1
|
Zhang J, Dong F, Ju G, Pan X, Mao X, Zhang X. Sodium Houttuyfonate Alleviates Monocrotaline-induced Pulmonary Hypertension by Regulating Orai1 and Orai2. Am J Respir Cell Mol Biol 2024; 71:332-342. [PMID: 38709251 DOI: 10.1165/rcmb.2023-0015oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/06/2024] [Indexed: 05/07/2024] Open
Abstract
An increased intracellular Ca2+ concentration ([Ca2+]i) is a key trigger for pulmonary arterial smooth muscle cell (PASMC) proliferation and contributes greatly to pulmonary hypertension (PH). Extracellular Ca2+ influx via a store-operated Ca2+ channel, termed store-operated Ca2+ entry (SOCE), is a crucial mechanism for [Ca2+]i increase in PASMCs. Calcium release-activated calcium modulator (Orai) proteins, consisting of three members (Orai1-3), are the main components of the store-operated Ca2+ channel. Sodium houttuyfonate (SH) is a product of the addition reaction of sodium bisulfite and houttuynin and has antibacterial, antiinflammatory, and other properties. In this study, we assessed the contributions of Orai proteins to monocrotaline (MCT)-enhanced SOCE, [Ca2+]i, and cell proliferation in PASMCs and determined the effect of SH on MCT-PH and the underlying mechanism, focusing on Orai proteins, SOCE, and [Ca2+]i in PASMCs. Our results showed that: 1) Orai1 and Orai2 were selectively upregulated in the distal pulmonary arteries and the PASMCs of MCT-PH rats; 2) knockdown of Orai1 or Orai2 reduced SOCE, [Ca2+]i, and cell proliferation without affecting their expression in PASMCs in MCT-PH rats; 3) SH significantly normalized the characteristic parameters in a dose-dependent manner in the MCT-PH rat model; and 4) SH decreased MCT-enhanced SOCE, [Ca2+]i, and PASMC proliferation via Orai1 or Orai2. These results indicate that SH likely exerts its protective role in MCT-PH by inhibiting the Orai1,2-SOCE-[Ca2+]i signaling pathway.
Collapse
MESH Headings
- Animals
- Monocrotaline/toxicity
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/drug therapy
- ORAI1 Protein/metabolism
- ORAI1 Protein/genetics
- Sulfites/pharmacology
- Rats
- Male
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- ORAI2 Protein/metabolism
- Rats, Sprague-Dawley
- Calcium/metabolism
- Calcium Signaling/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Alkanes
Collapse
Affiliation(s)
- Jun Zhang
- School of Medicine, Lishui University, Lishui, China
| | - Fang Dong
- School of Medicine, Lishui University, Lishui, China
| | - Gaojia Ju
- School of Pharmacy, Fujian Medical University, Fuzhou, China; and
| | - Xinli Pan
- School of Medicine, Lishui University, Lishui, China
| | - Xinwu Mao
- Department of Pathology, Lishui Municipal People Hospital, Lishui, China
| | - Xiaowen Zhang
- Department of Pathology, Lishui Municipal People Hospital, Lishui, China
| |
Collapse
|
2
|
Zhang JJ, Mao-Mao, Shao MM, Wang MC. Therapeutic potential of natural flavonoids in pulmonary arterial hypertension: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155535. [PMID: 38537442 DOI: 10.1016/j.phymed.2024.155535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease caused by pulmonary vascular remodeling, with a high incidence and mortality. At present, many clinical drugs for treating PAH mainly exert effects by relaxing the pulmonary artery, with limited therapeutic effects, so the search for viable therapeutic agents continues uninterrupted. In recent years, natural flavonoids have shown promising potential in the treatment of cardiovascular diseases. It is necessary to comprehensively elucidate the potential of natural flavonoids to combat PAH. PURPOSE To evaluate the potential of natural flavonoids to hinder or slow down the occurrence and development of PAH, and to identify promising drug discovery candidates. METHODS Literature was collected from PubMed, Science Direct, Web of science, CNKI databases and Google scholar. The search terms used included "pulmonary arterial hypertension", "pulmonary hypertension", "natural products", "natural flavonoids", "traditional chinese medicine", etc., and several combinations of these keywords. RESULTS