1
|
Khoi CS, Lin TY, Chiang CK. Targeting Insulin Resistance, Reactive Oxygen Species, Inflammation, Programmed Cell Death, ER Stress, and Mitochondrial Dysfunction for the Therapeutic Prevention of Free Fatty Acid-Induced Vascular Endothelial Lipotoxicity. Antioxidants (Basel) 2024; 13:1486. [PMID: 39765815 PMCID: PMC11673094 DOI: 10.3390/antiox13121486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Excessive intake of free fatty acids (FFAs), especially saturated fatty acids, can lead to atherosclerosis and increase the incidence of cardiovascular diseases. FFAs also contribute to obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Palmitic acid (PA) is human plasma's most abundant saturated fatty acid. It is often used to study the toxicity caused by free fatty acids in different organs, including vascular lipotoxicity. Fatty acid overload induces endothelial dysfunction through various molecular mechanisms. Endothelial dysfunction alters vascular homeostasis by reducing vasodilation and increasing proinflammatory and prothrombotic states. It is also linked to atherosclerosis, which leads to coronary artery disease, peripheral artery disease, and stroke. In this review, we summarize the latest studies, revealing the molecular mechanism of free fatty acid-induced vascular dysfunction, targeting insulin resistance, reactive oxygen species, inflammation, programmed cell death, ER stress, and mitochondrial dysfunction. Meanwhile, this review provides new strategies and perspectives for preventing and reducing the impact of cardiovascular diseases on human health through the relevant targeting molecular mechanism.
Collapse
Affiliation(s)
- Chong-Sun Khoi
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 220216, Taiwan;
- Graduate School of Biotechnology and Bioengineering, College of Engineering, Yuan Ze University, Taoyuan City 320315, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 220216, Taiwan;
- Department of Mechanical Engineering, College of Engineering, Yuan Ze University, Taoyuan City 320315, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei City 10617, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei City 10617, Taiwan
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei City 100229, Taiwan
| |
Collapse
|
2
|
Shi X, Wang S, Luan H, Tuerhong D, Lin Y, Liang J, Xiong Y, Rui L, Wu F. Clinopodium chinense Attenuates Palmitic Acid-Induced Vascular Endothelial Inflammation and Insulin Resistance through TLR4-Mediated NF- κ B and MAPK Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:97-117. [PMID: 30776912 DOI: 10.1142/s0192415x19500058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Elevated palmitic acid (PA) levels are associated with the development of inflammation, insulin resistance (IR) and endothelial dysfunction. Clinopodium chinense (Benth.) O. Kuntze has been shown to lower blood glucose and attenuate high glucose-induced vascular endothelial cells injury. In the present study we investigated the effects of ethyl acetate extract of C. chinense (CCE) on PA-induced inflammation and IR in the vascular endothelium and its molecular mechanism. We found that CCE significantly inhibited PA-induced toll-like receptor 4 (TLR4) expression in human umbilical vein endothelial cells (HUVECs). Consequently, this led to the inhibition of the following downstream adapted proteins myeloid differentiation primary response gene 88, Toll/interleukin-1 receptor domain-containing adaptor-inducing interferon- β and TNF receptor-associated factor 6. Moreover, CCE inhibited the phosphorylation of Ikappa B kinase β , nuclear factor kappa-B (NF- κ B), c-Jun N-terminal kinase, extracellular regulated protein kinases, p38-mitogen-activated protein kinase (MAPK) and subsequently suppressed the release of tumor necrosis factor- α , interleukin-1 β (IL-1 β ) and IL-6. CCE also inhibited IRS-1 serine phosphorylation and ameliorated insulin-mediated tyrosine phosphorylation of IRS-1. Moreover, CCE restored serine/threonine kinase and endothelial nitric oxide synthase (eNOS) activation and thus increased insulin-mediated nitric oxide (NO) production in PA-treated HUVECs. This led to reverse insulin mediated endothelium-dependent relaxation, eNOS phosphorylation and NO production in PA-treated rat thoracic aortas. These results suggest that CCE can significantly inhibit the inflammatory response and alleviate impaired insulin signaling in the vascular endothelium by suppressing TLR4-mediated NF- κ B and MAPK pathways. Therefore, CCE can be considered as a potential therapeutic candidate for endothelial dysfunction associated with IR and diabetes.
