1
|
Sankrityayan H, Rao PD, Shelke V, Kulkarni YA, Mulay SR, Gaikwad AB. Endoplasmic Reticulum Stress and Renin-Angiotensin System Crosstalk in Endothelial Dysfunction. Curr Mol Pharmacol 2023; 16:139-146. [PMID: 35232343 DOI: 10.2174/1874467215666220301113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vascular endothelial dysfunction (VED) significantly results in catastrophic cardiovascular diseases with multiple aetiologies. Variations in vasoactive peptides, including angiotensin II and endothelin 1, and metabolic perturbations like hyperglycaemia, altered insulin signalling, and homocysteine levels result in pathogenic signalling cascades, which ultimately lead to VED. Endoplasmic reticulum (ER) stress reduces nitric oxide availability, causes aberrant angiogenesis, and enhances oxidative stress pathways, consequently promoting endothelial dysfunction. Moreover, the renin-angiotensin system (RAS) has widely been acknowledged to impact angiogenesis, endothelial repair and inflammation. Interestingly, experimental studies at the preclinical level indicate a possible pathological link between the two pathways in the development of VED. Furthermore, pharmacological modulation of ER stress ameliorates angiotensin-II mediated VED as well as RAS intervention either through inhibition of the pressor arm or enhancement of the depressor arm of RAS, mitigating ER stress-induced endothelial dysfunction and thus emphasizing a vital crosstalk. CONCLUSION Deciphering the pathway overlap between RAS and ER stress may open potential therapeutic avenues to combat endothelial dysfunction and associated diseases. Several studies suggest that alteration in a component of RAS may induce ER stress or induction of ER stress may modulate the RAS components. In this review, we intend to elaborate on the crosstalk of ER stress and RAS in the pathophysiology of VED.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Pooja Dhileepkumar Rao
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| |
Collapse
|
2
|
Sukumaran V, Gurusamy N, Yalcin HC, Venkatesh S. Understanding diabetes-induced cardiomyopathy from the perspective of renin angiotensin aldosterone system. Pflugers Arch 2021; 474:63-81. [PMID: 34967935 DOI: 10.1007/s00424-021-02651-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
Experimental and clinical evidence suggests that diabetic subjects are predisposed to a distinct cardiovascular dysfunction, known as diabetic cardiomyopathy (DCM), which could be an autonomous disease independent of concomitant micro and macrovascular disorders. DCM is one of the prominent causes of global morbidity and mortality and is on a rising trend with the increase in the prevalence of diabetes mellitus (DM). DCM is characterized by an early left ventricle diastolic dysfunction associated with the slow progression of cardiomyocyte hypertrophy leading to heart failure, which still has no effective therapy. Although the well-known "Renin Angiotensin Aldosterone System (RAAS)" inhibition is considered a gold-standard treatment in heart failure, its role in DCM is still unclear. At the cellular level of DCM, RAAS induces various secondary mechanisms, adding complications to poor prognosis and treatment of DCM. This review highlights the importance of RAAS signaling and its major secondary mechanisms involving inflammation, oxidative stress, mitochondrial dysfunction, and autophagy, their role in establishing DCM. In addition, studies lacking in the specific area of DCM are also highlighted. Therefore, understanding the complex role of RAAS in DCM may lead to the identification of better prognosis and therapeutic strategies in treating DCM.
Collapse
Affiliation(s)
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Al-Tarfa, 2371, Doha, Qatar
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
3
|
Pająk-Łysek E, Polak M, Kopeć G, Podolec M, Desvarieux M, Pająk A, Zarzecka J. Associations between Pharmacotherapy for Cardiovascular Diseases and Periodontitis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E770. [PMID: 33477530 PMCID: PMC7831110 DOI: 10.3390/ijerph18020770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 02/04/2023]
Abstract
The goal of the study was to assess the relationship between cardioprotective medications, i.e., beta-blockers, angiotensin-converting enzyme inhibitors (ACEIs), calcium channel blockers (CCBs), angiotensin II receptor blockers (ARBs), statins, acetylsalicylic acid (ASA), and periodontitis (PD). BACKGROUND Xerostomia increases the risk of PD and is a side effect of some pharmacotherapies. Information about the effect of cardioprotective treatment of periodontal status is scarce. METHODS We studied 562 dentate residents of Krakow at the age of 50 to 70 years. Information about treatment was collected using a standardized questionnaire. The pocket depth and clinical attachment level (CAL) were used to ascertain PD. Multivariate logistic regression was applied to assess the relation between cardioprotective medications and PD. RESULTS PD was found in 74% of participants. The range of cardioprotective drug use among participants was 7% (ARBs) to 32% (beta-blockers). After adjusting for age, sex, number of teeth, smoking, and education, ASA's use was related to a lower prevalence of PD in all dentate participants (odds ratio (OR) = 0.63, 95% confidence interval (CI): 0.40-0.99). The use of ARBs and statins was found to be associated with a higher prevalence of PD in persons having ≥6 teeth (odds ratio (OR) = 3.57, 95% CI: 1.06-11.99 and OR = 1.81, 95% CI: 1.03-3.16, respectively). Further adjustment for CVD risk factors, history of coronary heart disease, and other chronic diseases did not attenuate the results. There was no significant relation between PD and the use of other cardioprotective drugs.
