1
|
Hong L, Cai X, Zhan Y, Liu S, Zou P, Chen Y, Shao L. TLR2 activates AP-1 to facilitate CTGF transcription and stimulate doxorubicin-induced myocardial injury. Br J Pharmacol 2025. [PMID: 40097259 DOI: 10.1111/bph.17423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND AND PURPOSE Our study aimed to explore the mechanistic network of toll-like receptor 2 (TLR2)/activator protein-1 (AP-1) combined with SOX10 activation of the mitogen-activated protein kinase (MAPK) pathway via connective tissue growth factor (CTGF) in doxorubicin (Dox)-induced myocardial injury. EXPERIMENTAL APPROACH Rats with Dox-induced myocardial injury were treated with a TLR2 inhibitor or CTGF silencing lentiviral vector. H9c2 cells were treated with genetic vectors or MAPK pathway activators. Cardiac function was tested using echocardiography and serum markers. H&E, Sirius red and TUNEL staining were used to detect myocardial pathological changes, collagen accumulation and apoptosis. Western blot was used to detect proteins related to cardiac hypertrophy, fibrosis, apoptosis and the MAPK pathway. H9c2 cell injury was assessed by testing cell viability, lactate dehydrogenase (LDH) release and mitochondrial membrane potential. KEY RESULTS TLR2 and CTGF were highly expressed in patients with heart failure, and Dox treatment further increased their expression. Inhibiting TLR2 or silencing CTGF improved cardiac function and reduced myocardial fibrosis and apoptosis in Dox-treated rats. Silencing of TLR2 alleviated Dox-induced H9c2 cell injury, which was nullified by CTGF overexpression. TLR2 activated AP-1, which cooperated with SOX10 to promote CTGF transcription. MAPK activation aggravated H9c2 cells against Dox-induced injury. CONCLUSIONS AND IMPLICATIONS TLR2 activates AP-1 which cooperates with SOX10 to promote CTGF transcription and subsequently activate the MAPK pathway, thereby stimulating Dox-induced myocardial injury.
Collapse
Affiliation(s)
- Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yuliang Zhan
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Songtao Liu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Pengtao Zou
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yanmei Chen
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
2
|
Chuang YT, Yen CY, Liu W, Chien TM, Chang FR, Tsai YH, Tang JY, Chang HW. The protection of bisphenol A-modulated miRNAs and targets by natural products. ENVIRONMENT INTERNATIONAL 2025; 196:109299. [PMID: 39884249 DOI: 10.1016/j.envint.2025.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental pollutant with endocrine-disrupting functions. Identifying protective drugs and exploring the mechanisms against BPA are crucial in healthcare. Natural products exhibiting antioxidant properties are considered to be able to protect against BPA toxicity. Although BPA-modulated targets and miRNAs have been individually reported, their connections to natural products were rarely organized. With the help of a protein-protein interaction database (STRING), the relationship between individual BPA-modulated targets was interconnected to provide a systemic view. In this review, BPA-downregulated and -upregulated targets are classified, and their interactive network was innovatively analyzed using the bioinformatic database (STRING). BPA-modulated miRNAs were also retrieved and ingeniously connected to BPA-modulated targets. Moreover, a novel connection between BPA-countering natural products was integrated into BPA-modulated miRNAs and targets. All these targets-associated natural products and/or miRNAs were incorporated into the STRING network, providing systemic relationships. Overall, the BPA-modulated target-miRNA-protecting natural product axis was innovatively constructed, providing a straightforward direction for exploring the integrated BPA-countering effects and mechanisms of natural products.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan.
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907101, Taiwan.
