1
|
Bernaud VE, Koebele SV, Northup-Smith SN, Willeman MN, Barker C, Schatzki-Lumpkin A, Sanchez MV, Bimonte-Nelson HA. Evaluations of memory, anxiety, and the growth factor IGF-1R after post-surgical menopause treatment with a highly selective progestin. Behav Brain Res 2023; 448:114442. [PMID: 37085118 PMCID: PMC11105077 DOI: 10.1016/j.bbr.2023.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Progestogens are a key component of menopausal hormone therapies. While some progestogens can be detrimental to cognition, there is preclinical evidence that progestogens with a strong progesterone-receptor affinity benefit some molecular mechanisms believed to underlie cognitive function. Thus, a progestin that maximizes progesterone-receptor affinity and minimizes affinities to other receptors may be cognitively beneficial. We evaluated segesterone-acetate (SGA), a 19-norprogesterone derivative with a strong progesterone-receptor affinity and no androgenic or estrogenic-receptor activity, hypothesizing that it would enhance cognition. Middle-aged rats underwent Sham or Ovariectomy (Ovx) surgery followed by administration of medroxyprogesterone-acetate (MPA; used as a positive control as we have previously shown MPA-induced cognitive deficits), SGA (low or high dose), or vehicle (one Sham and one Ovx group). Spatial working and reference memory, delayed retention, and anxiety-like behavior were assessed, as were memory- and hormone- related protein assays within the frontal cortex, dorsal hippocampus, and entorhinal cortex. Low-dose SGA impaired spatial working memory, while high-dose SGA had a more extensive detrimental impact, negatively affecting spatial reference memory and delayed retention. Replicating previous findings, MPA impaired spatial reference memory and delayed retention. SGA, but not MPA, alleviated Ovx-induced anxiety-like behaviors. On two working memory measures, IGF-1R expression correlated with better working memory only in rats without hormone manipulation; any hormone manipulation or combination of hormone manipulations used herein altered this relationship. These findings suggest that SGA impairs spatial cognition after surgical menopause, and that surgical menopause with or without progestin administration disrupts relationships between a growth factor critical to neuroplasticity.
Collapse
Affiliation(s)
- Victoria E Bernaud
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Stephanie V Koebele
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Steven N Northup-Smith
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Mari N Willeman
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA; TGen Institute, 445 N 5th St, Phoenix, AZ 85004, USA
| | - Charlotte Barker
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Alex Schatzki-Lumpkin
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Maria Valenzuela Sanchez
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA.
| |
Collapse
|
2
|
Pletzer B, Winkler-Crepaz K, Hillerer K. Progesterone and contraceptive progestin actions on the brain: A systematic review of animal studies and comparison to human neuroimaging studies. Front Neuroendocrinol 2023; 69:101060. [PMID: 36758768 DOI: 10.1016/j.yfrne.2023.101060] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
In this review we systematically summarize the effects of progesterone and synthetic progestins on neurogenesis, synaptogenesis, myelination and six neurotransmitter systems. Several parallels between progesterone and older generation progestin actions emerged, suggesting actions via progesterone receptors. However, existing results suggest a general lack of knowledge regarding the effects of currently used progestins in hormonal contraception regarding these cellular and molecular brain parameters. Human neuroimaging studies were reviewed with a focus on randomized placebo-controlled trials and cross-sectional studies controlling for progestin type. The prefrontal cortex, amygdala, salience network and hippocampus were identified as regions of interest for future preclinical studies. This review proposes a series of experiments to elucidate the cellular and molecular actions of contraceptive progestins in these areas and link these actions to behavioral markers of emotional and cognitive functioning. Emotional effects of contraceptive progestins appear to be related to 1) alterations in the serotonergic system, 2) direct/indirect modulations of inhibitory GABA-ergic signalling via effects on the allopregnanolone content of the brain, which differ between androgenic and anti-androgenic progestins. Cognitive effects of combined oral contraceptives appear to depend on the ethinylestradiol dose.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology & Centre for Cognitive Neuroscience, Paris-Lodron-University Salzburg, Salzburg Austria.
