1
|
Jackson RL, Heyrend C, Bucher B, Brewer A, Peterson C, May LJ, Bonkowsky JL. Impact of Pharmacogenomic Testing in Pediatric Heart and Kidney Transplant. Pediatr Transplant 2025; 29:e70044. [PMID: 39924350 DOI: 10.1111/petr.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Pediatric solid organ transplantation is a complex process including a tightly orchestrated medication regimen, essential for prevention of infection, rejection, graft failure, and mortality. Pharmacogenomic (PGx) testing tailors medication therapy to the individual patient, focusing on safety, efficacy, and avoidance of adverse effects. Implementation of PGx panel results into clinical practice for pediatric transplant patients has not been evaluated. METHODS Pediatric patients evaluated for heart, kidney, or combined heart-kidney transplant at a tertiary children's hospital from October 2021 to October 2023 received PGx panel testing. PRIMARY OUTCOME MEASURE Report the prevalence of actionable PGx variants for key genes impacting pharmacotherapy in pre- and post-heart and kidney transplant populations. RESULTS A total of 73 patients were included, predominately white (84.9%) and male (64.4%), with a mean age of 8.8 ± 6.4 years. Indications for PGx testing included evaluation for heart transplant (38.4%), kidney transplant (38.4%), combined heart-kidney transplant (4.1%), or to inform posttransplant care (19.2%). All patients had at least one actionable phenotype identified. 37 of 73 patients (50.7%) had at least one actionable phenotype for the transplant-specific genes captured including CYP3A5, SLCO1B1, G6PD, TPMT, prothrombin (Factor 2), and Factor V Leiden. 16 of 73 patients (21.9%) had actionable CYP3A5 phenotypes. 15 of 73 (20.5%) had actionable SLCO1B1 phenotypes. 9 of 73 patients (12.3%) had actionable TPMT phenotypes. 5 of 73 (6.8%) had Prothrombin or Factor V Leiden variants. CONCLUSIONS Routine pretransplant PGx testing provided information that was actionable and could be utilized to optimize posttransplant medications for all patients.
Collapse
Affiliation(s)
- Rachel L Jackson
- Department of Pharmacy, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Caroline Heyrend
- Department of Pharmacy, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Bridget Bucher
- Department of Pharmacy, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Ashlie Brewer
- Department of Pharmacy, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Caitlin Peterson
- Division of Nephrology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Lindsay J May
- Division of Cardiology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
- Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Chen X, Hu K, Zhang Y, He SM, Wang DD. Targeting CXCR2 ameliorated tacrolimus-induced nephrotoxicity by alleviating overactivation of PI3K/AKT/mTOR pathway and calcium overload. Biomed Pharmacother 2024; 180:117526. [PMID: 39378682 DOI: 10.1016/j.biopha.2024.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVES The purposes of this study were to (i) verify the role of CXCR2 in tacrolimus-induced nephrotoxicity, (ii) explore the specific mechanism of CXCR2-mediated tacrolimus nephrotoxicity, and (iii) target the antagonism of CXCR2 and provide a potential target for the treatment of tacrolimus-induced nephrotoxicity in children. METHODS CXCR2 knockout (CXCR2-KO) mice were used to evaluate the role of CXCR2 in tacrolimus-induced nephrotoxicity. Wistar rats were used to explore the underlying mechanism. RESULTS In the knockout mice, compared with N-WT group, the renal function index was deteriorative (P < 0.01), the degree of renal fibrosis was aggravated (P < 0.01), the pathological expression of E-cadherin (P < 0.01) and α-SMA (P < 0.01) were occurred in T-WT group. Inversely, compared with T-WT group, the above indicators were improved in T-KO group (P < 0.01). In wistar rats, compared with N group, the renal function index was deteriorative (P < 0.05 or P < 0.01), fibrosis and calcium overload occurred (P < 0.01), CXCL2-CXCR2 was activated (P < 0.05), and meanwhile PI3K/AKT/mTOR pathway was activated (P < 0.05 or P < 0.01) in T group. Inversely, compared with T group, the above indicators were reversed in C group (P < 0.05 or P < 0.01). CONCLUSION The present study was firstly to report that CXCL2-CXCR2 activated PI3K/AKT/mTOR pathway and calcium overload in tacrolimus-induced nephrotoxicity, and targeting CXCR2 could inhibit the progression of tacrolimus-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xiao Chen
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ke Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Su-Mei He
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, China.
| | - Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
3
|
Hoffert Y, Dia N, Vanuytsel T, Vos R, Kuypers D, Van Cleemput J, Verbeek J, Dreesen E. Model-Informed Precision Dosing of Tacrolimus: A Systematic Review of Population Pharmacokinetic Models and a Benchmark Study of Software Tools. Clin Pharmacokinet 2024; 63:1407-1421. [PMID: 39304577 DOI: 10.1007/s40262-024-01414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND AND OBJECTIVE Tacrolimus is an immunosuppressant commonly administered after solid organ transplantation. It is characterized by a narrow therapeutic window and high variability in exposure, demanding personalized dosing. In recent years, population pharmacokinetic models have been suggested to guide model-informed precision dosing of tacrolimus. We aimed to provide a comprehensive overview of population pharmacokinetic models and model-informed precision dosing software modules of tacrolimus in all solid organ transplant settings, including a simulation-based investigation of the impact of covariates on exposure and target attainment. METHODS We performed a systematic literature search to identify population pharmacokinetic models of tacrolimus in solid organ transplant recipients. We integrated selected population pharmacokinetic models into an interactive software tool that allows dosing simulations, Bayesian forecasting, and investigation of the impact of covariates on exposure and target attainment. We conducted a web survey amongst model-informed precision dosing software tool providers and benchmarked publicly available tools in terms of models, target populations, and clinical integration. RESULTS We identified 80 population pharmacokinetic models, including 44 one-compartment and 36 two-compartment models. The most frequently retained covariates on clearance and distribution parameters were cytochrome P450 3A5 polymorphisms and body weight, respectively. Our simulation tool, hosted at https://lpmx.shinyapps.io/tacrolimus/ , allows thorough investigation of the impact of covariates on exposure and target attainment. We identified 15 model-informed precision dosing software tool providers, of which ten offer a tacrolimus solution and nine completed the survey. CONCLUSIONS Our work provides a comprehensive overview of the landscape of available tacrolimus population pharmacokinetic models and model-informed precision dosing software modules. Our simulation tool allows an interactive thorough exploration of covariates on exposure and target attainment.
Collapse
Affiliation(s)
- Yannick Hoffert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, ON2 Herestraat 49, Box 521, 3000, Leuven, Belgium
| | - Nada Dia
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, ON2 Herestraat 49, Box 521, 3000, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Johan Van Cleemput
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Jef Verbeek
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, ON2 Herestraat 49, Box 521, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Williams ML, Weeks HL, Beck C, Birdwell KA, Van Driest SL, Choi L. Sensitivity of estimated tacrolimus population pharmacokinetic profile to assumed dose timing and absorption in real-world data and simulated data. Br J Clin Pharmacol 2022; 88:2863-2874. [PMID: 34997625 PMCID: PMC9106813 DOI: 10.1111/bcp.15218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
AIMS Use of electronic health record (EHR) data to estimate population pharmacokinetic (PK) profiles necessitates several assumptions. We sought to investigate sensitivity to some of these assumptions about dose timing and absorption rates. METHODS A population PK study with 363 subjects was performed using real-world data extracted from EHRs to estimate the tacrolimus population PK profile. Data were extracted and built using our automated system, EHR2PKPD, suitable for quickly constructing large PK datasets from the EHR. Population PK studies for oral medications performed using EHR data often assume a regular dosing schedule as prescribed without incorporating exact dosing time. We assessed the sensitivity of the PK parameter estimates to assumptions about dose timing using last-dose times extracted by our own natural language processing system, medExtractR. We also investigated the sensitivity of estimates to absorption rate constants that are often fixed at a published value in tacrolimus population PK analyses. We conducted simulation studies to investigate how drug PK profiles and experimental designs such as concentration measurements design affect sensitivity to incorrect assumptions about dose timing and absorption rates. RESULTS There was no appreciable difference in parameter estimates with assumed versus extracted last-dose time, and our sensitivity analysis revealed little difference between parameters estimated across a range of assumed absorption rate constants. CONCLUSION Our findings suggest that drugs with a slower elimination rate (or a longer half-life) are less sensitive to dose timing errors and that experimental designs which only allow for trough blood concentrations are usually insensitive to deviation in absorption rate.
Collapse
Affiliation(s)
- Michael L. Williams
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Hannah L. Weeks
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Cole Beck
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Kelly A. Birdwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Sara L. Van Driest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Leena Choi
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
5
|
Teng F, Zhang W, Wang W, Chen J, Liu S, Li M, Li L, Guo W, Wei H. Population pharmacokinetics of tacrolimus in Chinese adult liver transplant patients. Biopharm Drug Dispos 2022; 43:76-85. [PMID: 35220592 DOI: 10.1002/bdd.2311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 12/27/2022]
Abstract
Tacrolimus is widely used in organ transplantation to prevent rejection. However, the narrow therapeutic window and the large inter-and intra-individual variability in the pharmacokinetics (PK) of tacrolimus make it difficult for individualization of dosing. This study aimed at developing a population pharmacokinetic model for estimating the oral clearance of tacrolimus in Chinese liver transplant patients, and identifying factors that contribute to the PK variability of tacrolimus. Data of 151 liver transplant patients who received tacrolimus were analyzed in this study. The population PK model was analyzed and the covariates including population demographic and biochemical characteristics, drug combination, and genetic polymorphism were explored using non-linear mixed-effects modeling approach. A single-compartment population PK model was developed, and the final model was CL/F = (14.6-2.38 × cytochrome P450 (CYP) 3A5-3.72 × WZC+1.04 × (POD/9)+2.48 × COR) × Exp(ηi ), where CYP3A5 was 1 for CYP3A5*3/*3, Wuzhi Capsule (WZC) was 1 when patients took tacrolimus combined with WZC, otherwise it was 0, corticosteroids (COR) was 1 when patients take tacrolimus combined with COR, otherwise, it was 0, POD was the post-operative day. Visual inspection and bootstrap indicated that the final model was stable and robust. In this study, we developed the first tacrolimus population PK model in Chinese adult liver transplant patients. We first determined the influence of WZC on tacrolimus in these people, which could provide useful PK information for the drug combination of tacrolimus and WZC. We also revealed the influence of genetic polymorphism of CYP3A5, POD, and a combination of COR on tacrolimus PK. Therefore, these significant factors should be taken into consideration in optimizing dosage regimens.
