1
|
Kang J, Deng R, Wang K, Wang H, Han Y, Duan Z. Mechanistic Insights into the Therapeutic Efficacy of Qi Ling Gui Fu Prescription in Broiler Ascites Syndrome: A Network Pharmacology and Experimental Study. Vet Sci 2025; 12:78. [PMID: 40005838 PMCID: PMC11860255 DOI: 10.3390/vetsci12020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
This study delves into the therapeutic potential of Qi Ling Gui Fu Prescription (QLGFP) in broiler ascites syndrome (AS) by investigating its impact on the phenotypic transformation of vascular smooth muscle. Utilizing network pharmacology, we identified 267 active ingredients and 120 core targets of QLGFP, revealing its multifaceted mechanism of action. Gene enrichment analysis highlighted the pivotal roles of Toll-like receptor, FoxO, and MAPK signaling pathways in QLGFP's therapeutic effects. Experimental validation in a broiler AS model demonstrated that QLGFP regulated the expression of key markers (SM-22α, OPN, and KLF4) associated with the phenotypic transformation of pulmonary artery vascular smooth muscle (PASMC). Clinical improvements were evident, with a significant reduction in ascites cardiac index (AHI). Furthermore, QLGFP suppressed the protein expression of MAPK1 (ERK1), p-MAPK1, MAPK9 (JNK2), p-MAPK9, MA3.PK14 (P38α), and p-MAPK14, along with downstream factors AP1 and ATF4. These findings suggest that QLGFP effectively prevents and treats AS in broilers by modulating the MAPKs-AP1/ATF4 pathway, thereby inhibiting the phenotypic transformation and proliferation of PASMCs. This study contributes a theoretical foundation for understanding the role of QLGFP in the prevention and treatment of AS in broilers.
Collapse
Affiliation(s)
- Jie Kang
- Science and Technology Center, Fenyang College of Shanxi Medical University, Lüliang 032200, China;
| | - Ruiqiang Deng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (R.D.); (K.W.); (H.W.); (Y.H.)
| | - Keyao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (R.D.); (K.W.); (H.W.); (Y.H.)
| | - Huimin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (R.D.); (K.W.); (H.W.); (Y.H.)
| | - Yufeng Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (R.D.); (K.W.); (H.W.); (Y.H.)
| | - Zhibian Duan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (R.D.); (K.W.); (H.W.); (Y.H.)
| |
Collapse
|
2
|
Yu X, Huang J, Liu X, Li J, Yu M, Li M, Xie Y, Li Y, Qiu J, Xu Z, Zhu T, Zhang W. LncRNAH19 acts as a ceRNA of let-7 g to facilitate endothelial-to-mesenchymal transition in hypoxic pulmonary hypertension via regulating TGF-β signalling pathway. Respir Res 2024; 25:270. [PMID: 38987833 PMCID: PMC11238495 DOI: 10.1186/s12931-024-02895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Hypoxic pulmonary hypertension (HPH) is a challenging lung arterial disorder with remarkably high incidence and mortality rates, and the efficiency of current HPH treatment strategies is unsatisfactory. Endothelial-to-mesenchymal transition (EndMT) in the pulmonary artery plays a crucial role in HPH. Previous studies have shown that lncRNA-H19 (H19) is involved in many cardiovascular diseases by regulating cell proliferation and differentiation but the role of H19 in EndMT in HPH has not been defined. METHODS In this research, the expression of H19 was investigated in PAH human patients and rat models. Then, we established a hypoxia-induced HPH rat model to evaluate H19 function in HPH by Echocardiography and hemodynamic measurements. Moreover, luciferase reporter gene detection, and western blotting were used to explore the mechanism of H19. RESULTS Here, we first found that the expression of H19 was significantly increased in the endodermis of pulmonary arteries and that H19 deficiency obviously ameliorated pulmonary vascular remodelling and right heart failure in HPH rats, and these effects were associated with inhibition of EndMT. Moreover, an analysis of luciferase activity indicated that microRNA-let-7 g (let-7 g) was a direct target of H19. H19 deficiency or let-7 g overexpression can markedly downregulate the expression of TGFβR1, a novel target gene of let-7 g. Furthermore, inhibition of TGFβR1 induced similar effects to H19 deficiency. CONCLUSIONS In summary, our findings demonstrate that the H19/let-7 g/TGFβR1 axis is crucial in the pathogenesis of HPH by stimulating EndMT. Our study may provide new ideas for further research on HPH therapy in the near future.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Rats
- Disease Models, Animal
- Epithelial-Mesenchymal Transition/physiology
- Epithelial-Mesenchymal Transition/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypoxia/metabolism
- Hypoxia/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- RNA, Competitive Endogenous/genetics
- RNA, Competitive Endogenous/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction/physiology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Xin Yu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Jiabing Huang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Xu Liu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, P.R. China
| | - Juan Li
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Miao Yu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Minghui Li
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Yuliang Xie
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Ye Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junyu Qiu
- Queen Mary School, Medical Department, Nanchang University, Nanchang, 330031, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China.