| | | | - Katharina Hillerer
- Department of Gynaecology & Obstetrics, Private Medical University, Salzburg, Austria
| |
Collapse
|
3
|
Vincent K, Stagg CJ, Warnaby CE, Moore J, Kennedy S, Tracey I. "Luteal Analgesia": Progesterone Dissociates Pain Intensity and Unpleasantness by Influencing Emotion Regulation Networks. Front Endocrinol (Lausanne) 2018; 9:413. [PMID: 30083136 PMCID: PMC6064935 DOI: 10.3389/fendo.2018.00413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Pregnancy-induced analgesia is known to occur in association with the very high levels of estradiol and progesterone circulating during pregnancy. In women with natural ovulatory menstrual cycles, more modest rises in these hormones occur on a monthly basis. We therefore hypothesized that the high estradiol high progesterone state indicative of ovulation would be associated with a reduction in the pain experience. Methods: We used fMRI and a noxious thermal stimulus to explore the relationship between sex steroid hormones and the pain experience. Specifically, we assessed the relationship with stimulus-related activity in key regions of networks involved in emotion regulation, and functional connectivity between these regions. Results: We demonstrate that physiologically high progesterone levels are associated with a reduction in the affective component of the pain experience and a dissociation between pain intensity and unpleasantness. This dissociation is related to decreased functional connectivity between the inferior frontal gyrus and amygdala. Moreover, we have shown that in the pre-ovulatory state, the traditionally "male" sex hormone, testosterone, is the strongest hormonal regulator of pain-related activity and connectivity within the emotional regulation network. However, following ovulation the traditionally "female" sex hormones, estradiol and progesterone, appear to dominate. Conclusions: We propose that a phenomenon of "luteal analgesia" exists with potential reproductive advantages.
Collapse
Affiliation(s)
- Katy Vincent
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
- *Correspondence: Katy Vincent
| | - Charlotte J. Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Catherine E. Warnaby
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom
| | - Jane Moore
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Stephen Kennedy
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Yousuf S, Brat DJ, Shu HK, Wang Y, Stein DG, Atif F. Progesterone improves neurocognitive outcomes following therapeutic cranial irradiation in mice. Horm Behav 2017; 96:21-30. [PMID: 28866326 DOI: 10.1016/j.yhbeh.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 07/20/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Despite improved therapeutic methods, CNS toxicity resulting from cancer treatment remains a major cause of post-treatment morbidity. More than half of adult patients with cranial irradiation for brain cancer develop neurobehavioral/cognitive deficits that severely impact quality of life. We examined the neuroprotective effects of the neurosteroid progesterone (PROG) against ionizing radiation (IR)-induced neurobehavioral/cognitive deficits in mice. Male C57/BL mice were exposed to one of two fractionated dose regimens of IR (3Gy×3 or 3Gy×5). PROG (16mg/kg; 0.16mg/g) was given as a pre-, concurrent or post-IR treatment for 14days. Mice were tested for short- and long-term effects of IR and PROG on neurobehavioral/cognitive function on days 10 and 30 after IR treatment. We evaluated both hippocampus-dependent and -independent memory functions. Locomotor activity, elevated plus maze, novel object recognition and Morris water maze tests revealed behavioral deficits following IR. PROG treatment produced improvement in behavioral performance at both time points in the mice given IR. Western blot analysis of hippocampal and cortical tissue showed that IR at both doses induced astrocytic activation (glial fibrillary acidic protein), reactive macrophages/microglia (CD68) and apoptosis (cleaved caspase-3) and PROG treatment inhibited these markers of brain injury. There was no significant difference in the degree of deficit in any test between the two dose regimens of IR at either time point. These findings could be important in the context of patients with brain tumors who may undergo radiotherapy and eventually develop cognitive deficits.
Collapse
Affiliation(s)
- Seema Yousuf
- Brain Research Laboratory, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA 30322, USA.
| | - Daniel J Brat
- Department of Pathology, Emory University Hospital Room H183, 1364 Clifton Rd NE, Atlanta, GA 30322, USA.
| | - Hui-Kuo Shu
- Department of Radiation Oncology, 1365 C Clifton Rd NE, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Ya Wang
- Department of Radiation Oncology, 1365 C Clifton Rd NE, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA 30322, USA.