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
3
|
Duan Q, Dong A, Cheng H, Zhang S, Chen W, Yang W. Inhibition of Taurine-upregulated Gene 1 Upregulates MiR-34a-5p to Protect against Myocardial Ischemia/Reperfusion via Autophagy Regulation. Comb Chem High Throughput Screen 2025; 28:110-121. [PMID: 38299288 DOI: 10.2174/0113862073267559231106074309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Taurine upregulated gene 1 (TUG1) has been identified on long noncoding RNA (lncRNA); however, its function in myocardial cells following ischemia/ reperfusion (I/R) injury has not been explored. This study aimed to investigate the role of LncTUG1 in I/R injury by focusing on its relationship with autophagy induction by regulating miR-34a-5p expression. METHODS We established a myocardial I/R model and H9C2 hypoxia-ischemic and reoxygenation (HI/R) conditions to induce I/R injury. TTC, Western blot, CCK-8 assay, quantitative reverse transcription PCR, flow cytometry, and confocal microscopy were used to assess the size of myocardial infarct, level of some apoptotic-related and autophagy-associated proteins, cell viability, the level of LncRNA TUG1, apoptosis, and autophagy, respectively. RESULTS The results revealed that a TUG1 knockdown protected against I/R-induced myocardial injury by decreasing the impairment in cardiac function. LncRNA TUG1 expression was increased in a myocardial I/R model and HI/R in H9C2 cells. Moreover, inhibition of LncTUG1 enhanced H9C2 cell viability and protected the cells from HI/R-induced apoptosis. Silencing LncRNA TUG1 promoted HI/R-induced autophagy. Furthermore, TUG1 siRNA upregulated the level of miR-34a-5p compared to the HI/R group. The protective effect of LncRNA TUG1 inhibition on H9C2 cells following HI/R was eliminated by blocking autophagy with an miR-34a-5p inhibitor. CONCLUSION These findings indicated that inhibiting TUG1 may reduce the extent of myocardial I/R injury by regulating miR-34a-5p. Taken together, these results suggest that LncRNA TUG1 may represent a novel therapeutic target for myocardial I/R injury.
Collapse
Affiliation(s)
- Qunjun Duan
- Department of Cardiaovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Aiqiang Dong
- Department of Cardiaovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Haifeng Cheng
- Department of Cardiaovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shufen Zhang
- Department of Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Wei Chen
- Department of Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Weijun Yang
- Department of Cardiaovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
4
|
Sun Y, Chu S, Wang R, Xia R, Sun M, Gao Z, Xia Z, Zhang Y, Dong S, Wang T. Non-coding RNAs modulate pyroptosis in myocardial ischemia-reperfusion injury: A comprehensive review. Int J Biol Macromol 2024; 257:128558. [PMID: 38048927 DOI: 10.1016/j.ijbiomac.2023.128558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Reperfusion therapy is the most effective treatment for acute myocardial infarction. However, reperfusion itself can also cause cardiomyocytes damage. Pyroptosis has been shown to be an important mode of myocardial cell death during ischemia-reperfusion. Non-coding RNAs (ncRNAs) play critical roles in regulating pyroptosis. The regulation of pyroptosis by microRNAs, long ncRNAs, and circular RNAs may represent a new mechanism of myocardial ischemia-reperfusion injury. This review summarizes the currently known regulatory roles of ncRNAs in myocardial ischemia-reperfusion injury and interactions between ncRNAs. Potential therapeutic strategies using ncRNA modulation are also discussed.
