1
|
Asiwe JN, Ajayi AM, Ben-Azu B, Fasanmade AA. Vincristine attenuates isoprenaline-induced cardiac hypertrophy in male Wistar rats via suppression of ROS/NO/NF-қB signalling pathways. Microvasc Res 2024; 155:104710. [PMID: 38880384 DOI: 10.1016/j.mvr.2024.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Vincristine (VCR), a vinca alkaloid with anti-tumor and anti-oxidant properties, is acclaimed to possess cardioprotective action. However, the molecular mechanism underlying this protective effect remains unknown. This study investigated the effects of VCR on isoprenaline (ISO), a beta-adrenergic receptor agonist, induced cardiac hypertrophy in male Wistar rats. Animals were pre-treated with ISO (1 mg/kg) intraperitoneally for 14 days before VCR (25 μg/kg) intraperitoneal injection from days 1 to 28. Thereafter, mechanical, and electrical activities of the hearts of the rats were measured using a non-invasive blood pressure monitor and an electrocardiograph, respectively. After which, the heart was homogenized, and supernatants were assayed for contractile proteins: endothelin-1, cardiac troponin-1, angiotensin-II, and creatine kinase-MB, with markers of oxidative/nitrergic stress (SOD, CAT, MDA, GSH, and NO), inflammation (TNF-a and IL-6, NF-kB), and caspase-3 indicative of VCR reduced elevated blood pressure and reversed the abnormal electrocardiogram. ISO-induced increased endothelin-1, cardiac troponin-1, angiotensin-II, and creatine phosphokinase-MB, which were reversed by VCR. ISO also increased TNF-α, IL-6, NF-kB expression with increased caspase-3-mediated apoptosis in the heart. However, VCR reduced ISO-induced inflammation and apoptosis, with improved endogenous antioxidant agents (GSH, SOD, CAT) relative to ISO controls. Moreso, VCR, protected against ISO-induced histoarchitectural degeneration of cardiac myofibre. The result of this study revealed that VCR treatment significantly reverses ISO-induced cardiac hypertrophic phenotypes, via mechanisms connected to improved levels of proteins involved in excitation-contraction, and suppression of oxido-inflammatory and apoptotic pathways.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - Abayomi M Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | | |
Collapse
|
2
|
Soepriatna AH, Navarrete-Welton A, Kim TY, Daley MC, Bronk P, Kofron CM, Mende U, Coulombe KLK, Choi BR. Action potential metrics and automated data analysis pipeline for cardiotoxicity testing using optically mapped hiPSC-derived 3D cardiac microtissues. PLoS One 2023; 18:e0280406. [PMID: 36745602 PMCID: PMC9901774 DOI: 10.1371/journal.pone.0280406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/28/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advances in human induced pluripotent stem cell (hiPSC)-derived cardiac microtissues provide a unique opportunity for cardiotoxic assessment of pharmaceutical and environmental compounds. Here, we developed a series of automated data processing algorithms to assess changes in action potential (AP) properties for cardiotoxicity testing in 3D engineered cardiac microtissues generated from hiPSC-derived cardiomyocytes (hiPSC-CMs). Purified hiPSC-CMs were mixed with 5-25% human cardiac fibroblasts (hCFs) under scaffold-free conditions and allowed to self-assemble into 3D spherical microtissues in 35-microwell agarose gels. Optical mapping was performed to quantify electrophysiological changes. To increase throughput, AP traces from 4x4 cardiac microtissues were simultaneously acquired with a voltage sensitive dye and a CMOS camera. Individual microtissues showing APs were identified using automated thresholding after Fourier transforming traces. An asymmetric least squares method was used to correct non-uniform background and baseline drift, and the fluorescence was normalized (ΔF/F0). Bilateral filtering was applied to preserve the sharpness of the AP upstroke. AP shape changes under selective ion channel block were characterized using AP metrics including stimulation delay, rise time of AP upstroke, APD30, APD50, APD80, APDmxr (maximum rate change of repolarization), and AP triangulation (APDtri = APDmxr-APD50). We also characterized changes in AP metrics under various ion channel block conditions with multi-class logistic regression and feature extraction using principal component analysis of human AP computer simulations. Simulation results were validated experimentally with selective pharmacological ion channel blockers. In conclusion, this simple and robust automated data analysis pipeline for evaluating key AP metrics provides an excellent in vitro cardiotoxicity testing platform for a wide range of environmental and pharmaceutical compounds.
