1
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Li S, Zhan J, Wang Y, Oduro PK, Owusu FB, Zhang J, Leng L, Li R, Wei S, He J, Wang Q. Suxiao Jiuxin Pill attenuates acute myocardial ischemia via regulation of coronary artery tone. Front Pharmacol 2023; 14:1104243. [PMID: 37234713 PMCID: PMC10206061 DOI: 10.3389/fphar.2023.1104243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Suxiao Jiuxin Pill (SJP) is a well-known traditional Chinese medicine drug used to manage heart diseases. This study aimed at determining the pharmacological effects of SJP in acute myocardial infarction (AMI), and the molecular pathways its active compounds target to induce coronary artery vasorelaxation. Using the AMI rat model, SJP improved cardiac function and elevated ST segment. LC-MS and GC-MS detected twenty-eight non-volatile compounds and eleven volatile compounds in sera from SJP-treated rats. Network pharmacology analysis revealed eNOS and PTGS2 as the key drug targets. Indeed, SJP induced coronary artery relaxation via activation of the eNOS-NO pathway. Several of SJP's main compounds, like senkyunolide A, scopoletin, and borneol, caused concentration-dependent coronary artery relaxation. Senkyunolide A and scopoletin increased eNOS and Akt phosphorylation in human umbilical vein endothelial cells (HUVECs). Molecular docking and surface plasmon resonance (SPR) revealed an interaction between senkynolide A/scopoletin and Akt. Vasodilation caused by senkyunolide A and scopoletin was inhibited by uprosertib (Akt inhibitor) and eNOS/sGC/PKG axis inhibitors. This suggests that senkyunolide A and scopoletin relax coronary arteries through the Akt-eNOS-NO pathway. In addition, borneol induced endothelium-independent vasorelaxation of the coronary artery. The Kv channel inhibitor 4-AP, KCa2+ inhibitor TEA, and Kir inhibitor BaCl2 significantly inhibited the vasorelaxant effect of borneol in the coronary artery. In conclusion, the results show that Suxiao Jiuxin Pill protects the heart against acute myocardial infarction.
Collapse
Affiliation(s)
- Sa Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaguo Zhan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yucheng Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Felix Boahen Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiale Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Ruiqiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Shujie Wei
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun He
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- Endocrinology Department, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Zhi W, Liu Y, Wang X, Zhang H. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115749. [PMID: 36181983 DOI: 10.1016/j.jep.2022.115749] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a common systemic disease with increasing morbidity and mortality worldwide. Traditional Chinese medicine (TCM) with characteristics of multiple pathways and targets, presents advantages in the diagnosis and treatment of atherosclerosis. AIM OF THE STUDY With the modernization of TCM, the active ingredients and molecular mechanisms of TCM for AS treatment have been gradually revealed. Therefore, it is necessary to examine the existing studies on TCM therapies aimed at regulating AS over the past two decades. MATERIALS AND METHODS Using "atherosclerosis" and "Traditional Chinese medicine" as keywords, all relevant TCM literature published in the last 10 years was collected from electronic databases (such as Elsevier, Springer, PubMed, CNKI, and Web of Science), books and papers until March 2022, and the critical information was statistically analyzed. RESULTS In this review, we highlighted extracts of 8 single herbs, a total of 41 single active ingredients, 20 TCM formulae, and 25 patented drugs, which were described with chemical structure, source, model, efficacy and potential mechanism. CONCLUSION We summarized the cytopathological basis for the development of atherosclerosis involving vascular endothelial cells, macrophages and vascular smooth muscle cells, and categorically elaborated the medicinal TCM used for AS, all of which provide the current evidence on the better management of atherosclerosis by TCM.