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China.
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China.
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China.
| |
Collapse
|
3
|
Liu H, Li L, Lu R. ZIP transporters-regulated Zn 2+ homeostasis: A novel determinant of human diseases. J Cell Physiol 2024; 239:e31223. [PMID: 38530191 DOI: 10.1002/jcp.31223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
As an essential trace element for organisms, zinc participates in various physiological processes, such as RNA transcription, DNA replication, cell proliferation, and cell differentiation. The destruction of zinc homeostasis is associated with various diseases. Zinc homeostasis is controlled by the cooperative action of zinc transporter proteins that are responsible for the influx and efflux of zinc. Zinc transporter proteins are mainly categorized into two families: Zrt/Irt-like protein (SLC39A/ZIP) family and zinc transporter (SLC30A/ZNT) family. ZIP transporters contain 14 members, namely ZIP1-14, which can be further divided into four subfamilies. Currently, ZIP transporters-regulated zinc homeostasis is one of the research hotspots. Cumulative evidence suggests that ZIP transporters-regulated zinc homeostasis may cause physiological dysfunction and contribute to the onset and progression of diverse diseases, such as cancers, neurological diseases, and cardiovascular diseases. In this review, we initially discuss the structure and distribution of ZIP transporters. Furthermore, we comprehensively review the latest research progress of ZIP transporters-regulated zinc homeostasis in diseases, providing a new perspective into new therapeutic targets for treating related diseases.
Collapse
Affiliation(s)
- Huimei Liu
- Department of Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| | - Lanfang Li
- Department of Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
5
|
Zhao F, Chen Y, Xie Y, Kong S, Song L, Li H, Guo C, Yin Y, Zhang W, Zhu T. Identification of Zip8-correlated hub genes in pulmonary hypertension by informatic analysis. PeerJ 2023; 11:e15939. [PMID: 37663293 PMCID: PMC10470448 DOI: 10.7717/peerj.15939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background Pulmonary hypertension (PH) is a syndrome characterized by marked remodeling of the pulmonary vasculature and increased pulmonary vascular resistance, ultimately leading to right heart failure and even death. The localization of Zrt/Irt-like Protein 8 (ZIP8, a metal ion transporter, encoded by SLC39A8) was abundantly in microvasculature endothelium and its pivotal role in the lung has been demonstrated. However, the role of Zip8 in PH remains unclear. Methods Bioinformatics analysis was employed to identify SLC39A8 expression patterns and differentially expressed genes (DEGs) between PH patients and normal controls (NC), based on four datasets (GSE24988, GSE113439, GSE117261, and GSE15197) from the Biotechnology Gene Expression Omnibus (NCBI GEO) database. Gene set enrichment analysis (GSEA) was performed to analyze signaling pathways enriched for DEGs. Hub genes were identified by cytoHubba analysis in Cytoscape. Reverse transcriptase-polymerase chain reaction was used to validate SLC39A8 and its correlated metabolic DEGs expression in PH (SU5416/Hypoxia) mice. Results SLC39A8 expression was downregulated in PH patients, and this expression pattern was validated in PH (SU5416/Hypoxia) mouse lung tissue. SLC39A8-correlated genes were mainly enriched in the metabolic pathways. Within these SLC39A8-correlated genes, 202 SLC39A8-correlated metabolic genes were screened out, and seven genes were identified as SLC39A8-correlated metabolic hub genes. The expression patterns of hub genes were analyzed between PH patients and controls and further validated in PH mice. Finally, four genes (Fasn, Nsdhl, Acat2, and Acly) were downregulated in PH mice. However, there were no significant differences in the expression of the other three hub genes between PH mice and controls. Of the four genes, Fasn and Acly are key enzymes in fatty acids synthesis, Nsdhl is involved in cholesterol synthesis, and Acat2 is implicated in cholesterol metabolic transformation. Taken together, these results provide novel insight into the role of Zip8 in PH.