The resources, structural characteristics, mechanisms, potential and prospect strategies of natural flavonoids for treating PAH were summarized. Natural flavonoids offer different solutions as possible treatments for PAH. These mechanisms may involve various pathways and molecular targets related to the pathogenesis of PAH, such as inflammation, oxidative stress, vascular remodeling, genetic, ion channels, cell proliferation and autophagy. In addition, prospect strategies of natural flavonoids for anti-PAH including structural modification and nanomaterial delivery systems have been explored. This review suggests that the potential of natural flavonoids as alternative therapeutic agents in the prevention and treatment of PAH holds promise for future research and clinical applications. CONCLUSION Despite displaying the enormous potential of flavonoids in PAH, some limitations need to be further explored. Firstly, using advanced drug discovery tools, including computer-aided design and high-throughput screening, to further investigate the safety, biological activity, and precise mechanism of action of flavonoids. Secondly, exploring the structural modifications of these compounds is expected to optimize their efficacy. Lastly, it is necessary to conduct well controlled clinical trials and a comprehensive evaluation of potential side effects to determine their effectiveness and safety.
Collapse
Affiliation(s)
- Jin-Jing Zhang
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Mao-Mao
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Min-Min Shao
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Meng-Chuan Wang
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China.
| |
Collapse
|
3
|
Abd El-Aziz GS, Alturkistani HA, Alshali RA, Halawani MM, Hamdy RM, Aggad WS, Kamal NJ, Hindi EA. The potential protectivity of honey and olive oil in methotrexate induced renal damage in rats. Toxicon 2023; 234:107268. [PMID: 37673343 DOI: 10.1016/j.toxicon.2023.107268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
Methotrexate (MTX) is an antimetabolite used to treat inflammatory diseases, autoimmune disorders and some malignancies. However, it has some life-threatening side effects such as nephrotoxicity which limit its clinical applications. That motivated the attention to seek for a defensive material to improve the outcomes of methotrexate while minimizing both renal and non-renal toxicity. Both honey (H) and olive oil (OO) are bioactive substances widely used as nutraceuticals that exhibited a potent therapeutic and antioxidant properties. This study aimed to assess the possible protective effect of H and OO intake either singly or together against the biochemical and structural Methotrexate-induced nephrotoxicity in rats. The study was conducted on 56 adult albino rats, they were divided into seven groups (n = 8): group 1 received only distelled water (negative control), group 2 received H (1.2 g/kg/day), group 3 received OO (1.25 ml/kg/day), group 4 received a single intraperitoneal injection of MTX (20 mg/kg), group 5 received MTX and H, group 6 received MTX and OO, group 7 received MTX, H and OO together. At the end of the experiment (2 weeks), all rats were sacrificed, and blood samples were assessed for kidney function tests. Kidney tissues were evaluated for several antioxidant parameters including Malondialdehyde (MDA), Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. Tissues were also processed for histological and immunohistochemical assessments. Results revealed that both H and OO improved the kidney function markers, histopathological and immunohistological changes due to Methotrexate-induced renal damage. Additionally, both substances also redeemed the oxidative damage of the kidney by decreasing MDA and increasing anti-oxidant enzymatic activities. Such effects were more apparent when the two substances were given together. Ultimately, our results proof that H and OO amiolerate the Methotrexate-induced nephrotoxicity in rats, thus they can be used as an adjuvant supplements for patients requiring methotrexate therapy.