Collapse
Affiliation(s)
- Ewa Pająk-Łysek
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Kraków, Poland;
| | - Maciej Polak
- Department of Epidemiology and Population Studies, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Kraków, Poland; (M.P.); (A.P.)
| | - Grzegorz Kopeć
- Pulmonary Circulation Centre, Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland;
- John Paul II Hospital, 31-202 Kraków, Poland;
| | - Mateusz Podolec
- John Paul II Hospital, 31-202 Kraków, Poland;
- Department of Coronary Artery Disease and Heart Failure, Faculty of Medicine, Jagiellonian University Medical College, John Paul II Hospital, 31-008 Kraków, Poland
| | - Moïse Desvarieux
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
- INSERM UMR 1153, Center de Recherche Epidemiologie et Statistique Paris Sorbonne Cité (CRESS), METHODS Core, 75004 Paris, France
| | - Andrzej Pająk
- Department of Epidemiology and Population Studies, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Kraków, Poland; (M.P.); (A.P.)
| | - Joanna Zarzecka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Kraków, Poland;
| |
Collapse
|
4
|
Hydration Status and Cardiovascular Function. Nutrients 2019; 11:nu11081866. [PMID: 31405195 PMCID: PMC6723555 DOI: 10.3390/nu11081866] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Hypohydration, defined as a state of low body water, increases thirst sensations, arginine vasopressin release, and elicits renin–angiotensin–aldosterone system activation to replenish intra- and extra-cellular fluid stores. Hypohydration impairs mental and physical performance, but new evidence suggests hypohydration may also have deleterious effects on cardiovascular health. This is alarming because cardiovascular disease is the leading cause of death in the United States. Observational studies have linked habitual low water intake with increased future risk for adverse cardiovascular events. While it is currently unclear how chronic reductions in water intake may predispose individuals to greater future risk for adverse cardiovascular events, there is evidence that acute hypohydration impairs vascular function and blood pressure (BP) regulation. Specifically, acute hypohydration may reduce endothelial function, increase sympathetic nervous system activity, and worsen orthostatic tolerance. Therefore, the purpose of this review is to present the currently available evidence linking acute hypohydration with altered vascular function and BP regulation.
Collapse
|
5
|
Basmaeil YS, Al Subayyil AM, Khatlani T, Bahattab E, Al-Alwan M, Abomaray FM, Kalionis B, Alshabibi MA, AlAskar AS, Abumaree MH. Human chorionic villous mesenchymal stem/stromal cells protect endothelial cells from injury induced by high level of glucose. Stem Cell Res Ther 2018; 9:238. [PMID: 30241570 PMCID: PMC6150972 DOI: 10.1186/s13287-018-0984-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mesenchymal stem/stromal cells derived from chorionic villi of human term placentae (pMSCs) protect human endothelial cells from injury induced by hydrogen peroxide (H2O2). In diabetes, elevated levels of glucose (hyperglycaemia) induce H2O2 production, which causes the endothelial dysfunction that underlies the enhanced immune responses and adverse complications associated with diabetes, which leads to thrombosis and atherosclerosis. In this study, we examined the ability of pMSCs to protect endothelial cell functions from the negative impact of high level of glucose. METHODS pMSCs isolated from the chorionic villi of human term placentae were cultured with endothelial cells isolated from human umbilical cord veins in the presence of glucose. Endothelial cell functions were then determined. The effect of pMSCs on gene expression in glucose-treated endothelial cells was also determined. RESULTS pMSCs reversed the effect of glucose on key endothelial cell functions including proliferation, migration, angiogenesis, and permeability. In addition, pMSCs altered the expression of many genes that mediate important endothelial cell functions including survival, apoptosis, adhesion, permeability, and angiogenesis. CONCLUSIONS This is the first comprehensive study to provide evidence that pMSCs protect endothelial cells from glucose-induced damage. Therefore, pMSCs have potential therapeutic value as a stem cell-based therapy to repair glucose-induced vascular injury and prevent the adverse complications associated with diabetes and cardiovascular disease. However, further studies are necessary to reveal more detailed aspects of the mechanism of action of pMSCs on glucose-induced endothelial damage in vitro and in vivo.
Collapse
Affiliation(s)
- Y S Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - A M Al Subayyil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - T Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - E Bahattab
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia
| | - M Al-Alwan
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Collage of Medicine, Al-Faisal University, MBC-03, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - F M Abomaray
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14186, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - B Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - M A Alshabibi
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - A S AlAskar
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia.,Adult Hematology and Stem Cell Transplantation, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - M H Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia. .,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia.
| |
Collapse
|
6
|
Radenkovic M, Stojanović M, Nešić IM, Prostran M. Angiotensin receptor blockers & endothelial dysfunction: Possible correlation & therapeutic implications. Indian J Med Res 2017; 144:154-168. [PMID: 27934794 PMCID: PMC5206866 DOI: 10.4103/0971-5916.195022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The endothelium is one of the most important constituents of vascular homeostasis, which is achieved through continual and balanced production of different relaxing and contractile factors. When there is a pathological disturbance in release of these products, endothelial dysfunction (ED) will probably occur. ED is considered to be the initial step in the development of atherosclerosis. This pathological activation and inadequate functioning of endothelial cells was shown to be to some extent a reversible process, which all together resulted in increased interest in investigation of different beneficial treatment options. To this point, the pharmacological approach, including for example, the use of angiotensin-converting enzyme inhibitors or statins, was clearly shown to be effective in the improvement of ED. One of many critical issues underlying ED represents instability in the balance between nitric oxide and angiotensin II (Ang II) production. Considering that Ang II was confirmed to be important for the development of ED, the aim of this review article was to summarize the findings of up to date clinical studies associated with therapeutic application of angiotensin receptor blockers and improvement in ED. In addition, it was of interest to review the pleiotropic actions of angiotensin receptor blockers linked to the improvement of ED. The prospective, randomized, double-blind, placebo or active-controlled clinical trials were identified and selected for the final evaluation.