Collapse
Affiliation(s)
- Fei Teng
- Institute of Organ Transplantation, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Weiyue Zhang
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiani Chen
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shiyi Liu
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mingming Li
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lujin Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyuan Guo
- Institute of Organ Transplantation, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
El Hennawy HM, Faifi ASA, El Nazer W, Mahedy A, Kamal A, Al Faifi IS, Abdulmalik H, Safar O, Zaitoun MF, Fahmy AE. Calcineurin Inhibitors Nephrotoxicity Prevention Strategies With Stress on Belatacept-Based Rescue Immunotherapy: A Review of the Current Evidence. Transplant Proc 2021; 53:1532-1540. [PMID: 34020797 DOI: 10.1016/j.transproceed.2021.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND A traditional narrative review was performed to evaluate clinical studies that have examined the clinical implications, risk factors, and prevention of calcineurin inhibitors (CNIs) nephrotoxicity with stress on a belatacept-based rescue regimen. METHODS The Cochrane Library, PubMed/MEDLINE, EBSCO (Academic Search Ultimate), ProQuest (Central), and Excerpta Medical databases and Google scholar were searched using the keywords (CNI AND Nephrotoxicity prevention) OR ("Calcineurin inhibitor" AND Nephrotoxicity) OR (Tacrolimus AND Nephrotoxicity) OR (Ciclosporin AND Nephrotoxicity) OR (cyclosporine AND Nephrotoxicity) OR (Belatacept) OR (CNI Conversion) for the period from 1990 to 2020. Fifty-five related articles and reviews were found. CONCLUSION A better understanding of the mechanisms underlying calcineurin inhibitor nephrotoxicity could help in the individualization of therapy for and prevention of CNI nephrotoxicity. Identification of high-risk patients for CNI nephrotoxicity before renal transplantation enables better use and selection of immunosuppression with reduced adverse effects and, eventually, successful treatment of the kidney recipients. Belatacept conversion is a good and safe option in patients with deteriorating renal function attributed to CNI nephrotoxicity.
Collapse
Affiliation(s)
- Hany M El Hennawy
- Transplant Surgery Section, Surgery Department, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia.
| | - Abdullah S Al Faifi
- Transplant Surgery Section, Surgery Department, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Weam El Nazer
- Nephrology Department, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Ahmed Mahedy
- Nephrology Department, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Ahmed Kamal
- Nephrology Department, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Ibrahim S Al Faifi
- Department of Family Medicine, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Hana Abdulmalik
- Department of Surgery, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Omar Safar
- Department of Urology, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Mohammad F Zaitoun
- Department of Pharmacy, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Ahmed E Fahmy
- Department of Surgery, Division of Transplantation, North Shore University Hospital, Northwell Health, Manhasset, New York
| |
Collapse
|
7
|
Significance of Ethnic Factors in Immunosuppressive Therapy Management After Organ Transplantation. Ther Drug Monit 2021; 42:369-380. [PMID: 32091469 DOI: 10.1097/ftd.0000000000000748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical outcomes after organ transplantation have greatly improved in the past 2 decades with the discovery and development of immunosuppressive drugs such as calcineurin inhibitors, antiproliferative agents, and mammalian target of rapamycin inhibitors. However, individualized dosage regimens have not yet been fully established for these drugs except for therapeutic drug monitoring-based dosage modification because of extensive interindividual variations in immunosuppressive drug pharmacokinetics. The variations in immunosuppressive drug pharmacokinetics are attributed to interindividual variations in the functional activity of cytochrome P450 enzymes, UDP-glucuronosyltransferases, and ATP-binding cassette subfamily B member 1 (known as P-glycoprotein or multidrug resistance 1) in the liver and small intestine. Some genetic variations have been found to be involved to at least some degree in pharmacokinetic variations in post-transplant immunosuppressive therapy. It is well known that the frequencies and effect size of minor alleles vary greatly between different races. Thus, ethnic considerations might provide useful information for optimizing individualized immunosuppressive therapy after organ transplantation. Here, we review ethnic factors affecting the pharmacokinetics of immunosuppressive drugs requiring therapeutic drug monitoring, including tacrolimus, cyclosporine, mycophenolate mofetil, sirolimus, and everolimus.