Collapse
Affiliation(s)
- Xiaoji Shi
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Shanshan Wang
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Huiling Luan
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Dina Tuerhong
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Yining Lin
- † Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jingyu Liang
- ‡ Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Yi Xiong
- § Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| | - Liangyou Rui
- § Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| | - Feihua Wu
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,§ Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
3
|
Yu Y, Xing N, Xu X, Zhu Y, Wang S, Sun G, Sun X. Tournefolic acid B, derived from Clinopodium chinense (Benth.) Kuntze, protects against myocardial ischemia/reperfusion injury by inhibiting endoplasmic reticulum stress-regulated apoptosis via PI3K/AKT pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:178-186. [PMID: 30599897 DOI: 10.1016/j.phymed.2018.09.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/04/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Protection the heart from ischemia/reperfusion (I/R) injury is an area of intense research, as myocardial infarction is a major cause of mortality and morbidity all around the world. Tournefolic acid B (TAB) is a relative new compound derived from Clinopodium chinense (Benth.) Kuntze (Chinese name: Feng Lun Cai). This traditional Chinese herbal medicine has been used for its activities on anti-inflammatory, lowering blood glucose, antitumor and antiradiation. However, the pharmacological effects of TAB were rarely studied. PURPOSE Pathways involving phosphoinositide 3-kinase (PI3K) and protein kinase b (Akt) are crucial in regulating the ER stress and associated apoptosis in the process of I/R injury. In the present study, we aim to investigate the cardioprotective effects of tournefolic acid B (TAB) against myocardial I/R injury and explore the molecular mechanisms involved. STUDY DESIGN H9c2 cadiomyocyte were incubated with TAB for 24 h and then exposed to hypoxia/reoxygenation. Isolated rat hearts were subjected to global ischemia and reperfusion in the absence or presence of TAB. METHODS The possible mechanisms were investigated in vitro and ex vivo by multiple detection methods including JC-1 staining, ROS detection, activities of caspases detection, TUNEL staining, and Western-blot analysis. RESULTS We found that TAB significantly improved the hemodynamic parameters (LVeDP, LVSP, + dP/dtmax, - dP/dtmin, and HR) of isolated rat hearts, and depressed the cardiomyocyte apoptosis. Besides, TAB inhibited the oxidative stress by adjusting the activities of antioxidant enzymes (SOD, CAT, and GSH-Px). The I/R injury triggered the endoplasmic reticulum (ER) stress by activating the ER proteins, such as Grp78, ATF6, PERK, and eIf2α. which are all refrained by TAB. TAB also enhanced the phosphorylation of PI3K and AKT, inhibited the expression of CHOP and Caspase-12, reduced the phosphorylation of JNK, and increased Bcl-2/Bax ratio. CONCLUSION TAB protects against myocardial I/R injury by suppressing PI3K/AKT-mediated ER stress, oxidative stress, and apoptosis, revealing a promising therapeutic agent against ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Yingli Yu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of the efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Na Xing
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xudong Xu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Yindi Zhu
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Shan Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of the efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of the efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of the efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China.