Collapse
Affiliation(s)
- Miroslav Radenkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Milićević Nešić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Fedson DS. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:421. [PMID: 27942512 DOI: 10.21037/atm.2016.11.03] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There is an ongoing threat of epidemic or pandemic diseases that could be caused by influenza, Ebola or other emerging viruses. It will be difficult and costly to develop new drugs that target each of these viruses. Statins and angiotensin receptor blockers (ARBs) have been effective in treating patients with sepsis, pneumonia and influenza, and a statin/ARB combination appeared to dramatically reduce mortality during the recent Ebola outbreak. These drugs target (among other things) the endothelial dysfunction found in all of these diseases. Most scientists work on new drugs that target viruses, and few accept the idea of treating the host response with generic drugs. A great deal of research will be needed to show conclusively that these drugs work, and this will require the support of public agencies and foundations. Investigators in developing countries should take an active role in this research. If the next Public Health Emergency of International Concern is caused by an emerging virus, a "top down" approach to developing specific new drug treatments is unlikely to be effective. However, a "bottom up" approach to treatment that targets the host response to these viruses by using widely available and inexpensive generic drugs could reduce mortality in any country with a basic health care system. In doing so, it would make an immeasurable contribution to global equity and global security.
Collapse
Affiliation(s)
- David S Fedson
- Formerly, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Angiotensin receptor blockers are not associated with reduced inflammatory markers in the general population. J Hypertens 2016; 33:2173-8. [PMID: 26237561 DOI: 10.1097/hjh.0000000000000683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Angiotensin receptor blockers (ARBs) have been suggested to reduce inflammation in randomized controlled trials. We assessed the association between ARBs and inflammatory markers in a general population setting. METHODS This is a population-based prospective study conducted in Lausanne, Switzerland. Baseline data from 933 participants on antihypertensive drugs (424 on ARBs) was collected in 2003-2006. Follow-up data from 1120 participants (572 on ARBs) was collected in 2009-2012. C-reactive protein (CRP), interleukins 1β and 6 and tumor necrosis factor alpha (TNF-α) were assessed and categorized in quartiles. RESULTS At baseline, no differences were found between participants taking or not taking ARBs for all inflammatory markers studied, and this association persisted after multivariate adjustment: odds ratios (ORs) and (95% confidence interval) for being in the highest quartile of interleukin-1β, interleukin-6, TNF-α and CRP for participants on ARB compared to participants not on ARB were 1.23 (0.89-1.70), 1.26 (0.93-1.70), 1.14 (0.85-1.53) and 1.27 (0.96-1.69) respectively (P > 0.05). These findings were further replicated in the follow-up study: OR and (95% CI) of 1.10 (0.78-1.55), 0.87 (0.64-1.19), 0.83 (0.61-1.14) and 0.91 (0.68-1.22) for interleukin-1β, interleukin-6, TNF-α and CRP respectively (P > 0.05). Finally, no effect of ARBs was found when comparing participants who received ARBs throughout the 5.4-year follow-up with participants on other antihypertensive drugs: OR and (95% CI) of 0.93 (0.61-1.42), 0.80 (0.54-1.17), 0.86 (0.59-1.25) and 0.95 (0.67-1.35) for interleukin-1β, interleukin-6, TNF-α and CRP respectively (P > 0.05). CONCLUSION ARBs are not associated with reduced levels of inflammatory markers in the general population.
Collapse
|
9
|
Upregulation of microRNA-146a was not accompanied by downregulation of pro-inflammatory markers in diabetic kidney. Mol Biol Rep 2013; 40:6477-83. [DOI: 10.1007/s11033-013-2763-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/14/2013] [Indexed: 11/26/2022]
|
10
|
Sukumaran V, Veeraveedu PT, Gurusamy N, Yamaguchi K, Lakshmanan AP, Ma M, Suzuki K, Kodama M, Watanabe K. Cardioprotective effects of telmisartan against heart failure in rats induced by experimental autoimmune myocarditis through the modulation of angiotensin-converting enzyme-2/angiotensin 1-7/mas receptor axis. Int J Biol Sci 2011; 7:1077-92. [PMID: 21927577 PMCID: PMC3174385 DOI: 10.7150/ijbs.7.1077] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/23/2011] [Indexed: 01/14/2023] Open
Abstract
Angiotensin-converting enzyme-2 (ACE-2) is a homolog of ACE that preferentially forms angiotensin-(ANG)-1-7 from angiotensin II (ANG II). We investigated the cardioprotective effects of telmisartan, a well-known angiotensin receptor blockers (ARBs) against experimental autoimmune myocarditis (EAM). EAM was induced in Lewis rats by immunization with porcine cardiac myosin. The rats were divided into two groups and treated with telmisartan (10 mg/kg/day) or vehicle for 21 days. Myocardial functional parameters were significantly improved by treatment with telmisartan compared with vehicle-treated rats. Telmisartan lowered myocardial protein expressions of NADPH oxidase subunits 3-nitrotyrosine, p47phox, p67 phox, Nox-4 and superoxide production significantly than vehicle-treated rats. In contrast myocardial protein levels of ACE-2, ANG 1-7 mas receptor were upregulated in the telmisartan treated group compared with those of vehicle-treated rats. The myocardial protein expression levels of tumor necrosis factor receptor (TNFR)-associated factor (TRAF)-2, C/EBP homologous protein (CHOP) and glucose-regulated protein (GRP) 78 were decreased in the telmisartan treated rats compared with those of vehicle-treated rats. In addition, telmisartan treatment significantly decreased the protein expression levels of phospho-p38 mitogen-activated protein kinase (MAPK), phospho-JNK, phospho-ERK and phospho (MAPK) activated protein kinase-2 than with those of vehicle-treated rats. Moreover, telmisartan significantly decreased the production of proinflammatory cytokines, myocardial apoptotic markers and caspase-3 positive cells compared with those of vehicle-treated rats. Therefore, we suggest that telmisartan was beneficial protection against heart failure in rats, at least in part by suppressing inflammation, oxidative stress, ER stress as well as signaling pathways through the modulation of ACE2/ANG1-7/Mas receptor axis.