Collapse
Affiliation(s)
- Gamal S Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani A Alturkistani
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasha A Alshali
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mervat M Halawani
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raid M Hamdy
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nezar J Kamal
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad A Hindi
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Yang X, Yang Y, Liu K, Zhang C. Traditional Chinese medicine monomers: Targeting pulmonary artery smooth muscle cells proliferation to treat pulmonary hypertension. Heliyon 2023; 9:e14916. [PMID: 37128338 PMCID: PMC10147991 DOI: 10.1016/j.heliyon.2023.e14916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a complex multifactorial disease characterized by increased pulmonary vascular resistance and pulmonary vascular remodeling (PVR), with high morbidity, disability, and mortality. The abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is the main pathological change causing PVR. At present, clinical treatment drugs for PH are limited, which can only improve symptoms and reduce hospitalization but cannot delay disease progression and reduce survival rate. In recent years, numerous studies have shown that traditional Chinese medicine monomers (TCMs) inhibit excessive proliferation of PASMCs resulting in alleviating PVR through multiple channels and multiple targets, which has attracted more and more attention in the treatment of PH. In this paper, the experimental evidence of inhibiting PASMCs proliferation by TCMs was summarized to provide some directions for the future development of these mentioned TCMs as anti-PH drugs in clinical.
Collapse
|
5
|
Lu T, Zhang Y, Su Y, Zhou D, Xu Q. Role of store-operated Ca2+ entry in cardiovascular disease. Cell Commun Signal 2022; 20:33. [PMID: 35303866 PMCID: PMC8932232 DOI: 10.1186/s12964-022-00829-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
Store-operated channels (SOCs) are highly selective Ca2+ channels that mediate Ca2+ influx in non-excitable and excitable (i.e., skeletal and cardiac muscle) cells. These channels are triggered by Ca2+ depletion of the endoplasmic reticulum and sarcoplasmic reticulum, independently of inositol 1,4,5-trisphosphate (InsP3), which is involved in cell growth, differentiation, and gene transcription. When the Ca2+ store is depleted, stromal interaction molecule1 (STIM1) as Ca2+ sensor redistributes into discrete puncta near the plasma membrane and activates the protein Ca2+ release activated Ca2+ channel protein 1 (Orai1). Accumulating evidence suggests that SOC is associated with several physiological roles in endothelial dysfunction and vascular smooth muscle proliferation that contribute to the progression of cardiovascular disease. This review mainly elaborates on the contribution of SOC in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in cardiovascular disease.
Collapse
Affiliation(s)
- Ting Lu
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China
| | - Yihua Zhang
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China
| | - Yong Su
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China
| | - Dayan Zhou
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China
| | - Qiang Xu
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China.
| |
Collapse
|
6
|
Natural ingredients from Chinese materia medica for pulmonary hypertension. Chin J Nat Med 2021; 19:801-814. [PMID: 34844719 DOI: 10.1016/s1875-5364(21)60092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Indexed: 11/21/2022]
Abstract
Pulmonary hypertension (PH) is a severe pathophysiological condition characterized by pulmonary artery remodeling and continuous increases in pulmonary artery pressure, which may eventually develop to right heart failure and death. Although newly discovered and incredible treatment strategies in recent years have improved the prognosis of PH, limited types of effective and economical drugs for PH still makes it as a life-threatening disease. Some drugs from Chinese materia medica (CMM) have been traditionally applied in the treatment of lung diseases. Accumulating evidence suggests active pharmaceutical ingredients (APIs) derived from those medicines brings promising future for the prevention and treatment of PH. In this review, we summarized the pharmacological effects of APIs derived from CMM which are potent in treating PH, so as to provide new thoughts for initial drug discovery and identification of potential therapeutic strategies in alternative medicine for PH.