Collapse
Affiliation(s)
- Yi Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujuan Chu
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rong Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rui Xia
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Meng Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhixiong Gao
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Zhang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Siwei Dong
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Tingting Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
5
|
Niu R, Wang L, Yang W, Sun L, Tao J, Sun H, Mei S, Wang W, Feng K, Qian D, Bai X. MicroRNA-582-5p targeting Creb1 modulates apoptosis in cardiomyocytes hypoxia/reperfusion-induced injury. Immun Inflamm Dis 2022; 10:e708. [PMID: 36301033 PMCID: PMC9601879 DOI: 10.1002/iid3.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MIRI) caused by the reperfusion therapy of myocardial ischemic diseases is a kind of major disease that threatens human health and lives severely. There are lacking of effective therapeutic measures for MIRI. MicroRNAs (miRNAs) are abundant in mammalian species and play a critical role in the initiation, promotion, and progression of MIRI. However, the biological role and molecular mechanism of miRNAs in MIRI are not entirely clear. METHODS We used bioinformatics analysis to uncover the significantly different miRNA by analyzing transcriptome sequencing data from myocardial tissue in the mouse MIRI model. Multiple miRNA-related databases, including miRdb, PicTar, and TargetScan were used to forecast the downstream target genes of the differentially expressed miRNA. Then, the experimental models, including male C57BL/6J mice and HL-1 cell line, were used for subsequent experiments including quantitative real-time polymerase chain reaction analysis, western blot analysis, hematoxylin and eosin staining, flow cytometry, luciferase assay, gene interference, and overexpression. RESULTS MiR-582-5p was found to be differentially upregulated from the transcriptome sequencing data. The elevated levels of miR-582-5p were verified in MIRI mice and hypoxia/reperfusion (H/R)-induced HL-1 cells. Functional experiments revealed that miR-582-5p promoted apoptosis of H/R-induced HL-1 cells via downregulating cAMP-response element-binding protein 1 (Creb1). The inhibiting action of miR-582-5p inhibitor on H/R-induced apoptosis was partially reversed after Creb1 interference. CONCLUSIONS Collectively, the research findings reported that upregulation of miR-582-5p promoted H/R-induced cardiomyocyte apoptosis by inhibiting Creb1. The potential diagnostic and therapeutic strategies targeting miR-582-5p and Creb1 could be beneficial for the MIRI treatment.
Collapse
Affiliation(s)
- Rui‐Ze Niu
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
- Department of Animal ZoologyKunming Medical UniversityKunmingYunnanChina
| | - Lu‐Qiao Wang
- Department of CardiologyKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Wei Yang
- Department of AnesthesiologyKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Li‐Zhong Sun
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel DiseasesCapital Medical UniversityBeijingChina
| | - Jie Tao
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Huang Sun
- Department of CardiologyKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Song Mei
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Wen‐Jie Wang
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Ke‐Xiang Feng
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Dian‐Lun Qian
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Xiang‐Feng Bai
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
| |
Collapse
|
6
|
Non-Coding RNA Networks as Potential Novel Biomarker and Therapeutic Target for Sepsis and Sepsis-Related Multi-Organ Failure. Diagnostics (Basel) 2022; 12:diagnostics12061355. [PMID: 35741168 PMCID: PMC9222180 DOI: 10.3390/diagnostics12061355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
According to “Sepsis-3” consensus, sepsis is a life-threatening clinical syndrome caused by a dysregulated inflammatory host response to infection. A rapid identification of sepsis is mandatory, as the extent of the organ damage triggered by both the pathogen itself and the host’s immune response could abruptly evolve to multiple organ failure and ultimately lead to the death of the patient. The most commonly used therapeutic strategy is to provide hemodynamic and global support to the patient and to rapidly initiate broad-spectrum empiric antibiotic therapy. To date, there is no gold standard diagnostic test that can ascertain the diagnosis of sepsis. Therefore, once sepsis is suspected, the presence of organ dysfunction can be assessed using the Sepsis-related Organ Failure Assessment (SOFA) score, although the diagnosis continues to depend primarily on clinical judgment. Clinicians can now rely on several serum biomarkers for the diagnosis of sepsis (e.g., procalcitonin), and promising new biomarkers have been evaluated, e.g., presepsin and adrenomedullin, although their clinical relevance in the hospital setting is still under discussion. Non-codingRNA, including long non-codingRNAs (lncRNAs), circularRNAs (circRNAs) and microRNAs (miRNAs), take part in a complex chain of events playing a pivotal role in several important regulatory processes in humans. In this narrative review we summarize and then analyze the function of circRNAs-miRNA-mRNA networks as putative novel biomarkers and therapeutic targets for sepsis, focusing only on data collected in clinical settings in humans.