Collapse
Affiliation(s)
- Wenbing Zhi
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China
| | - Xiumei Wang
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| |
Collapse
|
4
|
Chen S, Wu X, Li T, Li Y, Wang B, Cheng W, Teng Y, Yang J, Meng H, Wang L, Lu Z, Jiang Y, Wang Y, Zhao M. Atheroprotective Effects and Mechanisms of Postmarketing Chinese Patent Formulas in Atherosclerosis Models: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4010607. [PMID: 34873408 PMCID: PMC8643251 DOI: 10.1155/2021/4010607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Some postmarketing Chinese patent formulas have been widely used to treat atherosclerosis (AS) and play critical roles in Chinese healthcare. However, the usage of these herbs is yet controversial due to unclear effects and lack of understanding of the mechanism of action. With the modernization of traditional Chinese formulas, we are to elucidate the atheroprotective properties of these remedies from successful postmarketing experiments in vivo. METHODS In this systematic review, we critically searched the databases, applied stringent criteria, assessed the methodological quality, and examined the current evidence in vivo. RESULTS Consequently, 60 studies were included in the present qualitative synthesis. Data on models, high-fat diet, intervention time, outcome measures, efficacy, and mechanisms were collected. Finally, 23 formulas that could alleviate AS were correlated to the amelioration of plaques, improvement of plaque stability, modification of lipid level and lipid metabolism, and the effects of anti-inflammation and antioxidant stress with multiple components and targets. However, the methodological quality was low and incomplete among the included literature. CONCLUSIONS Thus, taken together, the studies on postmarketing Chinese patent formulas would provide a novel approach to improve the treatment of AS, and rigorously designed studies would provide high-quality evidence.
Collapse
Affiliation(s)
- Shiqi Chen
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaoxiao Wu
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tong Li
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yang Li
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Baofu Wang
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Weiting Cheng
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yu Teng
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jingjing Yang
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hui Meng
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Lei Wang
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Ziwen Lu
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yangyang Jiang
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yahong Wang
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mingjing Zhao
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
5
|
Yun CW, Lee SH. Enhancement of Functionality and Therapeutic Efficacy of Cell-Based Therapy Using Mesenchymal Stem Cells for Cardiovascular Disease. Int J Mol Sci 2019; 20:ijms20040982. [PMID: 30813471 PMCID: PMC6412804 DOI: 10.3390/ijms20040982] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease usually triggers coronary heart disease, stroke, and ischemic diseases, thus promoting the development of functional failure. Mesenchymal stem cells (MSCs) are cells that can be isolated from various human tissues, with multipotent and immunomodulatory characteristics to help damaged tissue repair and avoidance of immune responses. Much research has proved the feasibility, safety, and efficiency of MSC-based therapy for cardiovascular disease. Despite the fact that the precise mechanism of MSCs remains unclear, their therapeutic capability to treat ischemic diseases has been tested in phase I/II clinical trials. MSCs have the potential to become an effective therapeutic strategy for the treatment of ischemic and non-ischemic cardiovascular disorders. The molecular mechanism underlying the efficacy of MSCs in promoting engraftment and accelerating the functional recovery of injury sites is still unclear. It is hypothesized that the mechanisms of paracrine effects for the cardiac repair, optimization of the niche for cell survival, and cardiac remodeling by inflammatory control are involved in the interaction between MSCs and the damaged myocardial environment. This review focuses on recent experimental and clinical findings related to cardiovascular disease. We focus on MSCs, highlighting their roles in cardiovascular disease repair, differentiation, and MSC niche, and discuss their therapeutic efficacy and the current status of MSC-based cardiovascular disease therapies.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea.
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea.