| |
Collapse
|
4
|
Shen YH, Wang LY, Zhang BB, Hu QM, Wang P, He BQ, Bao GH, Liang JY, Wu FH. Ethyl Rosmarinate Protects High Glucose-Induced Injury in Human Endothelial Cells. Molecules 2018; 23:E3372. [PMID: 30572638 PMCID: PMC6321336 DOI: 10.3390/molecules23123372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022] Open
Abstract
Ethyl rosmarinate (RAE) is one of the active constituents from Clinopodium chinense (Benth.) O. Kuntze, which is used for diabetic treatment in Chinese folk medicine. In this study, we investigated the protective effect of RAE on high glucose-induced injury in endothelial cells and explored its underlying mechanisms. Our results showed that both RAE and rosmarinic acid (RA) increased cell viability, decreased the production of reactive oxygen species (ROS), and attenuated high glucose-induced endothelial cells apoptosis in a dose-dependent manner, as evidenced by Hochest staining, Annexin V⁻FITC/PI double staining, and caspase-3 activity. RAE and RA both elevated Bcl-2 expression and reduced Bax expression, according to Western blot. We also found that LY294002 (phosphatidylinositol 3-kinase, or PI3K inhibitor) weakened the protective effect of RAE. In addition, PDTC (nuclear factor-κB, or NF-κB inhibitor) and SP600125 (c-Jun N-terminal kinase, or JNK inhibitor) could inhibit the apoptosis in endothelial cells caused by high glucose. Further, we demonstrated that RAE activated Akt, and the molecular docking analysis predicted that RAE showed more affinity with Akt than RA. Moreover, we found that RAE inhibited the activation of NF-κB and JNK. These results suggested that RAE protected endothelial cells from high glucose-induced apoptosis by alleviating reactive oxygen species (ROS) generation, and regulating the PI3K/Akt/Bcl-2 pathway, the NF-κB pathway, and the JNK pathway. In general, RAE showed greater potency than RA equivalent.
Collapse
Affiliation(s)
- Yan-Hui Shen
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Li-Ying Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Bao-Bao Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Qi-Ming Hu
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Pu Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Bai-Qiu He
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Guan-Hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Jing-Yu Liang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Fei-Hua Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Amirova KM, Dimitrova P, Marchev AS, Aneva IY, Georgiev MI. Clinopodium vulgare L. (wild basil) extract and its active constituents modulate cyclooxygenase-2 expression in neutrophils. Food Chem Toxicol 2018; 124:1-9. [PMID: 30481570 DOI: 10.1016/j.fct.2018.11.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/26/2022]
Abstract
Clinopodium vulgare L. (wild basil) has a wide range of ethnopharmacological applications and accumulates a broad spectrum of phenolic compounds, recognized for their anti-inflammatory and anticancer properties. The triggered cyclooxygenase-2 (COX-2) expression is creating an immunosuppressive microenvironment in the inflamed tissue and considered to be the main cause of failure of even new anticancer-/immune-therapies. Nowadays, selective and novel plant-derived COX-2 inhibitors with safe profile are subject of profound research interest. This study aimed to analyze the metabolic profile of C. vulgare and search for phenolic molecules with potential biological properties. By application of 1H and 2D-NMR (Nuclear Magnetic Resonance) profiling, caffeic, chlorogenic acids and catechin were identified along with a bunch of primary and secondary metabolites. Further, the biological effect of C. vulgare extract (CVE) and its constituents on zymosan-induced COX-2 expression and apoptosis of murine neutrophils have been studied. The CVE, caffeic and chlorogenic acids inhibited zymosan-induced COX-2 expression in bone marrow neutrophils, in vitro and in vivo activated. The obtained data indicate that CVE may have a good potential to manipulate neutrophil functions, however, its action may depend on the cellular state, the inflammatory milieu and the relative content of caffeic and chlorogenic acid in the extract.
Collapse
Affiliation(s)
| | - Petya Dimitrova
- Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113, Sofia, Bulgaria
| | - Andrey S Marchev
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Ina Y Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Milen I Georgiev
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria.