Collapse
Affiliation(s)
- Vijayakumar Sukumaran
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tang RN, Lv LL, Zhang JD, Dai HY, Li Q, Zheng M, Ni J, Ma KL, Liu BC. Effects of angiotensin II receptor blocker on myocardial endothelial-to-mesenchymal transition in diabetic rats. Int J Cardiol 2011; 162:92-9. [PMID: 21704391 DOI: 10.1016/j.ijcard.2011.06.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 02/17/2011] [Accepted: 06/06/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Emerging evidence has indicated that the endothelial-to-mesenchymal transition (EndMT) is a crucial event during early stages of cardiac fibrosis. In the present study, we first investigated the influence of Irbesartan (Irb) on myocardial EndMT in diabetic rats. METHODS Diabetic rats were divided into two groups: the diabetic group (DM) and the Irb-treated group (DM+Irb). Wistar-Kyoto rats served as controls. The pathological changes were investigated by microscopy. Immunofluorescence was performed to evaluate the co-expression of CD31 and fibroblast-specific protein 1 (FSP1). FSP1 and α-SMA expressions were detected by RT-PCR and Western blot analysis. EndMT was also studied in human aortic endothelial cells (HAECs) that had been exposed to high glucose (HG) levels. RESULTS Increased interstitial fibrosis was detected in the DM group. Double labeling revealed CD31 expression in FSP1-positive cells in the DM group, and this expression was diminished by Irb treatment (P<0.05). In vitro, we found that HG stimulated angiotensin II synthesis in HAECs. When HAECs were exposed to HG, some of the cells acquired a spindle-shaped morphology and demonstrated a loss of CD31 labeling, which was attenuated by Irb treatment. FSP1 and α-SMA mRNA and protein expression levels were markedly upregulated in diabetic rats compared to controls, and their expressions were inhibited by Irb treatment (P<0.05). CONCLUSION The results provide the novel insight that an angiotensin II receptor blocker might prevent diabetic cardiomyopathy by abrogating EndMT in diabetic rats.
Collapse
Affiliation(s)
- Ri-Ning Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sukumaran V, Watanabe K, Veeraveedu PT, Gurusamy N, Ma M, Thandavarayan RA, Lakshmanan AP, Yamaguchi K, Suzuki K, Kodama M. Olmesartan, an AT1 antagonist, attenuates oxidative stress, endoplasmic reticulum stress and cardiac inflammatory mediators in rats with heart failure induced by experimental autoimmune myocarditis. Int J Biol Sci 2011; 7:154-67. [PMID: 21383952 PMCID: PMC3048845 DOI: 10.7150/ijbs.7.154] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 02/07/2011] [Indexed: 02/07/2023] Open
Abstract
Studies have demonstrated that angiotensin II has been involved in immune and inflammatory responses which might contribute to the pathogenesis of immune-mediated diseases. Recent evidence suggests that oxidative stress may play a role in myocarditis. Here, we investigated whether olmesartan, an AT(1)R antagonist protects against experimental autoimmune myocarditis (EAM) by suppression of oxidative stress, endoplasmic reticulum (ER) stress and inflammatory cytokines. EAM was induced in Lewis rats by immunization with porcine cardiac myosin, were divided into two groups and treated with either olmesartan (10 mg/kg/day) or vehicle for a period of 21 days. Myocardial functional parameters measured by hemodynamic and echocardiographic analyses were significantly improved by the treatment with olmesartan compared with those of vehicle-treated rats. Treatment with olmesartan attenuated the myocardial mRNA expressions of proinflammatory cytokines, [Interleukin (IL)-1β, monocyte chemoattractant protein-1, tumor necrosis factor-α and interferon-γ)] and the protein expression of tumor necrosis factor-α compared with that of vehicle-treated rats. Myocardial protein expressions of AT(1)R, NADPH oxidase subunits (p47phox, p67phox, gp91phox) and the expression of markers of oxidative stress (3-nitrotyrosine and 4-hydroxy-2-nonenal), and the cardiac apoptosis were also significantly decreased by the treatment with olmesartan compared with those of vehicle-treated rats. Furthermore, olmesartan treatment down-regulated the myocardial expressions of glucose regulated protein-78, growth arrest and DNA damage-inducible gene, caspase-12, phospho-p38 mitogen-activated protein kinase (MAPK) and phospho-JNK. These findings suggest that olmesartan protects against EAM in rats, at least in part via suppression of oxidative stress, ER stress and inflammatory cytokines.
