1
|
Amirkhizi F, Taghizadeh M, Hamedi-Shahraki S, Asghari S. Association of dietary phytochemical index with metabolic markers, serum asymmetric dimethylarginine and atherogenic indices in patients with polycystic ovary syndrome. Nutr Metab (Lond) 2025; 22:39. [PMID: 40336098 PMCID: PMC12060492 DOI: 10.1186/s12986-025-00932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is associated with an increased risk of cardiovascular diseases (CVD). Plant-based diets are associated with reduced CVD risk factors. This study aimed to explore the associations between dietary phytochemical index (DPI) and asymmetric dimethylarginine (ADMA), lipid profile, atherogenic indices, and other metabolic biomarkers in women with PCOS. METHODS In this cross-sectional study, 150 females aged 18-45 years diagnosed with PCOS were recruited. An interviewer-administered questionnaire was applied to gather the relevant demographic characteristics, detailed clinical information, and lifestyle habits of participants. A validated semi-quantitative food frequency questionnaire was used to assess dietary intake, and DPI was calculated accordingly. We used multiple linear regression to determine the association between serum concentrations of ADMA, total testosterone, sex hormone-binding globulin (SHBG), fasting serum glucose (FSG), insulin, and lipid profile, as well as atherogenic indices across quartiles of DPI. RESULTS There was a negative correlation between the DPI and serum levels of ADMA (p-trend = 0.022), triglycerides (TG) (p-trend = 0.003), oxidized low-density lipoprotein cholesterol (ox-LDL) (p-trend = 0.001), insulin (p-trend = 0.045) and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) (p-trend = 0.018). Moreover, there was a tendency for visceral adiposity index (VAI) (p-trend = 0.005) and atherogenic index of plasma (AIP) (p-trend = 0.001) to decrease as the quartile categories of DPI increased. No significant regular trend was found for serum levels of FSG, SHBG, total testosterone, other lipid profiles, and lipid accumulation product (LAP). CONCLUSIONS These findings suggest that adherence to a phytochemical-rich diet decrease the CVD risk factors in PCOS patients.
Collapse
Affiliation(s)
- Farshad Amirkhizi
- Department of Nutrition, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahdiyeh Taghizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No#44, Hojjatdoust St., Naderi St., Keshavarz Blvd, Tehran, 141556117, Iran
| | - Soudabeh Hamedi-Shahraki
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Zabol University of Medical Sciences, Bagheri St., Shahid Rajaei St, Zabol, 9861615881, Iran.
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No#44, Hojjatdoust St., Naderi St., Keshavarz Blvd, Tehran, 141556117, Iran.
| |
Collapse
|
2
|
Lu PC, Tain YL, Lin YJ, Hsu CN. Oxidative Stress in Maternal and Offspring Kidney Disease and Hypertension: A Life-Course Perspective. Antioxidants (Basel) 2025; 14:387. [PMID: 40298619 PMCID: PMC12024290 DOI: 10.3390/antiox14040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Kidney disease and hypertension are interconnected, prevalent conditions that affect both pregnant women and children. Oxidative stress occurs when reactive oxygen species or reactive nitrogen species exceed the capacity of antioxidant systems. It plays a critical role in kidney development, resulting in kidney programming and increased risks for kidney disease and hypertension across the life course. Animal models have significantly advanced our understanding of oxidative stress-related kidney programming, the molecular mechanisms involved, and early-life antioxidant interventions to prevent kidney disease. This review critically examines the influence of perinatal oxidative stress on kidney development, highlighting its long-term effects on kidney outcomes and susceptibility to hypertension. It also explores the potential of antioxidant-based interventions in preventing kidney disease and hypertension. Furthermore, the review addresses the existing gap between insights gained from animal models and their translation into clinical practices, emphasizing the challenges and opportunities for future research in this area.
Collapse
Affiliation(s)
- Pei-Chen Lu
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (P.-C.L.); (Y.-L.T.)
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (P.-C.L.); (Y.-L.T.)