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 34538, Korea.
| |
Collapse
|
6
|
Exosomes from Suxiao Jiuxin pill-treated cardiac mesenchymal stem cells decrease H3K27 demethylase UTX expression in mouse cardiomyocytes in vitro. Acta Pharmacol Sin 2018. [PMID: 29542684 DOI: 10.1038/aps.2018.18] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Suxiao Jiuxin pill (SJP) is a traditional Chinese medicine for the treatment of acute coronary syndrome in China, which contains two principal components, tetramethylpyrazine (TMP) and borneol (BOR). Thus far, however, the molecular mechanisms underlying the beneficial effects of SJP on the cardiac microenvironment are unknown. Cardiac mesenchymal stem cells (C-MSCs) communicate with cardiomyocytes (CMs) through the release of microvesicles (exosomes) to restore cardiac homeostasis and elicit repair, in part through epigenetic regulatory mechanisms. In this study, we examined whether SJP treatment altered C-MSC-derived exosomes (SJP-Exos) to cause epigenetic chromatic remodeling in recipient CMs. C-MSC isolated from mouse hearts were pretreated with SJP (SJP-Exos), TMP (TMP-Exos) or BOR (BOR-Exos). Then, HL-1 cells, a mouse cardiomyocyte line, were treated with exosomes from control C-MSCs (Ctrl-Exos), SJP-Exos, TMP-Exos or BOR-Exos. Treatment with SJP-Exos significantly increased the protein levels of histone 3 lysine 27 trimethylation (H3K27me3), a key epigenetic chromatin marker for cardiac transcriptional suppression, in the HL-1 cells. To further explore the mechanisms of SJP-Exo-mediated H3K27me3 upregulation, we assessed the mRNA expression levels of key histone methylases (EZH1, EZH2 and EED) and demethylases (JMJD3 and UTX) in the exosome-treated HL-1 cells. Treatment with SJP-Exo selectively suppressed UTX expression in the recipient HL-1 cells. Furthermore, PCNA, an endogenous marker of cell replication, was significantly higher in SJP-Exo-treated HL-1 cells than in Ctrl-Exo-treated HL-1 cells. These results show that SJP-Exos increase cardiomyocyte proliferation and demonstrate that SJP can modulate C-MSC-derived exosomes to cause epigenetic chromatin remodeling in recipient cardiomyocytes; consequently, SJP-Exos might be used to promote cardiomyocyte proliferation.
Collapse
|
7
|
Efficacy of Suxiao Jiuxin Pill on Coronary Heart Disease: A Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9745804. [PMID: 29770157 PMCID: PMC5892298 DOI: 10.1155/2018/9745804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
Suxiao jiuxin pill is considered an effective ancillary drug in patients with coronary heart disease. Although numerous small, single-center clinical trials have been conducted, the benefits and harms of suxiao jiuxin pill remain controversial. We performed a meta-analysis to clarify the efficacy of suxiao jiuxin pill on patients with coronary heart disease. Randomized controlled trials were identified by using the Cochrane Library, PubMed, Web of Science, Embase, Wanfang, Weipu, and China Knowledge Resource Integrated databases (until June 2016). Pooled relative risks (RR), weighted mean differences (WMD), and 95% confidence intervals (95% CIs) were estimated using random-effects models. Forty-one trials involving 6276 patients were included in our analysis. Administration of suxiao jiuxin pill significantly improved electrocardiogram (ECG) results when compared with other therapies (RR 1.32, 95% CI 1.26 to 1.38, and P < 0.001). Subgroup analyses revealed that suxiao jiuxin pills improve ECG results more than salvia tablets (RR 1.54, 95% CI 1.41 to 1.67, and P < 0.001), isosorbide dinitrate (RR 1.14, 95% CI 1.21 to 1.44, and P = 0.001), nitroglycerin (RR 1.35, 95% CI 1.16 to 1.56, and P < 0.001), and other drugs (RR 1.32, 95% CI 1.21 to 1.44, and P < 0.001). Available evidence additionally suggests that suxiao jiuxin pills could significantly reduce total cholesterol (WMD −0.62 mmol/L, 95% CI −1.06 to –0.18 mmol/L, and P = 0.005) and low-density lipoprotein (LDL) levels (WMD −1.12 mmol/L, 95% CI −1.42 to −0.82 mmol/L, and P < 0.001) and increase high-density lipoprotein (HDL) levels (WMD 0.32 mmol/L, 95% CI 0.07 to 0.58 mmol/L, and P = 0.014). However, no significant differences were observed in total triglyceride levels, plasma viscosity, hematocrit, and fibrinogen. No incidences of adverse reactions were observed after administration of suxiao jiuxin pill. Improvements in ECG results and lipid profiles were also observed after suxiao jiuxin administration compared to other therapies. It also decreased low-cut and high-cut whole blood viscosity without significant adverse reactions.