Collapse
|
8
|
Csikány N, Kiss Á, Déri M, Fekete F, Minus A, Tóth K, Temesvári M, Sárváry E, Bihari L, Gerlei Z, Kóbori L, Monostory K. Clinical significance of personalized tacrolimus dosing by adjusting to donor CYP3A-status in liver transplant recipients. Br J Clin Pharmacol 2020; 87:1790-1800. [PMID: 32986876 DOI: 10.1111/bcp.14566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Donor's CYP3A-status (CYP3A5 genotype and CYP3A4 expression) can provide prognostic information regarding tacrolimus-metabolizing capacity of the liver graft and initial tacrolimus dosing for therapeutic blood concentrations in liver transplants. The present work prospectively investigated whether CYP3A-status guided tacrolimus therapy has any potential clinical benefit for recipients in the early postoperative period. METHODS The contribution of preliminary assaying of donor CYP3A-status to the optimization of initial tacrolimus therapy and to the reduction of adverse events (acute rejection, infection, nephrotoxicity) was investigated in 112 liver transplant recipients (CYPtest group) comparing to 101 control patients on tacrolimus concentration guided therapy. RESULTS The time for achieving therapeutic tacrolimus concentration was significantly reduced, confirming potential benefit of initial tacrolimus therapy adjusted to donor's CYP3A-status over classical clinical practice of tacrolimus concentration guided treatment (4 vs 8 days, P < 0.0001). Acute rejection episodes (3.6 vs 23.8%, P < 0.0001) and tacrolimus induced nephrotoxicity (8 vs 27%, P = 0.0004) were less frequent in CYPtest group than in control patients, whereas occurrence of infectious disease was not influenced by tacrolimus dosing strategy (3.6 vs 5.9% in CYPtest and control groups, P > 0.05). Acute rejection was often accompanied with tacrolimus blood concentrations lower than 10 ng mL-1 (20/24 of control and 2/4 of CYPtest patients), while nephrotoxicity was associated with high tacrolimus concentrations (>20 ng mL-1 ) in the first week after transplantation (13/27 of control and 2/9 of CYPtest patients). CONCLUSION CYP3A-status guided therapy significantly improved the risk of misdosing induced early adverse effects (acute rejection, nephrotoxicity).
Collapse
Affiliation(s)
- Nóra Csikány
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.,Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Ádám Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Máté Déri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ferenc Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Annamária Minus
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Katalin Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Manna Temesvári
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Enikő Sárváry
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - László Bihari
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Gerlei
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - László Kóbori
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
9
|
Zhang M, Tajima S, Shigematsu T, Fu R, Noguchi H, Kaku K, Tsuchimoto A, Okabe Y, Egashira N, Masuda S. Donor CYP3A5 Gene Polymorphism Alone Cannot Predict Tacrolimus Intrarenal Concentration in Renal Transplant Recipients. Int J Mol Sci 2020; 21:ijms21082976. [PMID: 32340188 PMCID: PMC7215698 DOI: 10.3390/ijms21082976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
CYP3A5 gene polymorphism in recipients plays an important role in tacrolimus blood pharmacokinetics after renal transplantation. Even though CYP3A5 protein is expressed in renal tubular cells, little is known about the influence on the tacrolimus intrarenal exposure and hence graft outcome. The aim of our study was to investigate how the tacrolimus intrarenal concentration (Ctissue) could be predicted based on donor CYP3A5 gene polymorphism in renal transplant recipients. A total of 52 Japanese renal transplant patients receiving tacrolimus were enrolled in this study. Seventy-four renal biopsy specimens were obtained at 3 months and 1 year after transplantation to determine the donor CYP3A5 polymorphism and measure the Ctissue by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The tacrolimus Ctissue ranged from 52 to 399 pg/mg tissue (n = 74) and was weak but significantly correlated with tacrolimus trough concentration (C0) at 3 months after transplantation (Spearman, r = 0.3560, p = 0.0096). No significant relationship was observed between the donor CYP3A5 gene polymorphism and Ctissue or Ctissue/C0. These data showed that the tacrolimus systemic level has an impact on tacrolimus renal accumulation after renal transplantation. However, donor CYP3A5 gene polymorphism alone cannot be used to predict tacrolimus intrarenal exposure. This study may be valuable for exploring tacrolimus renal metabolism and toxicology mechanism in renal transplant recipients.
Collapse
Affiliation(s)
- Mengyu Zhang
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.Z.); (T.S.); (R.F.); (N.E.)
| | - Soichiro Tajima
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Tomohiro Shigematsu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.Z.); (T.S.); (R.F.); (N.E.)
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Rao Fu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.Z.); (T.S.); (R.F.); (N.E.)
| | - Hiroshi Noguchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (H.N.); (K.K.); (Y.O.)
| | - Keizo Kaku
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (H.N.); (K.K.); (Y.O.)
| | - Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Yasuhiro Okabe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (H.N.); (K.K.); (Y.O.)
| | - Nobuaki Egashira
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.Z.); (T.S.); (R.F.); (N.E.)