Collapse
|
7
|
Cao Y, Liu J, Lu Q, Huang K, Yang B, Reilly J, Jiang N, Shu X, Shang L. An update on the functional roles of long non‑coding RNAs in ischemic injury (Review). Int J Mol Med 2022; 50:91. [PMID: 35593308 PMCID: PMC9170192 DOI: 10.3892/ijmm.2022.5147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ischemic injuries result from ischemia and hypoxia in cells. Tissues and organs receive an insufficient supply of nutrients and accumulate metabolic waste, which leads to the development of inflammation, fibrosis and a series of other issues. Ischemic injuries in the brain, heart, kidneys, lungs and other organs can cause severe adverse effects. Acute renal ischemia induces acute renal failure, heart ischemia induces myocardial infarction and cerebral ischemia induces cerebrovascular accidents, leading to loss of movement, consciousness and possibly, life-threatening disabilities. Existing evidence suggests that long non-coding RNAs (lncRNAs) are regulatory sequences involved in transcription, post-transcription, epigenetic regulation and multiple physiological processes. lncRNAs have been shown to be differentially expressed following ischemic injury, with the severity of the ischemic injury being affected by the upregulation or downregulation of certain types of lncRNA. The present review article provides an extensive summary of the functional roles of lncRNAs in ischemic injury, with a focus on the brain, heart, kidneys and lungs. The present review mainly summarizes the functional roles of lncRNA MALAT1, lncRNA MEG3, lncRNA H19, lncRNA TUG1, lncRNA NEAT1, lncRNA AK139328 and lncRNA CAREL, among which lncRNA MALAT1, in particular, plays a crucial role in ischemic injury and is currently a hot research topic.
Collapse
Affiliation(s)
- Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Jia Liu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Quzhe Lu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Kai Huang
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Baolin Yang
- Department of Human Anatomy, School of Basic Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Na Jiang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Lei Shang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
8
|
Wang YW, Dong HZ, Tan YX, Bao X, Su YM, Li X, Jiang F, Liang J, Huang ZC, Ren YL, Xu YL, Su Q. HIF-1α-regulated lncRNA-TUG1 promotes mitochondrial dysfunction and pyroptosis by directly binding to FUS in myocardial infarction. Cell Death Dis 2022; 8:178. [PMID: 35396503 PMCID: PMC8993815 DOI: 10.1038/s41420-022-00969-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/02/2022]
Abstract
Myocardial infarction (MI) is a fatal heart disease that affects millions of lives worldwide each year. This study investigated the roles of HIF-1α/lncRNA-TUG1 in mitochondrial dysfunction and pyroptosis in MI. CCK-8, DHE, lactate dehydrogenase (LDH) assays, and JC-1 staining were performed to measure proliferation, reactive oxygen species (ROS), LDH leakage, and mitochondrial damage in hypoxia/reoxygenation (H/R)-treated cardiomyocytes. Enzyme-linked immunoassay (ELISA) and flow cytometry were used to detect LDH, creatine kinase (CK), and its isoenzyme (CK-MB) levels and caspase-1 activity. Chromatin immunoprecipitation (ChIP), luciferase assay, and RNA-immunoprecipitation (RIP) were used to assess the interaction between HIF-1α, TUG1, and FUS. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry were used to measure HIF-1α, TUG1 and pyroptosis-related molecules. Hematoxylin and eosin (HE), 2,3,5-triphenyltetrazolium chloride (TTC), and terminal deoxynucleotidyl transferase dUTP risk end labelling (TUNEL) staining were employed to examine the morphology, infarction area, and myocardial injury in the MI mouse model. Mitochondrial dysfunction and pyroptosis were induced in H/R-treated cardiomyocytes, accompanied by an increase in the expression of HIF-α and TUG1. HIF-1α promoted TUG1 expression by directly binding to the TUG1 promoter. TUG1 silencing inhibited H/R-induced ROS production, mitochondrial injury and the expression of the pyroptosis-related proteins NLRP3, caspase-1 and GSDMD. Additionally, H/R elevated FUS levels in cardiomyocytes, which were directly inhibited by TUG1 silencing. Fused in sarcoma (FUS) overexpression reversed the effect of TUG1 silencing on mitochondrial damage and caspase-1 activation. However, the ROS inhibitor N-acetylcysteine (NAC) promoted the protective effect of TUG1 knockdown on H/R-induced cardiomyocyte damage. The in vivo MI model showed increased infarction, myocardial injury, ROS levels and pyroptosis, which were inhibited by TUG1 silencing. HIF-1α targeting upregulated TUG1 promotes mitochondrial damage and cardiomyocyte pyroptosis by combining with FUS, thereby promoting the occurrence of MI. HIF-1α/TUG1/FUS may serve as a potential treatment target for MI.