Collapse
|
7
|
Barbeau S, Gilbert G, Cardouat G, Baudrimont I, Freund-Michel V, Guibert C, Marthan R, Vacher P, Quignard JF, Ducret T. Mechanosensitivity in Pulmonary Circulation: Pathophysiological Relevance of Stretch-Activated Channels in Pulmonary Hypertension. Biomolecules 2021; 11:biom11091389. [PMID: 34572602 PMCID: PMC8470538 DOI: 10.3390/biom11091389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023] Open
Abstract
A variety of cell types in pulmonary arteries (endothelial cells, fibroblasts, and smooth muscle cells) are continuously exposed to mechanical stimulations such as shear stress and pulsatile blood pressure, which are altered under conditions of pulmonary hypertension (PH). Most functions of such vascular cells (e.g., contraction, migration, proliferation, production of extracellular matrix proteins, etc.) depend on a key event, i.e., the increase in intracellular calcium concentration ([Ca2+]i) which results from an influx of extracellular Ca2+ and/or a release of intracellular stored Ca2+. Calcium entry from the extracellular space is a major step in the elevation of [Ca2+]i, involving a variety of plasmalemmal Ca2+ channels including the superfamily of stretch-activated channels (SAC). A common characteristic of SAC is that their gating depends on membrane stretch. In general, SAC are non-selective Ca2+-permeable cation channels, including proteins of the TRP (Transient Receptor Potential) and Piezo channel superfamily. As membrane mechano-transducers, SAC convert physical forces into biological signals and hence into a cell response. Consequently, SAC play a major role in pulmonary arterial calcium homeostasis and, thus, appear as potential novel drug targets for a better management of PH.
Collapse
Affiliation(s)
- Solène Barbeau
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Guillaume Gilbert
- ORPHY, UFR Sciences et Techniques, University of Brest, EA 4324, F-29238 Brest, France;
| | - Guillaume Cardouat
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Isabelle Baudrimont
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Véronique Freund-Michel
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Christelle Guibert
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Roger Marthan
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Pierre Vacher
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Jean-François Quignard
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Thomas Ducret
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.V.); (J.-F.Q.)
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
- Correspondence:
| |
Collapse
|
8
|
Wang J, Li H, Xia T, Feng J, Zhou R. Pulmonary arterial hypertension and flavonoids: A role in treatment. CHINESE J PHYSIOL 2021; 64:115-124. [PMID: 34169916 DOI: 10.4103/cjp.cjp_25_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a high mortality progressive pulmonary vascular disease that can lead to right heart failure. The use of clinical drugs for the treatment of PAH is limited to a great extent because of its single target and high price. Flavonoids are widely distributed in nature, and have been found in fruits, vegetables, and traditional Chinese medicine. They have diverse biological activities and various pharmacological effects such as antitumor, antioxidation, and anti-inflammatory. This review summarizes the progress in pharmacodynamics and mechanism of flavonoids in the treatment of PAH in recent years, in order to provide some theoretical references for relevant researchers.
Collapse
Affiliation(s)
- Jialing Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hailong Li
- The Third People's Hospital of Ningxia, Yinchuan, China
| | - Tian Xia
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jun Feng
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education; Ningxia Characteristic Traditional Chinese Medicine Modernization Engineering Technology Research Center, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Gentiopicroside Produces Endothelium-Independent Vasodilation by Deactivating the PI3K/Akt/Rho-Kinase Pathway in Isolated Rat Thoracic Aorta. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5565748. [PMID: 34095301 PMCID: PMC8140822 DOI: 10.1155/2021/5565748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
Gentiopicroside (GPS), a main active secoiridoid glucoside derived from the roots of perennial herbs in the Gentianaceae family, has antispasmodic and relaxant effects. However, the vasorelaxant effects of GPS on aortic rings and the molecular mechanisms involved in these effects are not yet clear. Therefore, we investigated whether GPS inhibits phenylephrine- (PE-) or KCl-induced contractions in isolated rat thoracic aortic rings. The present study found that GPS produced a dose-dependent relaxation in aortic rings precontracted with PE or KCl and significantly reduced CaCl2-, narciclasine- (Rho-kinase activator-), and phorbol-12,13-diacetate- (PKC activator-) induced vasocontractions. Pretreatment with NG-Nitroarginine methyl ester hydrochloride (L-NAME, NOS inhibitor), methylene blue (sGC inhibitor), indomethacin (COX inhibitor), 4-aminopyridine (KV channel inhibitor), and glibenclamide (KATP channel inhibitor) had no influence on the vasorelaxant effect of GPS, while BaCl2 (Kir channel inhibitor), tetraethylammonium chloride (KCa channel inhibitor), ruthenium red (RYR inhibitor), and heparin (IP3R inhibitor) significantly reduced GPS-induced vasorelaxation. Moreover, GPS pretreatment remarkably inhibited the influx of Ca2+ in vascular smooth muscle cells stimulated using KCl or PE-containing CaCl2 solution. Western blot analysis confirmed that GPS treatment inhibited PE-induced increases in the protein levels of p-Akt, p-myosin light chain (MLC), and p-myosin-binding subunit of myosin phosphatase 1 (MYPT1) in the aortic rings. Additionally, the vasorelaxation activity of GPS was attenuated upon pretreatment with LY294002 (PI3K/Akt inhibitor), Y27632 (Rho-kinase inhibitor), and verapamil (L-type Ca2+ channel inhibitor). These findings demonstrate that GPS exhibits endothelium-independent vasorelaxant effects through inhibition of voltage-dependent, receptor-operated, and inositol triphosphate receptor (IP3R)/ryanodine receptor- (RYR-) mediated Ca2+ channels as well as the PI3K/Akt/Rho-kinase signaling pathway.