| | - Fahim Atif
- Brain Research Laboratory, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Hiroi R, Weyrich G, Koebele SV, Mennenga SE, Talboom JS, Hewitt LT, Lavery CN, Mendoza P, Jordan A, Bimonte-Nelson HA. Benefits of Hormone Therapy Estrogens Depend on Estrogen Type: 17β-Estradiol and Conjugated Equine Estrogens Have Differential Effects on Cognitive, Anxiety-Like, and Depressive-Like Behaviors and Increase Tryptophan Hydroxylase-2 mRNA Levels in Dorsal Raphe Nucleus Subregions. Front Neurosci 2016; 10:517. [PMID: 28008302 PMCID: PMC5143618 DOI: 10.3389/fnins.2016.00517] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/26/2016] [Indexed: 11/23/2022] Open
Abstract
Decreased serotonin (5-HT) function is associated with numerous cognitive and affective disorders. Women are more vulnerable to these disorders and have a lower rate of 5-HT synthesis than men. Serotonergic neurons in the dorsal raphe nucleus (DRN) are a major source of 5-HT in the forebrain and play a critical role in regulation of stress-related disorders. In particular, polymorphisms of tryptophan hydroxylase-2 (TpH2, the brain-specific, rate-limiting enzyme for 5-HT biosynthesis) are implicated in cognitive and affective disorders. Administration of 17β-estradiol (E2), the most potent naturally circulating estrogen in women and rats, can have beneficial effects on cognitive, anxiety-like, and depressive-like behaviors. Moreover, E2 increases TpH2 mRNA in specific subregions of the DRN. Although conjugated equine estrogens (CEE) are a commonly prescribed estrogen component of hormone therapy in menopausal women, there is a marked gap in knowledge regarding how CEE affects these behaviors and the brain 5-HT system. Therefore, we compared the effects of CEE and E2 treatments on behavior and TpH2 mRNA. Female Sprague-Dawley rats were ovariectomized, administered either vehicle, CEE, or E2 and tested on a battery of cognitive, anxiety-like, and depressive-like behaviors. The brains of these animals were subsequently analyzed for TpH2 mRNA. Both CEE and E2 exerted beneficial behavioral effects, although efficacy depended on the distinct behavior and for cognition, on the task difficulty. Compared to CEE, E2 generally had more robust anxiolytic and antidepressant effects. E2 increased TpH2 mRNA in the caudal and mid DRN, corroborating previous findings. However, CEE increased TpH2 mRNA in the caudal and rostral, but not the mid, DRN, suggesting that distinct estrogens can have subregion-specific effects on TpH2 gene expression. We also found differential correlations between the level of TpH2 mRNA in specific DRN subregions and behavior, depending on the type of behavior. These distinct associations imply that cognition, anxiety-like, and depressive-like behaviors are modulated by unique serotonergic neurocircuitry, opening the possibility of novel avenues of targeted treatment for different types of cognitive and affective disorders.
Collapse
Affiliation(s)
- Ryoko Hiroi
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Giulia Weyrich
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Stephanie V Koebele
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Sarah E Mennenga
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Joshua S Talboom
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Lauren T Hewitt
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Courtney N Lavery
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Perla Mendoza
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Ambra Jordan
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| |
Collapse
|
6
|
Walf AA, Koonce CJ, Frye CA. Progestogens' effects and mechanisms for object recognition memory across the lifespan. Behav Brain Res 2015; 294:50-61. [PMID: 26235328 DOI: 10.1016/j.bbr.2015.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/16/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
Abstract
This review explores the effects of female reproductive hormones, estrogens and progestogens, with a focus on progesterone and allopregnanolone, on object memory. Progesterone and its metabolites, in particular allopregnanolone, exert various effects on both cognitive and non-mnemonic functions in females. The well-known object recognition task is a valuable experimental paradigm that can be used to determine the effects and mechanisms of progestogens for mnemonic effects across the lifespan, which will be discussed herein. In this task there is little test-decay when different objects are used as targets and baseline valance for objects is controlled. This allows repeated testing, within-subjects designs, and longitudinal assessments, which aid understanding of changes in hormonal milieu. Objects are not aversive or food-based, which are hormone-sensitive factors. This review focuses on published data from our laboratory, and others, using the object recognition task in rodents to assess the role and mechanisms of progestogens throughout the lifespan. Improvements in object recognition performance of rodents are often associated with higher hormone levels in the hippocampus and prefrontal cortex during natural cycles, with hormone replacement following ovariectomy in young animals, or with aging. The capacity for reversal of age- and reproductive senescence-related decline in cognitive performance, and changes in neural plasticity that may be dissociated from peripheral effects with such decline, are discussed. The focus here will be on the effects of brain-derived factors, such as the neurosteroid, allopregnanolone, and other hormones, for enhancing object recognition across the lifespan.