Collapse
Affiliation(s)
- Yong-Wang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Hong-Zhi Dong
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, 300222, P. R. China
| | - Yong-Xing Tan
- Department of Intensive Care Unit, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Xu Bao
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Ying-Man Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Xin Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Fang Jiang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Jing Liang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Zhen-Cai Huang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Yan-Ling Ren
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Yu-Li Xu
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China.
| |
Collapse
|
9
|
Zuo J, Zhang Z, Li M, Yang Y, Zheng B, Wang P, Huang C, Zhou S. The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role. Mol Cancer 2022; 21:30. [PMID: 35081965 PMCID: PMC8790843 DOI: 10.1186/s12943-021-01488-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/26/2021] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress (OS), characterized by the excessive accumulation of reactive oxygen species (ROS), is an emerging hallmark of cancer. Tumorigenesis and development driven by ROS require an aberrant redox homeostasis, that activates onco-signaling and avoids ROS-induced programmed death by orchestrating antioxidant systems. These processes are revealed to closely associate with noncoding RNAs (ncRNAs). On the basis of the available evidence, ncRNAs have been widely identified as multifarious modulators with the involvement of several key redox sensing pathways, such as NF-κB and Nrf2 signaling, therefore potentially becoming effective targets for cancer therapy. Furthermore, the vast majority of ncRNAs with property of easy detected in fluid samples (e.g., blood and urine) facilitate clinicians to monitor redox homeostasis, indicating a novel method for cancer diagnosis. Herein, focusing on carcinoma initiation, metastasis and chemoradiotherapy resistance, we aimed to discuss the ncRNAs-ROS network involved in cancer progression, and the potential clinical application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Yun Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| |
Collapse
|
10
|
Zhong Z, Su W, Chen H. MicroRNA‑532‑5p regulates oxidative stress and insulin secretion damage in high glucose‑induced pancreatic β cells by downregulating the expression levels of CCND1. Mol Med Rep 2021; 24:793. [PMID: 34515323 PMCID: PMC8446729 DOI: 10.3892/mmr.2021.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/20/2020] [Indexed: 11/20/2022] Open
Abstract
Diabetes mellitus is a metabolic disorder caused by insufficient insulin secretion. The expression of microRNA (miR)-532-5P is downregulated in diabetes, but its specific role in diabetes has not yet been elucidated. The present study aimed to investigate the specific mechanism underlying the effects of miR-532-5p on diabetes. Cell viability was determined using an MTT assay. The expression levels of miR-532-5P, cyclin D1 (CCND1), Insulin1 and Insulin2 were detected using reverse transcription-quantitative PCR. The expression of miR-532-5p and CCND1 were overexpressed in cells by cell transfection. ELISA was used to detect insulin secretion. 2′,7′-dichlorodihydrofluorescein diacetate was used to quantify reactive oxygen species levels in cells. Apoptosis was detected using a TUNEL assay. Western blotting was performed to detect the expression of apoptosis-related proteins, CCND1 and p53. A dual-luciferase reporter assay was conducted, and verified the targeted binding of miR-532-5p and CCND1. The expression of miR-532-5p was downregulated in high glucose (HG)-induced MIN6 cells. Overexpression of miR-532-5p could improve the HG-induced decline in insulin secretion and inhibit HG-induced oxidative stress and apoptosis in cells. miR-532-5p can target and regulate the expression of CCND1. Overexpression of miR-532-5p downregulated HG-induced cell insulin secretion, oxidative stress and apoptosis by downregulating CCND1, which is involved in regulating the expression of p53. To conclude, miR-532-5p regulated oxidative stress and insulin secretion damage in HG-induced pancreatic β cells by downregulating the expression of CCND1, which is involved in the upregulation of the expression of p53.