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kita-kanemaru, Otawara 324-8501, Japan
- Correspondence: ; Tel.: +81-476-35-5600
| |
Collapse
|
10
|
Murakami T, Bodor E, Bodor N. Modulation of expression/function of intestinal P-glycoprotein under disease states. Expert Opin Drug Metab Toxicol 2019; 16:59-78. [DOI: 10.1080/17425255.2020.1701653] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Nicholas Bodor
- Bodor Laboratories, Miami, FL, USA
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Tacrolimus Concentration in Saliva of Kidney Transplant Recipients: Factors Influencing the Relationship with Whole Blood Concentrations. Clin Pharmacokinet 2019; 57:1199-1210. [PMID: 29330784 DOI: 10.1007/s40262-017-0626-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The objective of this study was to examine the association between tacrolimus concentration in oral fluids and in whole blood and to investigate the various factors that influence this relationship. PATIENTS AND METHODS Forty-six adult kidney transplant recipients were included in the study. Study A (ten patients) included the collection of several paired oral fluid samples by passive drool over a 12-h post-dose period. Study B (36 patients) included the collection of oral fluids pre-dose and at 2 h after the tacrolimus dose under three conditions: un-stimulated, after stimulation with a tart candy, and after mouth rinsing. The tacrolimus concentration in oral fluids was measured by a specially developed sensitive and specific liquid chromatography mass spectrometry method. A salivary transferrin concentration of >1 mg/dL was used as a cut-off value for oral fluid blood contamination. RESULTS Rinsing the oral cavity before sampling proved to provide the most suitable sampling strategy giving a correlation coefficient value of 0.71 (p = 0.001) between the tacrolimus concentration in oral fluids and the tacrolimus concentration in whole blood at trough. Mean and 95% confidence interval of tacrolimus concentration in oral fluids at the pre-dose concentration for samples collected after mouth rinsing was 584 (436, 782) pg/mL. The ratio of the tacrolimus concentration in oral fluids to the tacrolimus concentration in whole blood (*100) was 11% (95% confidence interval 9-13) for all sampling times. Oral fluid pH or weight of a saliva sample did not influence the tacrolimus concentration in oral fluids. Tacrolimus distribution into oral fluids exhibited a delay with a pronounced counter-clockwise hysteresis with respect to the time after dose. A multivariate analysis of variance revealed that the tacrolimus concentration in oral fluids is related to the tacrolimus concentration in whole blood and tacrolimus plasma-binding proteins including albumin and cholesterol. CONCLUSION An optimal sampling strategy for the determination of the tacrolimus concentration in oral fluids was established. Measuring the tacrolimus concentration in oral fluids appears to be a feasible and non-invasive method for predicting the concentration of tacrolimus in whole blood.
Collapse
|
12
|
Yano I. [Clinical Pharmacometrics for Rational Drug Treatment]. YAKUGAKU ZASSHI 2019; 139:1227-1234. [PMID: 31582605 DOI: 10.1248/yakushi.19-00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pharmacometrics is the mathematical study of pharmacokinetics, disease progression, and clinical outcomes. One objective of pharmacometrics is to facilitate rational drug treatment in patients, also termed clinical pharmacometrics. In this review, our clinical pharmacometric studies conducted over the last 10 years are discussed. Population pharmacokinetic analysis using therapeutic monitoring data for levetiracetam revealed that oral clearance allometrically scaled to both body weight and estimated glomerular filtration rate can accurately predict clinical data from patients of various ages (pediatric to elderly) with varying renal function. Dosage adjustments based on renal function in the package information are effective in controlling the trough and peak concentrations in similar ranges. In addition, a retrospective pharmacokinetic and pharmacodynamic study revealed that the efficacy of low-dose clobazam therapy was significantly influenced by CYP2C19 polymorphisms. Pharmacokinetic and pharmacodynamic models were successfully built using electronic medical information to explain retrospective international normalized ratio values of prothrombin time before and after catheter ablation in warfarin-treated patients. Simulation studies suggest that more than 20 mg of vitamin K2 is unnecessary in the preoperative period of catheter ablation. A physiologically based pharmacokinetic model adapted to tacrolimus pharmacokinetic data in patients who underwent living-donor liver transplantation was constructed, and clarified that oral clearance of this drug was affected by CYP3A5 genotypes in both the liver and intestine to the same extent. In conclusion, pharmacometrics is a useful methodology for individualized and optimized drug therapy.