Collapse
|
10
|
Abedi F, Ghasemi S, Farkhondeh T, Azimi-Nezhad M, Shakibaei M, Samarghandian S. Possible Potential Effects of Honey and Its Main Components Against Covid-19 Infection. Dose Response 2021; 19:1559325820982423. [PMID: 33867892 PMCID: PMC8020257 DOI: 10.1177/1559325820982423] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 01/25/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral pneumonia that is spreading rapidly worldwide. The main feature of this disease is a severe acute respiratory syndrome and caused by coronavirus 2 (SARS-CoV-2). There are several unknowns about the pathogenesis and therapeutically treatment of COVID-19 infection. In addition, available treatment protocols have not been effective in managing COVID-19 infection. It is proposed that natural anti-oxidants such as lemon, green tea, saffron, curcuma longa, etc. with high flavonoids like safranal, crocin, crocetin, catechins, resveratrol, calebin A, curcumin have therapeutic potential against viral infections. In this context, honey and its main components are being investigated as an option for patients with COVID-19. The present study may indicate that honey and its main components inhibit the entry of the virus into the host cell and its replication as well as modulate the inflammatory cascade. This review provides basic information for the possible potential effects of honey and its main components for fighting with SARS-CoV-2.
Collapse
Affiliation(s)
- Farshid Abedi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeedeh Ghasemi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Azimi-Nezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
11
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|
12
|
Ma G, Zhang J, Yang X, Guo P, Hou X, Fan Y, Liu Y, Zhang M. TMEM16A-encoded anoctamin 1 inhibition contributes to chrysin-induced coronary relaxation. Biomed Pharmacother 2020; 131:110766. [PMID: 33152928 DOI: 10.1016/j.biopha.2020.110766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chrysin, a natural flavonoid available in honey, propolis and medicinal plants, has been shown to be vasorelaxant in some vascular beds. Proper intake of an alimental vasodilator as a food additive may be a promising strategy for prevention and treatment of coronary spasmodic disorders. PURPOSE TMEM16A-encoded anoctamin 1 (ANO1), a Ca2+ activated Cl- channel (CaCC), plays an important role in the modulation of vascular tone. We tested the possibility that inhibition of CaCCs contributes to chrysin-induced coronary arterial relaxation. METHODS The vascular tone of the rat coronary artery (RCA) was recorded with a wire myograph. CaCC currents were assessed using whole-cell patch clamp in arterial smooth muscle cell (ASMC) freshly isolated from RCAs. An inhibitor study was performed to explore the mechanisms underlying the vasomotor and electrophysiological effects of chrysin. RESULTS Pre-incubation with chrysin depressed the contractions elicited by thromboxane A2 analog U46619, vasopressin (VP), depolarization and extracellular Ca2+ elevation/depolarization without significant preference among these vasoconstrictors. Besides, chrysin inhibited both intracellular Ca2+ release-dependent and extracellular Ca2+ influx-dependent components of contractions induced by U46619 or VP. In RCAs pre-contracted with U46619, VP or KCl, chrysin elicited concentration-dependent relaxations, which were weakened by Cl- -deprivation. The electrophysiological study showed that chrysin reduced ANO1-antibody-sensitive CaCC currents and depressed CaCC increments induced by U46619. Inhibitor study showed that both the vasorelaxation and the CaCC current reduction induced by chrysin were attenuated by blocking CaCCs and inhibiting cAMP/PKA and NO/PKG pathways. CONCLUSION The present findings indicate that inhibition of RCA ASMC CaCC currents, which may be consequential following intracellular Ca2+ availability reduction and activation of cAMP/PKA and NO/cGMP signaling pathways, contributes to chrysin-induced RCA relaxation.