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ying-Jui Lin
- Division of Critical Care, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Division of Cardiology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Early Childhood Care and Education, Cheng Shiu University, Kaohsiung 833, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Huang Q, Zhang C, Tang S, Wu X, Peng X. Network Pharmacology Analyses of the Pharmacological Targets and Therapeutic Mechanisms of Salvianolic Acid A in Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8954035. [PMID: 36248430 PMCID: PMC9556248 DOI: 10.1155/2022/8954035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/05/2022]
Abstract
Objective Salvianolic acid A, a natural polyphenolic ingredient extracted from traditional Chinese medicine, possesses an excellent pharmacological activity against cardiovascular diseases. Herein, therapeutic mechanisms of salvianolic acid A in myocardial infarction were explored through systematic and comprehensive network pharmacology analyses. Methods The chemical structure of salvianolic acid A was retrieved from PubChem database. Targets of salvianolic acid A were estimated through SwissTargetPrediction, HERB, and TargetNet databases. Additionally, by GeneCards, OMIM, DisGeNET, and TTD online tools, myocardial infarction-relevant targets were predicted. Following intersection, therapeutic targets were determined. The interaction of their products was evaluated with STRING database, and hub therapeutic targets were selected. GO and KEGG enrichment analyses of therapeutic targets were then implemented. H9C2 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic myocardial infarction and administrated with salvianolic acid A. Cellular proliferation was assayed via CCK-8 assay, and hub therapeutic targets were verified with RT-qPCR. Results In total, 120 therapeutic targets of salvianolic acid A in myocardial infarction were identified. There were close interactions between their products. Ten hub therapeutic targets were determined, covering SRC, CTNNB1, PIK3CA, AKT1, RELA, EGFR, FYN, ITGB1, MAPK8, and NFKB1. Therapeutic targets were significantly correlated to myocardial infarction-relevant pathways, especially PI3K-Akt signaling pathway. Salvianolic acid A administration remarkably ameliorated the viability of OGD/R-induced H9C2 cells, and altered the expression of hub therapeutic targets. Conclusion Our work uncovers therapeutic mechanisms of salvianolic acid A for the treatment of myocardial infarction, providing a new insight into further research on salvianolic acid A.
Collapse
Affiliation(s)
- Qing Huang
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Chao Zhang
- Heart Function Testing Center of Cardiovascular Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shaoyong Tang
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Xiaoyan Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiong Peng
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
4
|
Zhao C, Li S, Zhang J, Huang Y, Zhang L, Zhao F, Du X, Hou J, Zhang T, Shi C, Wang P, Huo R, Woodman OL, Qin CX, Xu H, Huang L. Current state and future perspective of cardiovascular medicines derived from natural products. Pharmacol Ther 2020; 216:107698. [PMID: 33039419 DOI: 10.1016/j.pharmthera.2020.107698] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
The contribution of natural products (NPs) to cardiovascular medicine has been extensively documented, and many have been used for centuries. Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Over the past 40 years, approximately 50% of newly developed cardiovascular drugs were based on NPs, suggesting that NPs provide essential skeletal structures for the discovery of novel medicines. After a period of lower productivity since the 1990s, NPs have recently regained scientific and commercial attention, leveraging the wealth of knowledge provided by multi-omics, combinatorial biosynthesis, synthetic biology, integrative pharmacology, analytical and computational technologies. In addition, as a crucial part of complementary and alternative medicine, Traditional Chinese Medicine has increasingly drawn attention as an important source of NPs for cardiovascular drug discovery. Given their structural diversity and biological activity NPs are one of the most valuable sources of drugs and drug leads. In this review, we briefly described the characteristics and classification of NPs in CVDs. Then, we provide an up to date summary on the therapeutic potential and the underlying mechanisms of action of NPs in CVDs, and the current view and future prospect of developing safer and more effective cardiovascular drugs based on NPs.