Collapse
Affiliation(s)
- Arvin H. Soepriatna
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Allison Navarrete-Welton
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Tae Yun Kim
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Mark C. Daley
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Peter Bronk
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Celinda M. Kofron
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Kareen L. K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
3
|
Narkar A, Feaster TK, Casciola M, Blinova K. Human in vitro neurocardiac coculture (ivNCC) assay development for evaluating cardiac contractility modulation. Physiol Rep 2022; 10:e15498. [PMID: 36325586 PMCID: PMC9630755 DOI: 10.14814/phy2.15498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
Two of the most prominent organ systems, the nervous and the cardiovascular systems, are intricately connected to maintain homeostasis in mammals. Recent years have shown tremendous efforts toward therapeutic modulation of cardiac contractility and electrophysiology by electrical stimulation. Neuronal innervation and cardiac ganglia regulation are often overlooked when developing in vitro models for cardiac devices, but it is likely that peripheral nervous system plays a role in the clinical effects. We developed an in vitro neurocardiac coculture (ivNCC) model system to study cardiac and neuronal interplay using human induced pluripotent stem cell (hiPSC) technology. We demonstrated significant expression and colocalization of cardiac markers including troponin, α-actinin, and neuronal marker peripherin in neurocardiac coculture. To assess functional coupling between the cardiomyocytes and neurons, we evaluated nicotine-induced β-adrenergic norepinephrine effect and found beat rate was significantly increased in ivNCC as compared to monoculture alone. The developed platform was used as a nonclinical model for the assessment of cardiac medical devices that deliver nonexcitatory electrical pulses to the heart during the absolute refractory period of the cardiac cycle, that is, cardiac contractility modulation (CCM) therapy. Robust coculture response was observed at 14 V/cm (5 V, 64 mA), monophasic, 2 ms pulse duration for pacing and 20 V/cm (7 V, 90 mA) phase amplitude, biphasic, 5.14 ms pulse duration for CCM. We observed that the CCM effect and kinetics were more pronounced in coculture as compared to cardiac monoculture, supporting a hypothesis that some part of CCM mechanism of action can be attributed to peripheral nervous system stimulation. This study provides novel characterization of CCM effects on hiPSC-derived neurocardiac cocultures. This innervated human heart model can be further extended to investigate arrhythmic mechanisms, neurocardiac safety, and toxicity post-chronic exposure to materials, drugs, and medical devices. We present data on acute CCM electrical stimulation effects on a functional and optimized coculture using commercially available hiPSC-derived cardiomyocytes and neurons. Moreover, this study provides an in vitro human heart model to evaluate neuronal innervation and cardiac ganglia regulation of contractility by applying CCM pulse parameters that closely resemble clinical setting. This ivNCC platform provides a potential tool for investigating aspects of cardiac and neurological device safety and performance.