Collapse
|
8
|
Lu Z, Zhang Y, Zhuang P, Zhang J, Zhou H, Zhang M, Yang X, Wang J, Liu D, Tong Y. Protective effect of Suxiao jiuxin pill, a traditional Chinese medicine, against acute myocardial ischemia in dogs. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:373. [PMID: 26481800 PMCID: PMC4617746 DOI: 10.1186/s12906-015-0908-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 10/09/2015] [Indexed: 02/06/2023]
Abstract
Background The purpose of this study was to investigate the effect of Suxiao Jiuxin Pill (SX), a traditional Chinese medicine, on acute myocardial ischemia induced by coronary occlusion in anesthetized dogs. Methods Acute myocardial ischemia model was established by ligating the left anterior descending artery to reduce flow by 90 %. Adult mongrel dogs were randomly divided into six groups: model, SX high dose, SX middle dose, SX low dose, Isosorbide dinitrate (ISD) and Sham groups. Adult mongrel dogs were anesthetized and instrumented for measurements of heart rate (HR), mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), left ventricular dP/dt, coronary blood flow (CBF), myocardial blood flow (MBF), coronary vascular resistance (CVR), and epicardial electrocardiogram (EECG). After administration with SX, changes in hemodynamics were recorded. Serum enzymes and blood gas analysis were also detected. Results SX has a dose-dependent effect on the reduction of infarct size. Besides, SX exerted a notable inhibition on the elevation of serum creatine kinase MB (CK-MB), lactate dehydrogenase (LDH), malondialdehyde (MDA), and elevation in the superoxide dismutase (SOD) activity. SX also showed a capacity to recover myocardial function by significantly reducing MAP, CVR, LVSP, left ventricular systolic pressure (LVEDP), systolic blood pressure (SBP), diastolic blood pressure (SDP), and increasing CBF and myocardial blood flow (MBF). In addition, SX high dose group markedly reduced total mV of ST segment elevation (Σ-ST), total number of sites with this degree of ST segment elevation (N-ST) and oxygen extraction ratio (O2 Extr). Conclusion SX can improve hemodynamic and myocardial oxygen metabolism, reduce the degree and scope of myocardial ischemia, and hence exert notable anti-anginal ischaemic effect.
Collapse
|
9
|
Sun Y, Huang ZY, Wang ZH, Li CP, Meng XL, Zhang YJ, Su F, Ma N. TGF-β1 and TIMP-4 regulate atrial fibrosis in atrial fibrillation secondary to rheumatic heart disease. Mol Cell Biochem 2015; 406:131-8. [PMID: 25971370 DOI: 10.1007/s11010-015-2431-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
To investigate the involvement of transforming growth factor-β1 (TGF-β1) and tissue inhibitor of metalloproteinase 4 (TIMP-4) in influencing the severity of atrial fibrosis in rheumatic heart disease (RHD) patients with atrial fibrillation (AF). The degree of myocardial fibrosis was evaluated using Masson staining. The expression levels of TGF-β1, TIMP-4, matrix metalloproteinase-2 (MMP-2), type I collagen, and type III collagen were estimated by Western blot analysis. Additionally, TGF-β1 and TIMP-4 mRNA levels were quantified by qRT-PCR. The effect of TGF-β1 stimulation on TIMP-4 expression was assessed by in vitro stimulation of freshly isolated human atrial fibroblasts with recombinant human TGF-β1, followed by Western blot analysis to detect changes in TIMP-4 levels. Masson stain revealed that the left atrial diameter and collagen volume fraction were obviously increased in AF patients, compared to sinus rhythm (SR) controls (both P < 0.05). Western blot analysis showed significantly elevated levels of the AF markers MMP-2, type I collagen, and type III collagen in the AF group, in comparison to the SR controls (all P < 0.05). In the AF group, TGF-β1 expression was relatively higher, while TIMP-4 expression was apparently lower than the SR group (all P < 0.05). TIMP-4 expression level showed a negative association with TGF-β1 expression level (r = -0.98, P < 0.01) and TGF-β1 stimulation of atrial fibroblasts led to a sharp decrease in TIMP-4 protein level. Increased TGF-β1 expression and decreased TIMP-4 expression correlated with atrial fibrosis and ECM changes in the atria of RHD patients with AF. Notably, TGF-β1 suppressed TIMP-4 expression, suggesting that selective TGF-β1 inhibitors may be useful therapeutic agents.