| |
Collapse
|
6
|
Gao Y, Wang Y, Wang K, Zhu J, Li G, Tian J, Li C, Wang Z, Li J, Lee AW, Guo C. Acute and a 28-day repeated-dose toxicity study of total flavonoids from Clinopodium chinense (Benth.) O. Ktze in mice and rats. Regul Toxicol Pharmacol 2017; 91:117-123. [DOI: 10.1016/j.yrtph.2017.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Accepted: 10/23/2017] [Indexed: 02/02/2023]
|
7
|
Qin W, Ren B, Wang S, Liang S, He B, Shi X, Wang L, Liang J, Wu F. Apigenin and naringenin ameliorate PKCβII-associated endothelial dysfunction via regulating ROS/caspase-3 and NO pathway in endothelial cells exposed to high glucose. Vascul Pharmacol 2016; 85:39-49. [PMID: 27473516 DOI: 10.1016/j.vph.2016.07.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/17/2016] [Accepted: 07/24/2016] [Indexed: 11/17/2022]
Abstract
Endothelial dysfunction is a key event in the progression of atherosclerosis with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction. Apigenin and naringenin are two kinds of widely used flavones. In the present study, we investigated whether and how apigenin and naringenin reduced endothelial dysfunction induced by high glucose in endothelial cells. We showed that apigenin and naringenin protected against endothelial dysfunction via inhibiting phosphorylation of protein kinase C βII (PKCβII) expression and downstream reactive oxygen species (ROS) production in endothelial cells exposed to high glucose. Furthermore, we demonstrated that apigenin and naringenin reduced high glucose-increased apoptosis, Bax expression, caspase-3 activity and phosphorylation of NF-κB in endothelial cells. Moreover, apigenin and naringenin effectively restored high glucose-reduced Bcl-2 expression and Akt phosphorylation. Importantly, apigenin and naringenin significantly increased NO production in endothelial cells subjected to high glucose challenge. Consistently, high glucose stimulation impaired acetylcholine (ACh)-mediated vasodilation in the rat aorta, apigenin and naringenin treatment restored the impaired endothelium-dependent vasodilation via dramatically increasing eNOS activity and nitric oxide (NO) level. Taken together, our results manifest that apigenin and naringenin can ameliorate endothelial dysfunction via regulating ROS/caspase-3 and NO pathway.
Collapse
Affiliation(s)
- Weiwei Qin
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Bei Ren
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; Taiyuan Institute For Food And Drug Control, 85 Longcheng Avenue, Taiyuan 030000, PR China
| | - Shanshan Wang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shujun Liang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Baiqiu He
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Xiaoji Shi
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Liying Wang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jingyu Liang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Feihua Wu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
8
|
Zeng B, Chen K, Du P, Wang SS, Ren B, Ren YL, Yan HS, Liang Y, Wu FH. Phenolic Compounds fromClinopodium chinense(Benth.) O. Kuntzeand Their Inhibitory Effects onα-Glucosidase and Vascular Endothelial Cells Injury. Chem Biodivers 2016; 13:596-601. [DOI: 10.1002/cbdv.201500187] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/21/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Biao Zeng
- School of Traditional Chinese Pharmacy; China Pharmaceutical University; 639 Longmian Avenue Jiangning District Nanjing 211198 P. R. China
| | - Kai Chen
- School of Traditional Chinese Pharmacy; China Pharmaceutical University; 639 Longmian Avenue Jiangning District Nanjing 211198 P. R. China
| | - Ping Du
- Department of Pharmacy; Jiangsu Provincial Chinese Medicine Hospital; Nanjing 210029 P. R. China
| | - Shan-Shan Wang
- School of Traditional Chinese Pharmacy; China Pharmaceutical University; 639 Longmian Avenue Jiangning District Nanjing 211198 P. R. China
| | - Bei Ren
- School of Traditional Chinese Pharmacy; China Pharmaceutical University; 639 Longmian Avenue Jiangning District Nanjing 211198 P. R. China
| | - Yan-Li Ren
- School of Traditional Chinese Pharmacy; China Pharmaceutical University; 639 Longmian Avenue Jiangning District Nanjing 211198 P. R. China
| | - Hang-Song Yan
- School of Traditional Chinese Pharmacy; China Pharmaceutical University; 639 Longmian Avenue Jiangning District Nanjing 211198 P. R. China
| | - Yan Liang
- Nanjing Sanhome Pharmaceutical Co., Ltd.; No. 222 Zhujiang Road Nanjing 210018 P. R. China
| | - Fei-Hua Wu
- School of Traditional Chinese Pharmacy; China Pharmaceutical University; 639 Longmian Avenue Jiangning District Nanjing 211198 P. R. China
| |
Collapse
|
9
|
Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. Eur J Pharmacol 2016; 773:13-23. [DOI: 10.1016/j.ejphar.2016.01.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/21/2015] [Accepted: 01/19/2016] [Indexed: 01/13/2023]
|