Collapse
Affiliation(s)
- FanRong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yujing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yuliang Xie
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Shuang Kong
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - LiaoFan Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Hanfei Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Chao Guo
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yanyan Yin
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Weifang Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Departments of Pharmacy, The Second Affiliated Hospital, Nanchang, China
| | - Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| |
Collapse
|
6
|
In focus in HCB. Histochem Cell Biol 2022; 158:411-414. [DOI: 10.1007/s00418-022-02160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Immunolocalization of zinc transporters and metallothioneins reveals links to microvascular morphology and functions. Histochem Cell Biol 2022; 158:485-496. [PMID: 35849202 PMCID: PMC9630201 DOI: 10.1007/s00418-022-02138-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Zinc homeostasis is vital to immune and other organ system functions, yet over a quarter of the world’s population is zinc deficient. Abnormal zinc transport or storage protein expression has been linked to diseases, such as cancer and chronic obstructive pulmonary disorder. Although recent studies indicate a role for zinc regulation in vascular functions and diseases, detailed knowledge of the mechanisms involved remains unknown. This study aimed to assess protein expression and localization of zinc transporters of the SLC39A/ZIP family (ZIPs) and metallothioneins (MTs) in human subcutaneous microvessels and to relate them to morphological features and expression of function-related molecules in the microvasculature. Microvessels in paraffin biopsies of subcutaneous adipose tissues from 14 patients undergoing hernia reconstruction surgery were analysed for 9 ZIPs and 3 MT proteins by MQCM (multifluorescence quantitative confocal microscopy). Zinc regulation proteins detected in human microvasculature included ZIP1, ZIP2, ZIP8, ZIP10, ZIP12, ZIP14 and MT1-3, which showed differential localization among endothelial and smooth muscle cells. ZIP1, ZIP2, ZIP12 and MT3 showed significantly (p < 0.05) increased immunoreactivities, in association with increased microvascular muscularization, and upregulated ET-1, α-SMA and the active form of p38 MAPK (Thr180/Tyr182 phosphorylated, p38 MAPK-P). These findings support roles of the zinc regulation system in microvascular physiology and diseases.
Collapse
|
8
|
Magnolol alleviates hypoxia-induced pulmonary vascular remodeling through inhibition of phenotypic transformation in pulmonary arterial smooth muscle cells. Biomed Pharmacother 2022; 150:113060. [PMID: 35658230 DOI: 10.1016/j.biopha.2022.113060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Phenotypic transformation and excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) play an important role in vascular remodeling during pulmonary hypertension (PH). Magnolol (5,5'-diallyl-2,2'-dihydroxybiphenyl) is the major bioactive constituent isolated from the bark of Magnolia Officinalis, which has anti-inflammatory, antioxidant, and cardiovascular protection effects. However, the effect of magnolol on the phenotypic transformation of PASMCs is still unknown. This study aims to evaluate the effects of magnolol on the phenotypic transformation of PASMCs induced by hypoxia. In vivo, Sprague Dawley rats were exposed to hypoxia (10% O2) for four weeks to establish a PH model. The results showed that hypoxia treatment led to an increase in right ventricle systolic pressure, Fulton index, collagen production, accompanied by upregulation in the expression of collagen Ⅰ, collagen Ⅲ, OPN, PCNA, CyclinD1, p-JAK2, and p-STAT3, as well as decreases in expression of SM-22α; these changes were attenuated by magnolol. In vitro, the primary cultured PASMCs were exposed to 3% O2 for 48 h to induce phenotypic transformation. Consistent with the findings in vivo, magnolol treatment could prevent the phenotypic transformation and hyperproliferation of PASMCs induced by hypoxia, accompanied by downregulation in the expression of p-JAK2 and p-STAT3. In summary, this study demonstrated that the protective effect of magnolol on PH vascular remodeling is related to the inhibition of phenotypic transformation and hyperproliferation of PASMCs by inhibiting the JAK2/STAT3 pathway.