Collapse
Affiliation(s)
- Ikuko Yano
- Department of Pharmacy, Kobe University Hospital
| |
Collapse
|
13
|
Wang D, Chen X, Fu M, Xu H, Li Z. Pharmacogenomics analysis in Chinese pediatric liver transplantation patients with renal toxicity induced by tacrolimus. Xenobiotica 2019; 50:488-493. [PMID: 31379240 DOI: 10.1080/00498254.2019.1652782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Survival for pediatric liver transplantation patients is limited by nephrotoxicity of calcineurin inhibitors tacrolimus. The present study was to explore the association of genetic factors with nephrotoxicity of pediatric liver transplantation patients treated with tacrolimus.Chinese pediatric liver transplantation patients under tacrolimus therapy between March 2014 and August 2018 from Children's Hospital of Fudan University were retrospectively analyzed. A total of 15 patients, including 6 patients with nephrotoxicity induced by tacrolimus and 9 patients without nephrotoxicity, were detected by pharmacogenomics (PGxOne®160). Demographic characteristics and laboratory testing were collected from medical logs. Tacrolimus blood concentrations were extracted from therapeutic drug monitoring (TDM) documents.The risk of renal toxicity induced by tacrolimus in Chinese pediatric liver transplantation patients were positively associated with T allele of cytochrome P450 1A2 (CYP1A2) rs2470890 (RR = 2.857, 95% confidence interval = [1.392-5.863]), A allele of dopamine D2 (DRD2) rs1076560 (RR = 4.375, 95% confidence interval = [1.148-16.676]), T allele of paraoxonase-1 (PON1) rs662 (RR = 2.800, 95% confidence interval= [1.184-6.622]), respectively.Pharmacogenomics analysis in Chinese pediatric liver transplantation patients with renal toxicity induced by tacrolimus was firstly reported. The SNPs in 3 genes (CYP1A2, DRD2, and PON1) were associated with risk of tacrolimus-induced nephrotoxicity.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Xiao Chen
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Meng Fu
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Zhiping Li
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
14
|
Itohara K, Yano I, Tsuzuki T, Uesugi M, Nakagawa S, Yonezawa A, Okajima H, Kaido T, Uemoto S, Matsubara K. A Minimal Physiologically-Based Pharmacokinetic Model for Tacrolimus in Living-Donor Liver Transplantation: Perspectives Related to Liver Regeneration and the cytochrome P450 3A5 (CYP3A5) Genotype. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:587-595. [PMID: 31087501 PMCID: PMC6709420 DOI: 10.1002/psp4.12420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/19/2019] [Indexed: 12/20/2022]
Abstract
In adult patients after living‐donor liver transplantation, postoperative days and the cytochrome P450 3A5 (CYP3A5) genotype are known to affect tacrolimus pharmacokinetics. In this study, we constructed a physiologically‐based pharmacokinetic model adapted to the clinical data and evaluated the contribution of liver regeneration as well as hepatic and intestine CYP3A5 genotypes on tacrolimus pharmacokinetics. As a result, liver function recovered immediately and affected the total body clearance of tacrolimus only during a limited period after living‐donor liver transplantation. The clearance was about 1.35‐fold higher in the recipients who had a liver with the CYP3A5*1 allele than in those with the CYP3A5*3/*3 genotype, whereas bioavailability was ~0.7‐fold higher in the recipients who had intestines with the CYP3A5*1 allele than those with CYP3A5*3/*3. In conclusion, the constructed physiologically‐based pharmacokinetic model clarified that the oral clearance of tacrolimus was affected by the CYP3A5 genotypes in both the liver and intestine to the same extent.
Collapse
Affiliation(s)
- Kotaro Itohara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ikuko Yano
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan.,Department of Pharmacy, Kobe University Hospital, Kobe, Japan
| | - Tetsunori Tsuzuki
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Miwa Uesugi
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hideaki Okajima
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshimi Kaido
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
15
|
Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther Drug Monit 2019; 41:261-307. [DOI: 10.1097/ftd.0000000000000640] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Brunet M, van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, Lemaitre F, Marquet P, Seger C, Shipkova M, Vinks A, Wallemacq P, Wieland E, Woillard JB, Barten MJ, Budde K, Colom H, Dieterlen MT, Elens L, Johnson-Davis KL, Kunicki PK, MacPhee I, Masuda S, Mathew BS, Millán O, Mizuno T, Moes DJAR, Monchaud C, Noceti O, Pawinski T, Picard N, van Schaik R, Sommerer C, Vethe NT, de Winter B, Christians U, Bergan S. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther Drug Monit 2019. [DOI: 10.1097/ftd.0000000000000640
expr 845143713 + 809233716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
17
|