Collapse
Affiliation(s)
- Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sen Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Junhong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyun Huang
- Biology Department, Cornell University, Ithaca, NY 14850, United States of America
| | - Luoqi Zhang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Feng Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xia Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Jinli Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenjing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruili Huo
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia; School of Pharmaceutical Science, Shandong University, Shandong 250100, China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250100, China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
5
|
Kaur K, Singh N, Dhawan RK. Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 22:1415-1423. [PMID: 32133059 PMCID: PMC7043882 DOI: 10.22038/ijbms.2019.14067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objectives Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimethylaminohydrolase (DDAH) is a key enzyme responsible for degradation of ADMA, the present study was designed to explore the role of DDAH/ADMA/NO pathway in cardio-protective mechanism of ischaemic postconditioning. Materials and Methods Isolated rat hearts were subjected to myocardial ischaemia for 30 min followed by reperfusion for 2 hours in control group. Myocardial injury was assessed by measurement of infarct size, left ventricular developed pressure (LVDP), lactate dehydrogenase (LDH) and creatine kinase (CK) enzymes in coronary effluents. The reperfused hearts were homogenised and tissue concentration of nitrite, ADMA level and DDAH enzyme activity was determined. Results A significant increase in infarct size, LDH, CK release in coronary effluents and ADMA level in myocardial tissue was observed in control group. The increase in tissue ADMA coincided with reductions of NO tissue concentrations and DDAH activity. Ischaemic postconditioning significantly attenuated ischaemia-reperfusion induced myocardial injury manifested in the terms of decreased infarct size, LDH, CK, tissue ADMA along with increase in NO levels and DDAH enzyme activity. Pretreatment with L-Homocysteine (300 µM), a competitive inhibitor of DDAH, and L-NG-nitroarginine methyl ester (L-NAME; 100 µM), an inhibitor of eNOS, completely abolished ischaemic postconditioning-induced myocardial protection. Conclusion Enhancing DDAH activity by postconditioning may be a novel target to reduce ADMA level and increase NO bioavailability to prevent myocardial ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Kamaldeep Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala
| | - R K Dhawan
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar
| |
Collapse
|
6
|
Du G, Song J, Du L, Zhang L, Qiang G, Wang S, Yang X, Fang L. Chemical and pharmacological research on the polyphenol acids isolated from Danshen: A review of salvianolic acids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 87:1-41. [PMID: 32089230 DOI: 10.1016/bs.apha.2019.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Danshen, the dried root of Salvia miltiorrhiza Bge, is a common medicinal herb in Traditional Chinese Medicine, which has been used for the treatment of a number of diseases for thousands of years. More than 2000 years ago, the Chinese early pharmacy monograph "Shennong Materia Medica" recorded that Danshen could be used for the treatment of gastrointestinal diseases, cardiovascular diseases, certain gynecological diseases, etc. Since then, Danshen has been widely used clinically in many different prescriptions for many different diseases, especially for the treatment of cardiovascular diseases. Nowadays, many pharmacological studies about the water-soluble components from Danshen have been reported, especially salvianolic acids. It turned out that salvianolic acids showed strong anti-lipid peroxidation and anti-thrombic activities, and among them, SalAA and SalAB were the most potent. This review focused on the achievements in research of salvianolic acids regarding their bioactivities and pharmacological effects. These studies not only shed light on the water-soluble active components of Danshen and their mechanisms at the molecular level, but also provided theoretical information for the development of new medicines from Danshen for the treatment of cardiovascular and cerebrovascular diseases, inflammatory diseases, metabolic diseases, etc.