Collapse
Affiliation(s)
- Vijayakumar Sukumaran
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sukumaran V, Watanabe K, Veeraveedu PT, Ma M, Gurusamy N, Rajavel V, Suzuki K, Yamaguchi K, Kodama M, Aizawa Y. Telmisartan ameliorates experimental autoimmune myocarditis associated with inhibition of inflammation and oxidative stress. Eur J Pharmacol 2010; 652:126-35. [PMID: 21115000 DOI: 10.1016/j.ejphar.2010.10.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/26/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022]
Abstract
Excess cytokine produced by inflammatory stimuli contributes to the progression of myocardial damage in myocarditis. Angiotensin-II has been shown to play a pivotal role in the pathophysiology of various organs, especially the cardiovascular system. Some angiotensin II type 1 receptor antagonists are reported to inhibit proinflammatory cytokine production in vitro and in vivo. We investigated whether telmisartan, an angiotensin II type 1 receptor antagonist protects against experimental autoimmune myocarditis by suppression of inflammatory cytokines and oxidative stress. Experimental autoimmune myocarditis was induced in Lewis rats by immunization with porcine cardiac myosin. The rats were divided into two groups and treated with either telmisartan (10mg/kg/day) or vehicle for 21days. Age-matched normal rats without immunization were also included in this study. Myocardial functional parameters were significantly improved by treatment with telmisartan compared with vehicle-treated rats. Increased myocardial mRNA expressions of inflammatory cytokines [interleukin (IL-6), IL-1β, tumor necrosis factor-α and interferon-γ] were also suppressed by telmisartan treatment compared with vehicle-treated rats. Myocardial protein expressions of NADPH oxidase subunits p47phox, Nox-4, and gp91phox, myocardial levels of 8-hydroxydeoxyguanosine and 4-hydroxy-2-nonenal, and myocardial apoptosis were also significantly decreased by telmisartan treatment compared with vehicle-treated rats. Further, telmisartan significantly decreased endoplasmic reticulum stress markers in experimental autoimmune myocarditis rats. These findings suggest that telmisartan protects against experimental autoimmune myocarditis in rats, at least in part by suppressing inflammatory cytokines and oxidative stress; however, further investigations are needed before clinical use.
Collapse
Affiliation(s)
- Vijayakumar Sukumaran
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tang R, Li Q, Lv L, Dai H, Zheng M, Ma K, Liu B. Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells. Cardiovasc Diabetol 2010; 9:31. [PMID: 20663195 PMCID: PMC2920267 DOI: 10.1186/1475-2840-9-31] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/27/2010] [Indexed: 11/25/2022] Open
Abstract
Background Substantial evidence suggests that high glucose (HG) causes endothelial cell damage; however, the potential mechanism therein has yet to be clarified. The aim of this study was to investigate the influence of HG on the endothelial-to-mesenchymal transition (EndMT) and its relevance to the activation of the renin-angiotensin system. Methods Primary human aortic endothelial cells (HAECs) were divided into three groups: a normal glucose (NG) group, HG group, and irbesartan (1 μM)-treated (HG+irbesartan) group. The concentration of angiotensin II in the supernatant was detected by radioimmunoassay. Pathological changes were investigated using fluorescence microscopy and electron microscopy. Immunofluorescence staining was performed to detect the co-expression of CD31 and fibroblast markers, such as fibroblast-specific protein 1 (FSP1). The expressions of FSP1 and α-SMA were detected by RT-PCR and Western blot. Results The treatment of HAECs in the HG group resulted in significant increases in the expressions of FSP1 and angiotensin II in dose-and time-dependent manners. The incubation of HAECs exposure to HG resulted in a fibroblast-like phenotype, wherein increased microfilamentation and a roughened endoplasmic reticulum structure were observed in the cytoplasm. The expressions of FSP1 and α-SMA were significantly increased in the HG group, and these changes were inhibited by irbesartan treatment (P < 0.05). Double staining of the HAECs indicated a co-localization of CD31 and FSP1 and that some cells acquired spindle-shaped morphologies and a loss of CD31 staining; however, treatment with irbesartan attenuated the expression of EndMT (P < 0.05). Conclusions These findings suggest a novel mechanism in HG-induced endothelial damage via the mediation of the EndMT by angiotensin II, which was inhibited by Irbesartan.
Collapse
Affiliation(s)
- Rining Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing 210009, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Telmisartan, an angiotensin-II receptor blocker ameliorates cardiac remodeling in rats with dilated cardiomyopathy. Hypertens Res 2010; 33:695-702. [PMID: 20535115 DOI: 10.1038/hr.2010.67] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple trials over the past several years have examined indications for angiotensin receptor blockers (ARBs) in the treatment of left ventricular (LV) dysfunction, both acutely after myocardial infarction and in chronic heart failure (CHF). However, the effects of telmisartan, an ARB in rats with CHF after experimental autoimmune myocarditis (EAM) have not yet been analyzed. CHF was elicited in Lewis rats by immunization with cardiac myosin, and 28 days after immunization, the surviving Lewis rats were divided into two groups and treated with either telmisartan (10 mg kg(-1) day(-1)) or vehicle. After 4 weeks of treatment, we analyzed the effects of telmisartan on cardiac function, proinflammatory cytokines and cardiac remodeling in EAM rats. Myocardial functional parameters measured by hemodynamic and echocardiographic studies were significantly improved by telmisartan treatment in rats with CHF compared with those of vehicle-treated rats with CHF. Telmisartan significantly reduced levels of cardiac fibrosis, hypertrophy and its marker molecules (LV mRNA expressions of transforming growth factor beta 1, collagen I and III, and atrial natriuretic peptide), and peroxisome proliferator-activated receptor--gamma protein expression compared with those of vehicle-treated rats. CHF-induced increases in myocardial mRNA expressions of proinflammatory cytokines, (interleukin (IL)-6, IL-1beta), monocyte chemoattractant protein-1 and matrix metalloproteinases (MMP-2 and -9) were also suppressed by the treatment with telmisartan. Moreover, the plasma level of angiotensin-II was significantly elevated in telmisartan-treated rats. Our results indicate that telmisartan treatment significantly improved LV function and ameliorated the progression of cardiac remodeling in rats with CHF after EAM.