Riva N, Dip M, Halac E, Cáceres Guido P, Woillard JB, Licciardone N, Chan D, Buendía J, Borgnia D, Bosaleh A, de Davila MT, Imventarza O, Schaiquevich P. Survival Time to Biopsy-Proven Acute Rejection and Tacrolimus Adverse Drug Reactions in Pediatric Liver Transplantation. Ther Drug Monit 2018; 40:401-410. [PMID: 29621122 DOI: 10.1097/ftd.0000000000000517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Despite advances in surgical procedures and the optimization of immunosuppressive therapies in pediatric liver transplantation, acute rejection (AR) and serious adverse drug reaction (ADR) to tacrolimus still contribute to morbidity and mortality. Identifying risk factors of safety and efficacy parameters may help in optimizing individual immunosuppressive therapies. This study aimed to identify peritransplant predictors of AR and factors related to the risk of ADR to tacrolimus in a large Latin American cohort of pediatric liver transplant patients. METHODS We performed a retrospective cohort study in a pediatric liver transplant population (n = 72). Peritransplant variables were collected retrospectively including demographic, clinical, laboratory parameters, genomic (CYP3A5 donor and recipients polymorphism), and tacrolimus trough concentrations (C0) over a 2-year follow-up period. Variability in tacrolimus C0 was calculated using percent coefficient of variation and tortuosity. ADR- and AR-free survival rates were calculated using the Kaplan-Meier method, and risk factors were identified by multivariate Cox regression models. RESULTS Cox-proportional hazard models identified that high tortuosity in tacrolimus C0 was associated with an 80% increased risk of AR [hazard ratio (HR), 1.80; 95% confidence interval (CI), 1.01-3.22; P < 0.05], whereas steroid in maintenance doses decreased this risk (HR, 0.56; 95% CI, 0.31-0.99; P < 0.05). Forty-six patients experienced at least one ADR including hypomagnesemia, nephrotoxicity, hypertension, malignancies, and tremor as a first event. Multivariate analysis showed that C0 values 10 days before the event (HR, 1.25; 95% CI, 1.21-1.39; P < 0.0001) and CYP3A5 expresser recipients (HR, 2.05; 95% CI, 1.03-4.06; P < 0.05) were independent predictors of ADR. CONCLUSIONS Tacrolimus C0 values, its variability, and CYP3A5 polymorphisms were identified as risk factors of AR and tacrolimus ADR. This knowledge may help to control and reduce their incidence in pediatric liver transplant patients. Prospective studies are important to validate these results.
Collapse
Affiliation(s)
- Natalia Riva
- Unit of Clinical Pharmacokinetics, Hospital de Pediatría J.P. Garrahan
| | - Marcelo Dip
- Liver Transplant Service, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Esteban Halac
- Liver Transplant Service, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | | | - Jean B Woillard
- Department of Pharmacology and Toxicology, Centre Hospitalier Universitaire à Limoges, Limoges, France
| | | | - Debora Chan
- Basic Science-Mathematics, Universidad Tecnológica Nacional
| | | | | | | | | | - Oscar Imventarza
- Liver Transplant Service, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Paula Schaiquevich
- Unit of Clinical Pharmacokinetics, Hospital de Pediatría J.P. Garrahan.,National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| |
Collapse
|
18
|
Nacif LS, Kim V, Galvão F, Ono SK, Pinheiro RS, Carrilho FJ, D'Albuquerque LC. Translational medical research and liver transplantation: systematic review. Transl Gastroenterol Hepatol 2018; 3:91. [PMID: 30603727 PMCID: PMC6286921 DOI: 10.21037/tgh.2018.10.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/28/2018] [Indexed: 01/10/2023] Open
Abstract
Translational medicine has become a priority, but there is still a big difference between the arrival of new treatments and investment. Basic science should not be neglected because the translation from basic research is not sustained in the absence of basic research. The purpose of this literature review was to analyze the translational medicine in the liver transplant field: liver ischemia-reperfusion injury (IRI), immunosuppression, clinical and surgical complications, small-for-size syndrome (SFSS), rejection, and ongoing innovations (liver machine, liver preservation, artificial livers, and regenerative medicine). We performed a systematic literature review that were updated in October 2016. The searches were performed in the Cochrane Central Register of Controlled Trials and Review, PubMed/Medline, Embase, and LILACS databases. All the selected studies on the management of translational medical research in liver transplantation (LT) were analyzed. Initially the search found 773 articles. Methodological viewing and analysis of the articles, followed by the application of scientific models, including translational medicine in the liver transplant field. In conclusions, this review demonstrates the application of scientific research with translation medical benefits regarding the LT. The literature has a great tendency, improvements and investments in the study of translational medicine in LT. Innovative studies and technologies from basic science help to clarify clinical doubts. Moreover, evidence increases the importance of scientific research in quality of clinical practice care.