Collapse
Affiliation(s)
- Alicia A Walf
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Life Sciences Research, The University at Albany-SUNY, Albany, NY 12222, USA; Institute of Arctic Biology, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, Alaska 99775, USA; Cognitive Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Carolyn J Koonce
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; Institute of Arctic Biology, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, Alaska 99775, USA
| | - Cheryl A Frye
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; Dept. of Biological Sciences, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Neuroscience, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Life Sciences Research, The University at Albany-SUNY, Albany, NY 12222, USA; Department of Chemistry and Biochemistry, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; Institute of Arctic Biology, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, Alaska 99775, USA.
| |
Collapse
|
7
|
Lemini C, Jaimez R, Figueroa A, Martinez-Mota L, Avila ME, Medina M. Ovariectomy differential influence on some hemostatic markers of mice and rats. Exp Anim 2014; 64:81-9. [PMID: 25312504 PMCID: PMC4329519 DOI: 10.1538/expanim.14-0052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rodent ovariectomy is an experimental method to eliminate the main source of sexual
steroids. This work explored for the first time the ovariectomy temporal changes induced
in the hemostatic coagulation markers: prothrombin time (PT), activated partial
thromboplastin time (aPTT), thrombin time (TT), and fibrinogen concentration (FIB) along
with uterine weight on adult female CD1 mice and Wistar rats. Uterine weight (Uw) was
assessed before ovariectomy (control), and 1, 3, 5, 7, 9, 16, and 21 days after surgery.
PT, aPTT, TT and FIB were estimated the same days, using reported standard techniques.
Ovariectomy decreased Uw, since day 1; and from day 10 to 21 reached the lowest values for
both species. After day 1, mice hemostatic parameters changed (PT +10%,
P<0.05; aPTT +53%, P<0.05; TT −24%,
P<0.05; FIB +67%, P<0.05). Rats showed
significant changes only in TT and FIB (TT −13%, P<0.001; FIB +65%,
P<0.001). Neither mice PT, aPTT and TT, recovered control values
after 21 days. In the rats from day 5 to 16 aPTT diminished (18–23%,
P<0.05) recovering to control values on day 21, TT after 9 days and PT
on day 16. In both species, FIB returned to its control values after 9 days. Ovariectomy
differentially altered the PT hemostatic parameter of mice and rats indicating a
non-equivalence among both species behaviour for experimental studies of blood
coagulation.
Collapse
Affiliation(s)
- Cristina Lemini
- Facultad de Medicina, Departamento de Farmacología, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, CP 04510, México D.F., México
| | | | | | | | | | | |
Collapse
|
8
|
Involvement of pregnane xenobiotic receptor in mating-induced allopregnanolone formation in the midbrain and hippocampus and brain-derived neurotrophic factor in the hippocampus among female rats. Psychopharmacology (Berl) 2014; 231:3375-90. [PMID: 24781516 PMCID: PMC4135012 DOI: 10.1007/s00213-014-3569-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/31/2014] [Indexed: 12/30/2022]
Abstract
RATIONALE Given that the pregnane neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP), is increased following behavioral challenges (e.g., mating), and that there is behavioral-induced biosynthesis of 3α,5α-THP in midbrain and mesocorticolimbic structures, 3α,5α-THP likely has a role in homeostasis and motivated reproduction and reproduction-related behaviors (e.g., affect, affiliation). The role of pregnane xenobiotic receptor (PXR), involved in cholesterol metabolism, for these effects is of continued interest. OBJECTIVES We hypothesized that there would be differences in brain levels of 3α,5α-THP following varied behavioral experiences, an effect abrogated by knockdown of PXR in the midbrain. METHODS Proestrous rats were infused with PXR antisense oligonucleotides (AS-ODNs) or vehicle to the ventral tegmental area before different behavioral manipulations and assessments. Endpoints were expression levels of PXR in the midbrain, 3α,5α-THP, and ovarian steroids (estradiol, progesterone, dihydroprogesterone) in the midbrain, striatum, hippocampus, hypothalamus, prefrontal cortex, and plasma. RESULTS Across experiments, knocking down PXR reduced PXR expression and 3α,5α-THP levels in the midbrain and hippocampus. There were differences in terms of the behavioral manipulations, such that paced mating had the most robust effects to increase 3α,5α-THP levels and reduce open field exploration and social interaction. An additional question that was addressed is whether brain-derived neurotrophic factor (BDNF) is a downstream factor for regulating effects of behavioral-induced 3α,5α-THP biosynthesis. Rats infused with PXR AS-ODNs had lower levels of BDNF in the hippocampus. CONCLUSION Thus, PXR may be a regulator of mating-induced 3α,5α-THP formation and behavioral changes and neural plasticity, such as BDNF.