Collapse
|
16
|
Rosa JS, Flores RL, Oliver SR, Pontello AM, Zaldivar FP, Galassetti PR. Resting and exercise-induced IL-6 levels in children with Type 1 diabetes reflect hyperglycemic profiles during the previous 3 days. J Appl Physiol (1985) 2009; 108:334-42. [PMID: 20007854 DOI: 10.1152/japplphysiol.01083.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Poor glycemic control in Type 1 diabetes (T1DM) causes long-term cardiovascular complications, at least in part via chronic, low-grade inflammation associated with recurrent hyperglycemia. While physical activity can reduce both inflammation and cardiovascular risks, the underlying molecular mechanisms remain unclear. This is particularly important for T1DM children, for whom the prevention of long-term cardiovascular complications must include optimization of exercise-related anti-inflammatory strategies. We therefore studied the effect of prior hyperglycemia on resting and exercise-induced inflammatory status (plasma IL-6) in T1DM children. Glycemia was continuously recorded with a continuous glucose monitoring system (CGMS) system for 63 h preceding a 30-min intermittent cycling exercise protocol at approximately 80% peak rate of oxygen uptake (VO2max). Euglycemia (4.4-6.1 mM) was maintained for 90 min before, during, and 30 min after exercise. IL-6 plasma concentration (pg/ml) was measured at baseline, at end exercise, and 30 min postexercise. Subjects were then divided into quartiles based on average glycemia during the CGMS recording. IL-6 levels (pg/ml) were lowest in the quartile with lowest average 3-day glycemia and increased proportionally to greater hyperglycemic exposure; this was observed at baseline (0.86 +/- 0.10, 1.06 +/- 0.16, 1.14 +/- 0.14, 1.20 +/- 0.16), absolute IL-6 change (Delta) at end exercise (0.20 +/- 0.16, 0.32 +/- 0.10, 0.48 +/- 0.09, 0.62 +/- 0.13), and Delta at 30 min postexercise (0.49 +/- 0.13, 0.71 +/- 0.16, 0.89 +/- 0.14, 1.38 +/- 0.33). Therefore, poorly controlled glycemic profile, even in the 63 h preceding an exercise challenge, can alter inflammatory adaptation in T1DM children. Our data underscore the necessity to fully understand all molecular aspects of physical activity to provide the scientific rationale for exercise regimens that will be able to maximize health benefits for T1DM children.
Collapse
Affiliation(s)
- Jaime S Rosa
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Locatelli F, Palmer BF, Kashihara N, Ecder T. Renal protective effect of RAAS blockade across the renal continuum, with a review of the efficacy and safety of valsartan. Curr Med Res Opin 2009; 25:2933-49. [PMID: 19835466 DOI: 10.1185/03007990903328231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
UNLABELLED Abstract Objective: The purpose of this report is to review key data on the angiotensin receptor blocker (ARB) valsartan, along with data from several pivotal studies with other ARBs and angiotensin-converting enzyme (ACE) inhibitors, to highlight the beneficial class effects of renin-angiotensin-aldosterone system (RAAS) blockade throughout the renal continuum. METHODS The selection of articles was based on a search of PubMed for clinical trials published between 1997 (the year in which valsartan was approved for sale in the US) and 2009 that involved valsartan and reported effects on renal function, plus a select range of articles on other agents acting on the RAAS, including key guidance documents issued during this time. SUMMARY Valsartan has been studied extensively and is widely used for the management of hypertension. Data from clinical studies involving valsartan and other ARBs and ACE inhibitors provide evidence of an additional renal protective effect. This renal protection apparently arises from hemodynamic, endothelial, and anti-inflammatory actions. LIMITATIONS Given the extent of the available literature on this topic, this review included only a subset of available publications. This report may reflect inherent heterogeneity between patient populations from these studies and also incorporate the limitations of these individual publications. The inclusion of guidance documents from several organizations may have resulted in apparent minor conflicts in the approaches of the different groups.
Collapse
|
18
|
Braga MFB, Leiter LA. Role of renin-angiotensin system blockade in patients with diabetes mellitus. Am J Cardiol 2009; 104:835-9. [PMID: 19733720 DOI: 10.1016/j.amjcard.2009.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/05/2009] [Accepted: 05/05/2009] [Indexed: 11/28/2022]
Abstract
The investigators review the evidence of the potential role of renin-angiotensin system (RAS) blockers in delaying or preventing the onset and progression of diabetes mellitus (DM) and cardiovascular disease and the suggested mechanisms by which these agents exert their favorable metabolic and cardiovascular effects. Data from clinical trials suggest that RAS blockade not only reduces cardiovascular risk in patients with DM but also may prevent or delay DM onset in at-risk subjects. These observations set the stage for further studies evaluating the risk for developing DM as a primary end point: the Diabetes Reduction Approaches With Ramipril And Rosiglitazone Medications (DREAM) trial, in which ramipril significantly increased regression to normoglycemia (although it did not reduce the primary end point of new-onset DM or death), and the ongoing Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) trial, the only DM prevention trial also powered to evaluate whether a reduced risk for DM is associated with a reduction in cardiovascular disease events. In conclusion, overwhelming evidence suggests that the RAS plays an important role in the pathogenesis of DM and its associated cardiovascular risks.
