PMC3229755 DOI: 10.1111/j.1476-5381.2011.01362.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 12/12/2022] Open
Abstract
Anxiety disorders are common, serious and a growing health problem worldwide. However, the causative factors, aetiology and underlying mechanisms of anxiety disorders, as for most psychiatric disorders, remain relatively poorly understood. Animal models are an important aid in giving insight into the aetiology, neurobiology and, ultimately, the therapy of human anxiety disorders. The approach, however, is challenged with a number of complexities. In particular, the heterogeneous nature of anxiety disorders in humans coupled with the associated multifaceted and descriptive diagnostic criteria, creates challenges in both animal modelling and in clinical research. In this paper, we describe some of the more widely used approaches for assessing the anxiolytic activity of known and potential therapeutic agents. These include ethological, conflict-based, hyponeophagia, vocalization-based, physiological and cognitive-based paradigms. Developments in the characterization of translational models are also summarized, as are the challenges facing researchers in their drug discovery efforts in developing new anxiolytic drugs, not least the ever-shifting clinical conceptualization of anxiety disorders. In conclusion, to date, although animal models of anxiety have relatively good validity, anxiolytic drugs with novel mechanisms have been slow to emerge. It is clear that a better alignment of the interactions between basic and clinical scientists is needed if this is to change.
Collapse
Affiliation(s)
- John F Cryan
- Neuropharmacology Research Group, School of Pharmacy, University College Cork, Cork, Ireland.
| | | |
Collapse
|
18
|
Mathew SJ, Vythilingam M, Murrough JW, Zarate CA, Feder A, Luckenbaugh DA, Kinkead B, Parides MK, Trist DG, Bani MS, Bettica PU, Ratti EM, Charney DS. A selective neurokinin-1 receptor antagonist in chronic PTSD: a randomized, double-blind, placebo-controlled, proof-of-concept trial. Eur Neuropsychopharmacol 2011; 21:221-9. [PMID: 21194898 PMCID: PMC3478767 DOI: 10.1016/j.euroneuro.2010.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/24/2010] [Accepted: 11/30/2010] [Indexed: 01/01/2023]
Abstract
The substance P-neurokinin-1 receptor (SP-NK(1)R) system has been extensively studied in experimental models of stress, fear, and reward. Elevated cerebrospinal fluid (CSF) SP levels were reported previously in combat-related PTSD. No medication specifically targeting this system has been tested in PTSD. This proof-of-concept randomized, double-blind, placebo-controlled trial evaluated the selective NK(1)R antagonist GR205171 in predominately civilian PTSD. Following a 2-week placebo lead-in, 39 outpatients with chronic PTSD and a Clinician-Administered PTSD Scale (CAPS) score ≥50 were randomized to a fixed dose of GR205171 (N=20) or placebo (N=19) for 8weeks. The primary endpoint was mean change from baseline to endpoint in the total CAPS score. Response rate (≥50% reduction in baseline CAPS) and safety/tolerability were secondary endpoints. CSF SP concentrations were measured in a subgroup of patients prior to randomization. There was significant improvement in the mean CAPS total score across all patients over time, but no significant difference was found between GR205171 and placebo. Likewise, there was no significant effect of drug on the proportion of responders [40% GR205171 versus 21% placebo (p=0.30)]. An exploratory analysis showed that GR205171 treatment was associated with significant improvement compared to placebo on the CAPS hyperarousal symptom cluster. GR205171 was well-tolerated, with no discontinuations due to adverse events. CSF SP concentrations were positively correlated with baseline CAPS severity. The selective NK(1)R antagonist GR205171 had fewer adverse effects but was not significantly superior to placebo in the short-term treatment of chronic PTSD. (ClinicalTrials.gov Identifier: NCT 00211861, NCT 00383786).
Collapse
Affiliation(s)
- Sanjay J Mathew
- Mood & Anxiety Disorders Program, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Millan MJ, Dekeyne A, Gobert A, Mannoury la Cour C, Brocco M, Rivet JM, Di Cara B, Lejeune F, Cremers TI, Flik G, de Jong TR, Olivier B, de Nanteuil G. S41744, a dual neurokinin (NK)1 receptor antagonist and serotonin (5-HT) reuptake inhibitor with potential antidepressant properties: a comparison to aprepitant (MK869) and paroxetine. Eur Neuropsychopharmacol 2010; 20:599-621. [PMID: 20483567 DOI: 10.1016/j.euroneuro.2010.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/23/2010] [Accepted: 04/09/2010] [Indexed: 12/19/2022]
Abstract
Though neurokinin(1) (NK(1)) receptors are implicated in depressed states and their treatment, selective antagonists have disappointed in clinical trials. Accordingly, we designed a novel ligand, S41744 (2-piperazin-1-yl-indan-2-carboxylic-acid-(3-chloro-5-fluoro-benzyl)-methyl-amide), which both blocks NK(1) receptors and interferes with serotonin (5-HT) reuptake. S41744 mimicked the selective antagonist aprepitant in binding human (h)NK(1) receptors and in antagonising Substance-P-mediated Extracellular-Regulated-Kinase phosphorylation (pK(B), 7.7). Further, it dose-dependently (0.63-40.0 mg/kg, i.p.) displaced ex vivo [(3)H]-[Sar(9),Met(O(2))(11)]-Substance P binding to gerbil striatum, attenuated formalin-induced hind-paw licking in gerbils, and antagonised locomotion induced by i.c.v. administration of the NK(1) agonist GR73632 to guinea pigs. Like paroxetine, S41744 recognised h5-HT transporters, reduced synaptosomal uptake of 5-HT (pK(B), 7.9), and dose-dependently (0.63-10.0 mg/kg) elevated dialysis levels of 5-HT in the hippocampus and frontal cortex of freely-moving guinea pigs. Further, S41744 increased extracellular levels of 5-HT in frontal cortex and hippocampus of rats to a greater extent than paroxetine, and its inhibitory influence upon serotonergic perikarya was blunted relative to its affinity for 5-HT transporters. S41744 more potently blocked stress-induced vocalizations in guinea pigs than aprepitant and paroxetine, and it was active in forced-swim and marble-burying procedures of putative antidepressant properties in mice. While aprepitant displayed anxiolytic actions in stress-induced foot-tapping and social interaction tests in gerbils, paroxetine was anxiogenic and S41744 "neutral", reflecting balanced NK(1) antagonism and suppression of 5-HT reuptake. Moreover, S41744 shared anxiolytic actions of aprepitant in the rat Vogel Conflict Test. In conclusion, S41744 is an innovative NK(1) antagonist/5-HT reuptake inhibitor justifying further evaluation for treatment of stress-related disorders.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|