Collapse
|
9
|
Koonce CJ, Frye CA. Progesterone facilitates exploration, affective and social behaviors among wildtype, but not 5α-reductase Type 1 mutant, mice. Behav Brain Res 2013; 253:232-9. [PMID: 23886595 DOI: 10.1016/j.bbr.2013.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 12/24/2022]
Abstract
Progesterone (P4) facilitates exploration, anxiety and social behaviors in estrogen (E2)-primed mice. Some of these effects may be due to actions of its 5α-reduced metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP). In order to address the role of P4 and its metabolite, 3α,5α-THP, a mouse model was utilized. We hypothesized that if P4's metabolism to 3α,5α-THP is essential to facilitate exploratory, anti-anxiety and social behaviors of mice, then wildtype, but not 5α-reductase knockout (5α-RKO), mice will have greater expression of these behaviors. Experiment 1: Mice were ovariectomized (ovx), E2-primed and administered P4 (0, 125, 250, or 500μg) subcutaneously and then tested 4h later in a battery of tasks: open field, elevated plus maze, and social interaction. Experiment 2: Ovx, E2-primed mice were administered P4 (4mg/kg), 3α,5α-THP (4mg/kg), medroxyprogesterone acetate (MPA, which does not convert to 3α,5α-THP; 4mg/kg), or vehicle subcutaneously and tested 4h later. There was a dose-dependent effect of P4 to wildtype, but not 5α-RKO, mice. Neither wildtype, nor 5α-RKO, mice had increased exploration, anti-anxiety or pro-social behavior with MPA administration. Progesterone only exerted effects on anti-anxiety behavior, and increased 3α,5α-THP in the prefrontal cortex and hippocampus, when administered to wildtype mice. 3α,5α-THP to both WT and 5α-RKO mice increased exploration, anti-anxiety and social interaction and 3α,5α-THP levels in the hippocampus and prefrontal cortex. Thus, metabolism of P4 by the 5α-reductase enzyme may be essential for enhancement of these behaviors.
Collapse
Affiliation(s)
- Carolyn J Koonce
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
10
|
Frye CA, Koonce CJ, Walf AA. Progesterone, compared to medroxyprogesterone acetate, to C57BL/6, but not 5α-reductase mutant, mice enhances object recognition and placement memory and is associated with higher BDNF levels in the hippocampus and cortex. Neurosci Lett 2013; 551:53-7. [PMID: 23872095 DOI: 10.1016/j.neulet.2013.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 06/24/2013] [Accepted: 07/02/2013] [Indexed: 12/28/2022]
Abstract
Progesterone (P4) may influence cognition in part through actions of its 5α-reduced metabolite, allopregnanolone. Ovariectomized mice that were C57BL/6 wildtype (WT), or deficient in the 5α-reductase Type 1 enzyme (5α-reductase knockout; 5αRKO), were administered vehicle, P4, allopregnanolone, or medroxyprogesterone acetate (MPA) after training in the object recognition or placement tasks. WT mice administered P4 or allopregnanolone performed significantly better in the object recognition and placement tasks than did WT mice administered vehicle or MPA. 5αRKO mice administered allopregnanolone, but not P4, MPA, or vehicle showed enhanced performance in the object recognition and placement tasks. Levels of brain-derived neurotrophic factor (BDNF) in the prefrontal cortex and hippocampus were lowest among mice administered MPA. Thus, some of P4s effects to enhance cognitive performance may be incumbent upon its 5α-reduction.
Collapse
Affiliation(s)
- Cheryl A Frye
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA.
| | | | | |
Collapse
|
11
|
Olvera-Hernández S, Fernández-Guasti A. Sex differences in the burying behavior test in middle-aged rats: effects of diazepam. Pharmacol Biochem Behav 2011; 99:532-9. [PMID: 21672548 DOI: 10.1016/j.pbb.2011.05.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/25/2011] [Accepted: 05/29/2011] [Indexed: 11/28/2022]
Abstract
The full behavioral profile displayed during the burying behavior test was studied in middle aged (11-14 months) males, females with irregular estrous cycles, and females in persistent diestrus, with and without diazepam (0.5-2.0mg/kg). Ambulation and motor coordination were also tested to discern behavioral changes from general motor alterations. Without diazepam treatment, middle-aged males showed longer burying behavior latencies, more prod explorations and less freezing than both groups of females. Untreated middle aged males also showed less cumulative burying and more immobility compared to females with irregular cycles. None of the parameters showed any difference between the female groups. Diazepam (0.5 and 1.0mg/kg) increased burying behavior latency in females, but had no effect on any parameter in middle aged males. However, a higher dose (2.0mg/kg) of diazepam increased immobility, freezing and the number of prod shocks and decreased prod explorations and groomings, but impaired motor coordination in males. In contrast with young males and females, diazepam at any dose reduced cumulative burying. Data are discussed on the bases of (1) sex and age differences in burying behavior and on (2) the anxiolytic-like action of diazepam and its side effects.