Collapse
Affiliation(s)
- Zhibiao Zhong
- Department of Occupational Diseases, Shenzhen Prevention and Treatment Control Center for Occupational Diseases, Shenzhen, Guangdong 518001, P.R. China
| | - Weilan Su
- Department of Ultrasound, Shenzhen Prevention and Treatment Control Center for Occupational Diseases, Shenzhen, Guangdong 518001, P.R. China
| | - Hongmei Chen
- Department of Endocrinology and Metabolism, The Second People's Hospital of Nantong, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
11
|
MicroRNA-532-5p upregulation protects neurological deficits after ischemic stroke through inhibition of BTB and CNC homology 1. Int Immunopharmacol 2021; 100:108003. [PMID: 34464885 DOI: 10.1016/j.intimp.2021.108003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/23/2021] [Accepted: 07/18/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE MicroRNA (miR)-532-5p has been reported to protect against ischemic stroke (IS), while the underlying mechanism of miR-532-5p targeting BTB and CNC homology 1 (BACH1) in IS remains unknown. Thus, we aim to detect the role of miR-532-5p in IS via targeting BACH1. METHODS Blood samples were collected from IS patients and healthy controls. Rat middle cerebral artery occlusion (MCAO) models were established and intracerebrally injected with altered miR-532-5p or BACH1 plasmid vectors to reveal their roles in neurological function, brain tissue pathology and inflammation in MCAO. Expression of miR-532-5p and BACH1 in patients' blood samples and rat brain tissues was assessed, and the targeting relationship between miR-532-5p and BACH1 was confirmed. RESULTS MiR-532-5p was downregulated and BACH1 was upregulated in IS. BACH1 was targeted by miR-532-5p. Restored miR-532-5p or inhibited BACH1 improved neurological function and inhibited inflammation and apoptosis in MCAO rats. On the contrary, miR-532-5p reduction or BACH1 overexpression had totally opposite effects on MCAO rats. The protective role of miR-532-5p for MCAO rats was reversed by upregulated BACH1. CONCLUSION MiR-532-5p upregulation protects against neurological deficits after IS through inhibition of BACH1.
Collapse
|
12
|
Gnodi E, Mancuso C, Elli L, Ballarini E, Meneveri R, Beaulieu JF, Barisani D. Gliadin, through the Activation of Innate Immunity, Triggers lncRNA NEAT1 Expression in Celiac Disease Duodenal Mucosa. Int J Mol Sci 2021; 22:1289. [PMID: 33525473 PMCID: PMC7865487 DOI: 10.3390/ijms22031289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy arising in genetically predisposed subjects exposed to gluten, which activates both innate and adaptive immunity. Although the pathogenesis is common to all patients, the clinical spectrum is quite variable, and differences could be explained by gene expression variations. Among the factors able to affect gene expression, there are lncRNAs. We evaluated the expression profile of 87 lncRNAs in CD vs. healthy control (HC) intestinal biopsies by RT-qPCR array. Nuclear enriched abundant transcript 1 (NEAT1) and taurine upregulated gene 1 (TUG1) were detected as downregulated in CD patients at diagnosis, but their expression increased in biopsies of patients on a gluten-free diet (GFD) exposed to gluten. The increase in NEAT1 expression after gluten exposure was mediated by IL-15 and STAT3 activation and binding to the NEAT1 promoter, as demonstrated by gel shift assay. NEAT1 is localized in the nucleus and can regulate gene expression by sequestering transcription factors, and it has been implicated in immune regulation and control of cell proliferation. The demonstration of its regulation by gluten thus also supports the role of lncRNAs in CD and prompts further research on these RNAs as gene expression regulators.
Collapse
Affiliation(s)
- Elisa Gnodi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.G.); (C.M.); (E.B.); (R.M.)
| | - Clara Mancuso
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.G.); (C.M.); (E.B.); (R.M.)
| | - Luca Elli
- Centre for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Elisa Ballarini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.G.); (C.M.); (E.B.); (R.M.)
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.G.); (C.M.); (E.B.); (R.M.)
| | - Jean François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.G.); (C.M.); (E.B.); (R.M.)
| |
Collapse
|