Collapse
Affiliation(s)
- Yu Sun
- Cardiovascular Department, Second Affiliated Hospital and Second Clinical Medical College, Fujian Medical University, Zhongshan North Road No.34, Quanzhou, 362000, Fujian Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yu Q, Li H, Li L, Wang S, Wu Y. Correlation between genetic polymorphism of matrix metalloproteinase-9 in patients with coronary artery disease and cardiac remodeling. Pak J Med Sci 2015; 31:648-53. [PMID: 26150861 PMCID: PMC4485288 DOI: 10.12669/pjms.313.7229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 03/15/2015] [Indexed: 01/11/2023] Open
Abstract
Objective: To explore the correlation between genetic polymorphism of matrix metalloproteinase-9 (MMP-9) in patients with coronary artery disease (CAD) and cardiac remodeling. Methods: A total of 272 subjects who received coronary angiography in our hospital from July 2008 to September 2013 were selected, including 172 CAD patients (CAD group) and another 100 ones (control group). Both groups were subjected to MMP-9 and ultrasonic detections to determine vascular remodeling and atherosclerotic plaques. C1562G polymorphism of MMP-9 gene was detected, and correlation with vascular remodeling and atherosclerotic plaque was analyzed. Results: Serum MMP-9 level of CAD group (330.87±50.39 ng/ml) was significantly higher than that of control group (134.87±34.02 ng/ml) (P<0.05). Compared with control group, CAD group had significantly higher intima-media thickness, and significantly lower systolic peak velocity, mean systolic velocity and end-diastolic velocity (P<0.05). Total area of stenotic blood vessels was 67.34±22.98 mm2, while that of control blood vessels was 64.00±20.83 mm2. G/G, G/C and C/C genotype frequencies of MMP-9 differed significantly in the two groups (P<0.05). G and C allele frequencies of CAD group (70.9% and 29.1%) were significantly different from those of control group (50.0% and 50.0%) (P<0.05). G/G, G/C and C/C genotypes were manifested as lipid-rich, fibrous and calcified or ulcerated plaques respectively. Total area of stenotic blood vessels of G/G genotype significantly exceeded those of G/C and C/C genotypes (P<0.05), whereas the latter two had no significant differences. Conclusion: CAD promoted 1562C-G transformation of MMP-9 gene into genetic polymorphism, thus facilitating arterial remodeling and increasing unstable atherosclerotic plaques.
Collapse
Affiliation(s)
- Qibin Yu
- Qibin Yu, Department of Cardiosurgery, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Peking 100037, China
| | - Hanmei Li
- Hanmei Li, Department of Cardiosurgery, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Peking 100037, China
| | - Linlin Li
- Linlin Li, Department of Cardiosurgery, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Peking 100037, China
| | - Shaoye Wang
- Shaoye Wang, Department of Cardiosurgery, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Peking 100037, China
| | - Yongbo Wu
- Yongbo Wu, Department of Cardiosurgery, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Peking 100037, China
| |
Collapse
|