Collapse
Affiliation(s)
- Sandra Olvera-Hernández
- Centro de Investigación y Estudios Avanzados, Departamento de Farmacobiología, Calzada de los Tenorios 235, Colonia Granjas Coapa, México 14330 D.F., Mexico
| | | |
Collapse
|
12
|
Walf AA, Paris JJ, Rhodes ME, Simpkins JW, Frye CA. Divergent mechanisms for trophic actions of estrogens in the brain and peripheral tissues. Brain Res 2010; 1379:119-36. [PMID: 21130078 DOI: 10.1016/j.brainres.2010.11.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 01/08/2023]
Abstract
17β-estradiol (E(2)) can enhance reproductive, cognitive, and affective functions; however, the mechanisms by which E(2) has these effects need to be better understood. Pleiotrophic effects of E(2) can occur via traditional and novel actions at various forms of estrogen receptors (ERs). In the central nervous system, trophic effects of E(2) may be related to beneficial effects of hormone replacement therapy (HRT). However, in peripheral reproductive tissues, E(2)'s capacity to evoke growth can increase risk of cancers. This review focuses on investigations aimed at elucidating divergent mechanisms of steroids to promote trophic effects in the brain, independent of effects on peripheral reproductive tissues. First, actions of estrogens via ERα or ERβ for peripheral growth (carcinogen-induced tumors, uterine growth) and hippocampus-dependent behaviors (affect, cognition) are described. Second, factors that influence these effects of estrogens are described (e.g. experience, timing/critical windows, non-ER mechanisms). Third, effects of estrogens at ERβ related to actions of progestogens, such as 5α-pregnan-3α-ol-20-one (3α,5α-THP) are described. In summary, effects of E(2) may occur via multiple mechanisms, which may underlie favorable effects in the brain with minimal peripheral trophic effects.
Collapse
Affiliation(s)
- Alicia A Walf
- Life Sciences Research, University at Albany, Albany, NY 12222, USA
| | | | | | | | | |
Collapse
|
13
|
I. Levels of 5α-reduced progesterone metabolite in the midbrain account for variability in reproductive behavior of middle-aged female rats. Brain Res 2010; 1379:137-48. [PMID: 21070751 DOI: 10.1016/j.brainres.2010.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/20/2010] [Accepted: 11/01/2010] [Indexed: 02/06/2023]
Abstract
At middle-age, the reproductive capacity of female rats begins to decline. Whether there are consequences for social and reproductive behaviors related to changes in estradiol (E(2)), progesterone (P(4)) and its 5α-reduced metabolites, dihydroprogesterone (DHP) and 5α-pregnan-3α-ol-20-one (3α,5α-THP), is of interest. In Experiment 1, 1-year-old female breeder rats that had "maintained their reproductive status" (having 4-5 days estrous cycles, > 60% successful pregnancies after mating, > 10 pups/litter) or their age-matched counterparts with "declining reproductive status" were assessed in social interaction, standard mating, and paced mating when in proestrus. Rats that maintained reproductive status tended to have higher levels of proceptivity, and significantly reduced aggression, towards males, compared to rats with declining reproductive status. Basal midbrain E(2) and DHP levels accounted for a significant proportion of variance in lordosis. In Experiment 2, 1-year-old, age-matched, female breeders that had maintained reproductive status or were in reproductive decline were compared to three-month old, nulliparous females that had regular (4-5 days) or irregular estrous cycles. Age did not influence paced mating but younger rats had greater diencephalon E(2) than did middle-aged rats. After mating, rats with declining/irregular reproductive status had higher P(4) and DHP levels in midbrain than did rats with maintaining/regular reproductive status, albeit differences in midbrain 3α,5α-THP were not seen. Middle-aged rats that maintained reproductive function had greater 3α,5α-THP formation in diencephalon compared to other groups. Thus, age-related changes in central progestogen formation in midbrain or diencephalon may contribute to some variability in expression of reproductive behaviors.
Collapse
|