Collapse
Affiliation(s)
- Guijin Ma
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China; Cardiovascular Divison, Department of Internal Medicine, the First Hospital of Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Jiangtao Zhang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Xiaomin Yang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Pengmei Guo
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Yanying Fan
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Yu Liu
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China.
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China.
| |
Collapse
|
13
|
Bt Hj Idrus R, Sainik NQAV, Nordin A, Saim AB, Sulaiman N. Cardioprotective Effects of Honey and Its Constituent: An Evidence-Based Review of Laboratory Studies and Clinical Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3613. [PMID: 32455701 PMCID: PMC7277934 DOI: 10.3390/ijerph17103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease is a major public health burden worldwide. Myocardial infarction is the most common form of cardiovascular disease resulting from low blood supply to the heart. It can lead to further complications such as cardiac arrhythmia, toxic metabolite accumulation, and permanently infarcted areas. Honey is one of the most prized medicinal remedies used since ancient times. There is evidence that indicates honey can function as a cardioprotective agent in cardiovascular diseases. The present review compiles and discusses the available evidence on the effect of honey on cardiovascular diseases. Three electronic databases, namely, PubMed, Scopus, and MEDLINE via EBSCOhost, were searched between January 1959 and March 2020 to identify reports on the cardioprotective effect of honey. Based on the pre-set eligibility criteria, 25 qualified articles were selected and discussed in this review. Honey investigated in the studies included varieties according to their geological origin. Honey protects the heart via lipid metabolism improvement, antioxidative activity, blood pressure modulation, heartbeat restoration, myocardial infarct area reduction, antiaging properties, and cell apoptosis attenuation. This review establishes honey as a potential candidate to be explored further as a natural and dietary alternative to the management of cardiovascular disease.
Collapse
Affiliation(s)
- Ruszymah Bt Hj Idrus
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.H.I.); (A.N.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | | | - Abid Nordin
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.H.I.); (A.N.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Ampang, Selangor 68000, Malaysia;
| | - Nadiah Sulaiman
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.H.I.); (A.N.)
| |
Collapse
|
14
|
Samarghandian S, Azimi-Nezhad M, Pourbagher Shahri AM, Farkhondeh T. Antidotal or protective effects of honey and one of its major polyphenols, chrysin, against natural and chemical toxicities. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:533-550. [PMID: 31910181 PMCID: PMC7233771 DOI: 10.23750/abm.v90i4.7534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/16/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Honey and its polyphenolic compounds are of main natural antioxidants that have been used in traditional medicine. The aim of this review was to identify the protective effects of honey and chrysin (a polyphenol available in honey) against the chemical and natural toxic agents. METHOD The scientific databases such as MEDLINE, PubMed, Scopus, Web of Science and Google Scholar were searched to identify studies on the antidotal effects of honey and chrysin against toxic agents. RESULTS This study found that honey had protective activity against toxic agents-induced organ damages by modulating oxidative stress, inflammation, and apoptosis pathways. However, clinical trial studies are needed to confirm the efficacy of honey and chrysin as antidote agents in human intoxication. CONCLUSION Honey and chrysin may be effective against toxic agents. (www.actabiomedica.it).
Collapse
Affiliation(s)
- Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | | | | | | |
Collapse
|