Collapse
Affiliation(s)
- Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Junke Song
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lida Du
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Li Zhang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guifen Qiang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shoubao Wang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiuying Yang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lianhua Fang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Toxic Dimethylarginines: Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA). Toxins (Basel) 2017; 9:toxins9030092. [PMID: 28272322 PMCID: PMC5371847 DOI: 10.3390/toxins9030092] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/04/2017] [Indexed: 02/07/2023] Open
Abstract
Asymmetric and symmetric dimethylarginine (ADMA and SDMA, respectively) are toxic, non-proteinogenic amino acids formed by post-translational modification and are uremic toxins that inhibit nitric oxide (NO) production and play multifunctional roles in many human diseases. Both ADMA and SDMA have emerged as strong predictors of cardiovascular events and death in a range of illnesses. Major progress has been made in research on ADMA-lowering therapies in animal studies; however, further studies are required to fill the translational gap between animal models and clinical trials in order to treat human diseases related to elevated ADMA/SDMA levels. Here, we review the reported impacts of ADMA and SDMA on human health and disease, focusing on the synthesis and metabolism of ADMA and SDMA; the pathophysiological roles of these dimethylarginines; clinical conditions and animal models associated with elevated ADMA and SDMA levels; and potential therapies against ADMA and SDMA. There is currently no specific pharmacological therapy for lowering the levels and counteracting the deleterious effects of ADMA and SDMA. A better understanding of the mechanisms underlying the impact of ADMA and SDMA on a wide range of human diseases is essential to the development of specific therapies against diseases related to ADMA and SDMA.
Collapse
|
9
|
Wang H, Li X, Zhang W, Liu Y, Wang S, Liu X, He H. Mechanism-based pharmacokinetic-pharmacodynamic modeling of salvianolic acid A effects on plasma xanthine oxidase activity and uric acid levels in acute myocardial infarction rats. Xenobiotica 2016; 47:208-216. [PMID: 27165094 DOI: 10.1080/00498254.2016.1180440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Salvianolic acid A (SalA) was found to attenuate plasma uric acid (UA) concentration and xanthine oxidase (XO) activity in acute myocardial infraction (AMI) rats, which was characterized with developed mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) model. 2. AMI was induced in rats by coronary artery ligation. Surviving AMI rats received a single intravenous dose of 5 mg/kg of SalA and normal saline. The plasma SalA concentrations were determined by HPLC-MS/MS method. The plasma UA concentrations were determined by HPLC method and plasma XO activity were measured spectrophotometrically. An integrated mathematical model characterized the relationship between plasma UA and SalA. 3. Pharmacokinetics was described using two-compartment model for SalA with linear metabolic process. In post-AMI rats, XO activity and UA concentrations were increased, while SalA dosing palliated this increase. These effects were well captured by using two series of transduction models, simulating the delay of inhibition on XO driven by SalA and UA elevation resulted from the multiple factors, respectively. 4. The effect was well described by the developed PK-PD model, indicating that SalA can exert cardiovascular protective effects by decreasing elevated plasma UA levels induced by AMI.
Collapse
Affiliation(s)
- Haidong Wang
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , PR China
| | - Xi Li
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , PR China
| | - Wenting Zhang
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , PR China
| | - Yao Liu
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , PR China
| | - Shijun Wang
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , PR China
| | - Xiaoquan Liu
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , PR China
| | - Hua He
- a Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
10
|
Prevention of vascular smooth muscle cell proliferation and injury-induced neointimal hyperplasia by CREB-mediated p21 induction: An insight from a plant polyphenol. Biochem Pharmacol 2016; 103:40-52. [PMID: 26807478 DOI: 10.1016/j.bcp.2016.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/13/2016] [Indexed: 12/23/2022]
Abstract
Cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP response element (CRE)-binding protein (CREB) signaling cascade negatively regulates platelet-derived growth factor BB (PDGF-BB)-induced smooth muscle cell (SMC) proliferation, which is a critical event in the initiation and development of restenosis and atherosclerotic lesions. Salvianolic acid A (SAA) is one of the most abundant polyphenols extracted from salvia. The aim of this study is to investigate whether SAA exerts an action on PDGF-BB-induced proliferation via cAMP/PKA/CREB mechanism. SAA blunts PDGF-BB-induced human umbilical artery smooth muscle cell (hUASMC) proliferation via p21 induction, as evidenced by its increased mRNA and protein expression levels. The SAA-induced upregulation of p21 involves the cAMP/PKA signaling pathway; a cAMP analog mimicked the effects of SAA and a specific cAMP/PKA inhibitor opposed these effects. SAA also activated CREB, including phosphorylation at Ser133, and induced its nuclear translocation. Deletion and mutational analysis of p21 promoters, co-immunoprecipitation, and western blot analysis showed that CRE is essential for SAA-induced p21 protein expression. Transfection of dominant-negative CREB (mutated Ser133) plasmids into hUASMCs attenuated SAA-stimulated p21 expression. SAA upregulated p21 expression and activated CREB in the neointima of balloon-injured arteries in vivo. Our results indicate that SAA promotes p21 expression in SMCs through the cAMP/PKA/CREB signaling cascade in vitro and prevents injury-induced neointimal hyperplasia.