Collapse
Affiliation(s)
- Akshay Narkar
- Center for Devices and Radiological HealthUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Tromondae K. Feaster
- Center for Devices and Radiological HealthUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Maura Casciola
- Center for Devices and Radiological HealthUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ksenia Blinova
- Center for Devices and Radiological HealthUS Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
4
|
Acharya A, Nemade H, Rajendra Prasad K, Khan K, Hescheler J, Blackburn N, Hemmersbach R, Papadopoulos S, Sachinidis A. Live-Cell Imaging of the Contractile Velocity and Transient Intracellular Ca 2+ Fluctuations in Human Stem Cell-Derived Cardiomyocytes. Cells 2022; 11:1280. [PMID: 35455960 PMCID: PMC9031802 DOI: 10.3390/cells11081280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Live-cell imaging techniques are essential for acquiring vital physiological and pathophysiological knowledge to understand and treat heart disease. For live-cell imaging of transient alterations of [Ca2+]i in human cardiomyocytes, we engineered human-induced pluripotent stem cells carrying a genetically-encoded Ca2+-indicator (GECI). To monitor sarcomere shortening and relaxation in cardiomyocytes in real-time, we generated a α-cardiac actinin (ACTN2)-copepod (cop) green fluorescent protein (GFP+)-human-induced pluripotent stem cell line by using the CRISPR-Cas9 and a homology directed recombination approach. The engineered human-induced pluripotent stem cells were differentiated in transgenic GECI-enhanced GFP+-cardiomyocytes and ACTN2-copGFP+-cardiomyocytes, allowing real-time imaging of [Ca2+]i transients and live recordings of the sarcomere shortening velocity of ACTN2-copGFP+-cardiomyocytes. We developed a video analysis software tool to quantify various parameters of sarcoplasmic Ca2+ fluctuations recorded during contraction of cardiomyocytes and to calculate the contraction velocity of cardiomyocytes in the presence and absence of different drugs affecting cardiac function. Our cellular and software tool not only proved the positive and negative inotropic and lusitropic effects of the tested cardioactive drugs but also quantified the expected effects precisely. Our platform will offer a human-relevant in vitro alternative for high-throughput drug screenings, as well as a model to explore the underlying mechanisms of cardiac diseases.
Collapse
Affiliation(s)
- Aviseka Acharya
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Harshal Nemade
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Krishna Rajendra Prasad
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Khadija Khan
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Jürgen Hescheler
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Nick Blackburn
- Bioras Company, Kaarsbergsvej 2, 8400 Ebeltoft, Denmark;
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany;
| | - Symeon Papadopoulos
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Agapios Sachinidis
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
5
|
Faulkner-Jones A, Zamora V, Hortigon-Vinagre MP, Wang W, Ardron M, Smith GL, Shu W. A Bioprinted Heart-on-a-Chip with Human Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Evaluation. Bioengineering (Basel) 2022; 9:bioengineering9010032. [PMID: 35049741 PMCID: PMC8773426 DOI: 10.3390/bioengineering9010032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
In this work, we show that valve-based bioprinting induces no measurable detrimental effects on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The aim of the current study was three-fold: first, to assess the response of hiPSC-CMs to several hydrogel formulations by measuring electrophysiological function; second, to customise a new microvalve-based cell printing mechanism in order to deliver hiPSC-CMs suspensions, and third, to compare the traditional manual pipetting cell-culture method and cardiomyocytes dispensed with the bioprinter. To achieve the first and third objectives, iCell2 (Cellular Dynamics International) hiPSC-CMs were used. The effects of well-known drugs were tested on iCell2 cultured by manual pipetting and bioprinting. Despite the results showing that hydrogels and their cross-linkers significantly reduced the electrophysiological performance of the cells compared with those cultured on fibronectin, the bio-ink droplets containing a liquid suspension of live cardiomyocytes proved to be an alternative to standard manual handling and could reduce the number of cells required for drug testing, with no significant differences in drug-sensitivity between both approaches. These results provide a basis for the development of a novel bioprinter with nanolitre resolution to decrease the required number of cells and to automate the cell plating process.
Collapse
Affiliation(s)
- Alan Faulkner-Jones
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (A.F.-J.); (W.W.)
| | - Victor Zamora
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Maria P. Hortigon-Vinagre
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, Facultad de Ciencias, 06006 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-289-300 (ext. 89053)
| | - Wenxing Wang
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (A.F.-J.); (W.W.)