Collapse
Affiliation(s)
- Manoela F B Braga
- Cardiometabolic Risk Initiative, St. Michael's Hospital, University of Toronto, Toronto, Ontario Canada
| | | |
Collapse
|
19
|
Flack JM, Hilkert R. Single-pill combination of amlodipine and valsartan in the management of hypertension. Expert Opin Pharmacother 2009; 10:1979-94. [DOI: 10.1517/14656560903120899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Del Fiorentino A, Cianchetti S, Celi A, Dell'Omo G, Pedrinelli R. The effect of angiotensin receptor blockers on C-reactive protein and other circulating inflammatory indices in man. Vasc Health Risk Manag 2009; 5:233-42. [PMID: 19436669 PMCID: PMC2672458 DOI: 10.2147/vhrm.s4800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Anti-inflammatory properties may contribute to the pharmacological effects of angiotensin II receptor blockers (ARBs), a leading therapeutic class in the management of hypertension and related cardiovascular and renal diseases. That possibility, supported by consistent evidence from in-vitro and animal studies showing pro-inflammatory properties of angiotensin II, has been evaluated clinically by measuring the effect of ARBs on C-reactive protein and other circulating indices of inflammation (e-selectin, adhesion molecules, interleukin-6, tissue necrosis factor-alpha, monocyte chemoattractant protein-1) of potential clinical relevance, a body of evidence that this paper aims to review.
Collapse
|
21
|
Sánchez-Lemus E, Benicky J, Pavel J, Larrayoz IM, Zhou J, Baliova M, Nishioku T, Saavedra JM. Angiotensin II AT1 blockade reduces the lipopolysaccharide-induced innate immune response in rat spleen. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1376-84. [PMID: 19225144 DOI: 10.1152/ajpregu.90962.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ANG II AT(1) receptor blockade reduces inflammation in hypertension. To determine whether ANG II AT(1) receptor blockers (ARBs) influence the innate immune inflammatory response in normotensive rats, we studied rat plasma and spleen after a 3-day subcutaneous pretreatment with the ARB candesartan followed by a single dose of the bacterial endotoxin LPS (50 microg/kg ip). Peripheral administration of LPS to rodents produced a generalized inflammatory response with increased release of TNF-alpha, IL-1beta, and IL-6 into the circulation. Candesartan pretreatment reduced the LPS-induced release of TNF-alpha, IL-1beta, and IL-6 into the circulation. The red pulp of rat spleen expressed large numbers of AT(1) receptors and the LPS receptors Toll-like receptor 4 and CD14. Candesartan administration significantly blocked AT(1) receptors. The ARB reduced the LPS-induced upregulation of CD14 gene expression; expression of TNF-alpha and IL-6 mRNA and protein; expression of IL-1beta and IkappaB-alpha mRNA; COX-2 mRNA and protein expression and PGE(2) concentration; inducible nitric oxide synthase (iNOS) gene and protein expression and iNOS activity; and Nox2 gene expression and 8-isoprostane levels. In addition, candesartan reduced the CD14 protein expression in saline- and LPS-treated rats. Our results suggest that AT(1) receptors are essential for the development of the full innate immune response to bacterial endotoxin. The ARB decreased the general peripheral inflammatory reaction to LPS and partially decreased the inflammatory response in the spleen. An unrestricted innate immune response to the bacterial endotoxin may have deleterious effects for the organism and may lead to development of chronic inflammatory disease. We postulate that ARBs may have therapeutic effects on inflammatory conditions.
Collapse
Affiliation(s)
- Enrique Sánchez-Lemus
- Section on Pharmacology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Effects of calcium channel and renin-angiotensin system blockade on intravascular and neurohormonal mechanisms of hypertensive vascular disease. Am J Hypertens 2008; 21:1076-85. [PMID: 18756260 DOI: 10.1038/ajh.2008.258] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Several classes of antihypertensive drugs have been shown to improve vascular function through mechanisms other than reducing blood pressure (BP) alone. Certain dihydropyridine calcium channel blockers (CCBs) and inhibitors of the renin-angiotensin system (RAS) increase nitric oxide (NO) bioavailability and decrease oxidative stress, thereby improving endothelial activity and vascular function. Pulse wave analyses have shown that these agents reduce the impact of pressure wave reflections on central systolic BP (SBP), consistent with a decrease in arterial stiffness. The complementary vascular mechanisms of these drug classes suggest that combination therapy may be effective for improving clinical outcomes. In animal model studies, combination calcium channel/RAS blockade has been shown to be more effective in improving endothelial dysfunction than treatment with drugs from either class alone. Furthermore, results from recent clinical trials suggest a greater reduction in central aortic SBP, pulse pressure, and cardiovascular events with calcium channel/RAS blockade vs. beta-blocker/diuretic therapy. These studies support the potential benefit of combination calcium channel and RAS blockade in the prevention and treatment of cardiovascular disease.