Collapse
|
11
|
Cao Y, Wang L, Lin Z, Liang F, Pei Z, Xu J, Gu Q. Dehydroabietylamine derivatives as multifunctional agents for the treatment of Alzheimer's disease. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00305e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dehydroabietylamine derivatives were found to show activity against Alzheimer's disease. Compound3b, in particular, showed potent multifunctional activity for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yingying Cao
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou
- China
| | - Ling Wang
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou
- China
| | - Zhongxiang Lin
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Fengyin Liang
- Neurology Department of the First Affiliated Hospital
- Sun Yat-Sen University
- Guangzhou 510080
- China
| | - Zhong Pei
- Neurology Department of the First Affiliated Hospital
- Sun Yat-Sen University
- Guangzhou 510080
- China
| | - Jun Xu
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou
- China
| | - Qiong Gu
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou
- China
| |
Collapse
|
12
|
Betz B, Möller-Ehrlich K, Kress T, Kniepert J, Schwedhelm E, Böger RH, Wanner C, Sauvant C, Schneider R. Increased symmetrical dimethylarginine in ischemic acute kidney injury as a causative factor of renal L-arginine deficiency. Transl Res 2013; 162:67-76. [PMID: 23707198 DOI: 10.1016/j.trsl.2013.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 11/26/2022]
Abstract
Availability of L-arginine, the exclusive substrate for nitric oxide synthases, plays an important role in kidney ischemia/reperfusion injury. The endogenous L-arginine derivatives asymmetrical dimethylarginine (ADMA) and symmetrical dimethylarginine (SDMA) block cellular L-arginine uptake competitively, thereby inhibiting the production of nitric oxide. ADMA also blocks nitric oxide synthase activity directly. Here, we investigate the pathomechanistic impact of ADMA and SDMA on ischemic acute kidney injury. Rats were subject to bilateral renal ischemia (60 minutes)/reperfusion (24 hours) injury. Impairment of renal function was determined with inulin clearance (glomerular filtration rate) and para-aminohippurate (PAH) clearance (renal plasma flow). L-arginine, ADMA, and SDMA levels were measured by liquid chromatography-tandem mass spectrometry. L-arginine was extracted from renal tissue and analyzed by enzyme-linked immunosorbent assay, and protein and messenger RNA expressions were determined by Western blot and real-time reverse transcription polymerase chain reaction. Renal function deteriorated severely after ischemia/reperfusion injury, as demonstrated by inulin and PAH clearance. Serum ADMA and SDMA increased, but tissue expression of specific ADMA or SDMA synthesizing and metabolizing enzymes (protein arginine methyltransferases and dimethyl arginine dimethylaminohydrolases) did not alter. Serum L-arginine increased as well, whereas intracellular L-arginine concentration diminished. Renal messenger RNA expression of cationic amino acid transporters, which mediate L-arginine uptake, remained unchanged. In serum, the ratio of L-arginine to ADMA did not alter after ischemia/reperfusion injury, whereas the ratios of L-arginine to SDMA and ADMA to SDMA decreased. A marked increase in serum SDMA, especially when accompanied by a diminished L-arginine-to-SDMA ratio, might reflect competitive inhibition of cellular L-arginine uptake by SDMA. As a consequence, a pathologic renal L-arginine deficiency in ischemic acute kidney injury results.
Collapse
Affiliation(s)
- Boris Betz
- Division of Nephrology, Department of Medicine I, University Hospital of Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|