| | - Marcus Ardron
- Renishaw PLC, Research Avenue North, Edinburgh EH14 4AP, UK;
| | - Godfrey L. Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
- Clyde Biosciences, Glasgow G12 8QQ, UK
| | - Wenmiao Shu
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow G4 0NW, UK;
| |
Collapse
|
6
|
Harper AA, Adams DJ. Electrical properties and synaptic transmission in mouse intracardiac ganglion neurons in situ. Physiol Rep 2021; 9:e15056. [PMID: 34582125 PMCID: PMC8477906 DOI: 10.14814/phy2.15056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
The intrinsic cardiac nervous system represents the final site of signal integration for neurotransmission to the myocardium to enable local control of cardiac performance. The electrophysiological characteristics and ganglionic transmission of adult mouse intrinsic cardiac ganglion (ICG) neurons were investigated using a whole-mount ganglion preparation of the excised right atrial ganglion plexus and intracellular microelectrode recording techniques. The passive and active electrical properties of ICG neurons and synaptic transmission including synaptic response strength and efficacy as a function of stimulation frequency were examined. The resting membrane potential and input resistance of ICG neurons were -47.9 ± 4.0 mV and 197.2 ± 81.5 MΩ, respectively. All neurons had somatic action potentials with overshoots of >+15 mV and after-hyperpolarizations having an average of 10 mV amplitude and ~45 ms half duration. Phasic discharge activities were recorded from the majority of neurons studied and several types of excitatory synaptic responses were recorded following inputs from the vagus or interganglionic nerve trunk(s). Most postganglionic neurons (>75%) received a strong, suprathreshold synaptic input and reliably followed high-frequency repetitive nerve stimulation up to at least 50 Hz. Nerve-evoked synaptic transmission was blocked by extracellular Cd2+ , ω-conotoxin CVIE, or α-conotoxin RegIIA, a selective α3-containing nicotinic acetylcholine receptor antagonist. Synaptic transmission and the electrical properties of murine ICG neurons contribute to the pattern of discharge which regulates chronotropic, dromotropic, and inotropic elements of cardiac function.
Collapse
Affiliation(s)
- Alexander A. Harper
- Illawarra Health and Medical Research Institute (IHMRI)University of WollongongWollongongNew South WalesAustralia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI)University of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
7
|
Electrophysiology of hiPSC-Cardiomyocytes Co-Cultured with HEK Cells Expressing the Inward Rectifier Channel. Int J Mol Sci 2021; 22:ijms22126621. [PMID: 34205607 PMCID: PMC8235371 DOI: 10.3390/ijms22126621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022] Open
Abstract
The immature electrophysiology of human-induced pluripotent stem cell-derived cardiomyocytes (hiCMs) complicates their use for therapeutic and pharmacological purposes. An insufficient inward rectifying current (IK1) and the presence of a funny current (if) cause spontaneous electrical activity. This study tests the hypothesis that the co-culturing of hiCMs with a human embryonic kidney (HEK) cell-line expressing the Kir2.1 channel (HEK-IK1) can generate an electrical syncytium with an adult-like cardiac electrophysiology. The mechanical activity of co-cultures using different HEK-IK1:hiCM ratios was compared with co-cultures using wildtype (HEK–WT:hiCM) or hiCM alone on days 3–8 after plating. Only ratios of 1:3 and 1:1 showed a significant reduction in spontaneous rate at days 4 and 6, suggesting that IK1 was influencing the electrophysiology. Detailed analysis at day 4 revealed an increased incidence of quiescent wells or sub-areas. Electrical activity showed a decreased action potential duration (APD) at 20% and 50%, but not at 90%, alongside a reduced amplitude of the aggregate AP signal. A computational model of the 1:1 co-culture replicates the electrophysiological effects of HEK–WT. The addition of the IK1 conductance reduced the spontaneous rate and APD20, 50 and 90, and minor variation in the intercellular conductance caused quiescence. In conclusion, a 1:1 co-culture HEK-IK1:hiCM caused changes in electrophysiology and spontaneous activity consistent with the integration of IK1 into the electrical syncytium. However, the additional electrical effects of the HEK cell at 1:1 increased the possibility of electrical quiescence before sufficient IK1 was integrated into the syncytium.
Collapse
|