Collapse
|
24
|
Huang X, Moore DJ, Ketchum RJ, Nunemaker CS, Kovatchev B, McCall AL, Brayman KL. Resolving the conundrum of islet transplantation by linking metabolic dysregulation, inflammation, and immune regulation. Endocr Rev 2008; 29:603-630. [PMID: 18664617 PMCID: PMC2819735 DOI: 10.1210/er.2008-0006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 05/29/2008] [Indexed: 02/08/2023]
Abstract
Although type 1 diabetes cannot be prevented or reversed, replacement of insulin production by transplantation of the pancreas or pancreatic islets represents a definitive solution. At present, transplantation can restore euglycemia, but this restoration is short-lived, requires islets from multiple donors, and necessitates lifelong immunosuppression. An emerging paradigm in transplantation and autoimmunity indicates that systemic inflammation contributes to tissue injury while disrupting immune tolerance. We identify multiple barriers to successful islet transplantation, each of which either contributes to the inflammatory state or is augmented by it. To optimize islet transplantation for diabetes reversal, we suggest that targeting these interacting barriers and the accompanying inflammation may represent an improved approach to achieve successful clinical islet transplantation by enhancing islet survival, regeneration or neogenesis potential, and tolerance induction. Overall, we consider the proinflammatory effects of important technical, immunological, and metabolic barriers including: 1) islet isolation and transplantation, including selection of implantation site; 2) recurrent autoimmunity, alloimmune rejection, and unique features of the autoimmune-prone immune system; and 3) the deranged metabolism of the islet transplant recipient. Consideration of these themes reveals that each is interrelated to and exacerbated by the other and that this connection is mediated by a systemic inflammatory state. This inflammatory state may form the central barrier to successful islet transplantation. Overall, there remains substantial promise in islet transplantation with several avenues of ongoing promising research. This review focuses on interactions between the technical, immunological, and metabolic barriers that must be overcome to optimize the success of this important therapeutic approach.
Collapse
Affiliation(s)
- Xiaolun Huang
- Department of Surgery, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Dai Q, Xu M, Yao M, Sun B. Angiotensin AT1 receptor antagonists exert anti-inflammatory effects in spontaneously hypertensive rats. Br J Pharmacol 2007; 152:1042-8. [PMID: 17922026 DOI: 10.1038/sj.bjp.0707454] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Although the main therapeutic effect of angiotensin AT1 receptor antagonists is to decrease blood pressure, they also exert anti-inflammatory effects in the cardiovascular system. However, the underlying mechanisms remain unclear. We investigated the inhibitory effect of AT1 antagonists on the chemokine monocyte chemoattractant protein 1 (MCP-1) and its receptor C-C chemokine receptor 2 (CCR2) in rat monocytes and aortas. EXPERIMENTAL APPROACH Spontaneous hypertensive rats (SHRs) were treated with the AT1 antagonists losartan or telmisartan for 4 weeks, and Wistar-Kyoto rats (WKYs) were used as normotensive controls. Systolic arterial pressure was measured, and the number of macrophages in the aortic vessel wall was assessed by anti-ED-1 antibody immunolabelling. KEY RESULTS Compared with WKYs, SHRs showed significantly increased ED-1 positive macrophages in the aortic wall, which were decreased after high doses of losartan or telmisartan. Low doses of losartan did not improve blood pressure significantly as did the high doses, but markedly decreased macrophage infiltration in the vessel wall. AT1 antagonists, particularly at high doses, improved aortic remodeling in SHR. At the molecular level, AT1 antagonists attenuated the expression of MCP-1 and CCR2 in the aorta and peripheral blood monocytes and lowered the serum level of MCP-1. In addition, Western blotting showed that AT1 antagonists inhibited the phosphorylation of Akt in mouse monocytes. CONCLUSIONS AND IMPLICATIONS AT1 antagonism inhibited vessel wall inflammation and inhibition of PI3K/Akt may be involved in the modulation of the MCP-1/CCR2 system by AT1 antagonists in SHRs.
Collapse
Affiliation(s)
- Q Dai
- Department of Cardiology, Shanghai First People's Hospital, Jiaotong University, Shanghai, China
| | | | | | | |
Collapse
|
26
|
Weir MR. Targeting mechanisms of hypertensive vascular disease with dual calcium channel and renin-angiotensin system blockade. J Hum Hypertens 2007; 21:770-9. [PMID: 17597800 DOI: 10.1038/sj.jhh.1002254] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Patients with hypertension, particularly those with diabetes mellitus, are at heightened risk for cardiovascular and renal disease. Accumulated evidence indicates that the majority of hypertensive patients at high risk will require more than one antihypertensive agent to reach their blood pressure (BP) target. A reasonable strategy is to use agents with complementary mechanisms of action to enhance BP-lowering efficacy and prevent target organ damage. In experimental models, the combination of a calcium channel blocker (CCB) with an agent that blocks the renin-angiotensin system (RAS), an angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker, improves measures of endothelial function, inflammation, ventricular remodelling and renal function to a greater degree than these classes given as monotherapy. In clinical trials, calcium channel/RAS blockade combination therapy has been shown to provide greater BP reductions and improve renal function in patients with diabetic and nondiabetic renal disease earlier and to a greater extent than monotherapy. In addition, dual calcium channel/RAS blockade increases arterial compliance, arterial distensibility and flow-mediated vasodilation. Expanding upon extensive research on the benefits of calcium channel blockade and RAS blockade for the prevention of vascular events and preclinical and clinical trial evidence suggests added effects of combination therapy by targeting the underlying mechanisms of hypertensive vascular disease.
Collapse
Affiliation(s)
- M R Weir
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|