Collapse
|
9
|
Liu X, Ali MK, Dua K, Xu R. The Role of Zinc in the Pathogenesis of Lung Disease. Nutrients 2022; 14:nu14102115. [PMID: 35631256 PMCID: PMC9143957 DOI: 10.3390/nu14102115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
Lung diseases, such as asthma, chronic obstructive pulmonary diseases (COPD), and cystic fibrosis (CF), are among the leading causes of mortality and morbidity globally. They contribute to substantial economic burdens on society and individuals. Currently, only a few treatments are available to slow the development and progression of these diseases. Thus, there is an urgent unmet need to develop effective therapies to improve quality of life and limit healthcare costs. An increasing body of clinical and experimental evidence suggests that altered zinc and its regulatory protein levels in the systemic circulation and in the lungs are associated with these disease’s development and progression. Zinc plays a crucial role in human enzyme activity, making it an essential trace element. As a cofactor in metalloenzymes and metalloproteins, zinc involves a wide range of biological processes, such as gene transcription, translation, phagocytosis, and immunoglobulin and cytokine production in both health and disease. Zinc has gained considerable interest in these lung diseases because of its anti-inflammatory, antioxidant, immune, and metabolic modulatory properties. Here we highlight the role and mechanisms of zinc in the pathogenesis of asthma, COPD, CF, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, and pulmonary hypertension.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| | - Md Khadem Ali
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA;
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Ran Xu
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang 110022, China
- Correspondence: ; Tel.: +86-189-4025-8514
| |
Collapse
|
10
|
ZIP12 Contributes to Hypoxic Pulmonary Hypertension by Driving Phenotypic Switching of Pulmonary Artery Smooth Muscle Cells: Erratum. J Cardiovasc Pharmacol 2022; 79:758. [PMID: 35522703 DOI: 10.1097/fjc.0000000000001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Ye C, Lian G, Wang T, Chen A, Chen W, Gong J, Luo L, Wang H, Xie L. The zinc transporter ZIP12 regulates monocrotaline-induced proliferation and migration of pulmonary arterial smooth muscle cells via the AKT/ERK signaling pathways. BMC Pulm Med 2022; 22:111. [PMID: 35346134 PMCID: PMC8962172 DOI: 10.1186/s12890-022-01905-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/17/2022] [Indexed: 01/05/2024] Open
Abstract
Background The zinc transporter ZIP12 is a membrane-spanning protein that transports zinc ions into the cytoplasm from the extracellular space. Recent studies demonstrated that upregulation of ZIP12 is involved in elevation of cytosolic free zinc and excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) induced by hypoxia. However, the expression of ZIP12 and its role in pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT) in rats have not been evaluated previously. The aim of this study was to investigate the effect of ZIP12 on the proliferation and migration of PASMCs and its underlying mechanisms in MCT-induced PAH. Methods A PAH rat model was generated by intraperitoneal injection of 20 mg/kg MCT twice at one-week intervals. PASMCs were isolated from the pulmonary arteries of rats with MCT-induced PAH or control rats. The expression of ZIP12 and related molecules was detected in the lung tissues and cells. A ZIP12 knockdown lentivirus and an overexpressing lentivirus were constructed and transfected into PASMCs derived from PAH and control rats, respectively. EdU assays, wound healing assays and Western blotting were carried out to explore the function of ZIP12 in PASMCs. Results Increased ZIP12 expression was observed in PASMCs derived from MCT-induced PAH rats. The proliferation and migration of PASMCs from PAH rats were significantly increased compared with those from control rats. These results were corroborated by Western blot analysis of PCNA and cyclin D1. All these effects were significantly reversed by silencing ZIP12. Comparatively, ZIP12 overexpression resulted in the opposite effects as shown in PASMCs from control rats. Furthermore, selective inhibition of AKT phosphorylation by LY294002 abolished the effect of ZIP12 overexpression on enhancing cell proliferation and migration and partially suppressed the increase in ERK1/2 phosphorylation induced by ZIP12 overexpression. However, inhibition of ERK activity by U0126 resulted in partial reversal of this effect and did not influence an increase in AKT phosphorylation induced by ZIP12 overexpression. Conclusions ZIP12 is involved in MCT-induced pulmonary vascular remodeling and enhances the proliferation and migration of PASMCs. The mechanism of these effects was partially mediated by enhancing the AKT/ERK signaling pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01905-3.
Collapse
Affiliation(s)
- Chaoyi Ye
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Tingjun Wang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Ai Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Weixiao Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Jin Gong
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Huajun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China. .,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China. .,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|