Collapse
Affiliation(s)
- Lucas Souto Nacif
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Vera Kim
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Flavio Galvão
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Suzane Kioko Ono
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Rafael Soares Pinheiro
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Flair José Carrilho
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Luiz Carneiro D'Albuquerque
- Disciplina de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Ji E, Kim MG, Oh JM. CYP3A5 genotype-based model to predict tacrolimus dosage in the early postoperative period after living donor liver transplantation. Ther Clin Risk Manag 2018; 14:2119-2126. [PMID: 30498355 PMCID: PMC6207397 DOI: 10.2147/tcrm.s184376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Liver transplantation is the treatment of choice for patients with end-stage liver disease. Due to the between- and within-individual pharmacokinetic variability in tacrolimus, used to prevent rejection after transplantation, it is difficult to predict the dose needed achieve the target levels in the blood. This study aimed to construct a population pharmacokinetic model of tacrolimus dosage prediction for therapeutic drug monitoring in clinical settings for Korean adult patients receiving living donor liver transplantation (LDLT). Methods A total of 58 Korean adult patients receiving LDLT with tacrolimus administration were enrolled. Demographic, clinical, and CYP3A5*1/*3 polymorphism data were collected. Population pharmacokinetic modeling of tacrolimus during the first 14 days after transplantation was performed using NONMEM program. Parameters were estimated by the first-order conditional estimation with interaction method. The internal validation of the final model was assessed by the bootstrap and visual predictive check methods using 500 samples from the original data. Results One-compartmental model was selected as a base model. After the stepwise covariate model building process, postoperative day (POD) and combinational CYP3A5 genotype of the recipient and donor were incorporated into clearance (CL/F). The estimated typical values of CL/F and volume of distribution (V/F) were 6.33 L/h and 465 L, respectively. The final model was CL/F =6.33× POD0.257×2.314 (if CYP3A5 expresser recipient grafted from CYP3A5 expresser donor) ×1.523 (if CYP3A5 expresser recipient grafted from CYP3A5 nonexpresser donor) and V/F =465× POD0.322. Conclusion A population pharmacokinetic model for tacrolimus was established successfully in Korean adult patients receiving LDLT. This model is expected to contribute to improving patient outcomes by optimizing tacrolimus dose adjustment for liver transplant patients.
Collapse
Affiliation(s)
- Eunhee Ji
- College of Pharmacy and Research institute of Pharmaceutical sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Myeong Gyu Kim
- Graduate school of Clinical Pharmacy, Cha University, Pocheon 11160, Republic of Korea
| | - Jung Mi Oh
- College of Pharmacy and Research institute of Pharmaceutical sciences, Seoul National University, Seoul 08826, Republic of Korea,
| |
Collapse
|
20
|
Influence of donor liver CYP3A4*20 loss-of-function genotype on tacrolimus pharmacokinetics in transplanted patients. Pharmacogenet Genomics 2018; 28:41-48. [PMID: 29256966 DOI: 10.1097/fpc.0000000000000321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Cytochrome P450 3A4 (CYP3A4) metabolizes about half of all drugs on the market; however, the impact of CYP3A4 loss-of-function variants on drug exposures remains poorly characterized. Here, we report the effect of the CYP3A4*20 frameshift allele in two Spanish liver transplant patients treated with tacrolimus. PATIENTS AND METHODS A series of 90 transplanted patients (with DNA available for 89 of the recipients and 76 of the liver donors) treated with tacrolimus were included in the study. The genotypes of liver donors and of the recipients for CYP3A4*20 (rs67666821), CYP3A4*22 (rs35599367) and CYP3A5*3 (rs776746) were compared with weight-adjusted tacrolimus dose (D), tacrolimus trough concentration (C0), and dose-adjusted tacrolimus trough concentrations (C0/D) using the Mann-Whitney U-nonparametric test. RESULTS The CYP3A4*20 allele was detected in two of the liver donors. This genotype yielded at all times higher C0/D (2.6-fold, average) than intermediate CYP3A metabolizers (CYP3A4*1/*1 and CYP3A5*3/*3) (P=0.045, 90 days after transplantation). CYP3A4*22 carriers showed a 1.9-fold average increase in C0/D (P=0.047, 0.025, and 0.053; at days 7, 14, and 30 after transplantation, respectively) compared with intermediate metabolizers. In terms of recipients' genotype, CYP3A5*1 had reduced (P=0.025) and CYP3A4*22 increased C0/D (P=0.056) 7 days after transplantation. The incidence of biopsy-proven acute rejection was 0, 12, and 20% for livers with poor, intermediate, and extensive CYP3A-metabolizing capacity, respectively (P=0.0995). CONCLUSION This first description of CYP3A4*20 null genotype in liver-transplanted patients, supports the relevance of CYP3A genotyping in tacrolimus therapy.
Collapse
|
21
|
Association of CYP3A5, CYP2C8, and ABCB1 Polymorphisms With Early Renal Injury in Chinese Liver Transplant Recipients Receiving Tacrolimus. Transplant Proc 2018; 50:3258-3265. [PMID: 30577195 DOI: 10.1016/j.transproceed.2018.06.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND The purpose of this study is to explore the association of CYP3A5, ABCB1, and CYP2C8 polymorphisms with the risk of developing early kidney impairment in Chinese liver transplant recipients receiving tacrolimus. METHODS CYP3A5, ABCB1, and CYP2C8 polymorphisms were genotyped in the Chinese liver transplant recipients in the study receiving tacrolimus for at least 2 years by polymerase chain reaction and high-resolution melting method. Serum cystatin C and urine microprotein (α1-microglobulin, microalbumin, transferrin, and immunoglobulin) of liver transplant recipients were used to determine both the status of early renal injury and the lesion part. RESULTS We documented 3 genotypes of CYP3A5 and ABCB1 and only 2 genotypes of CYP2C8 in our cohort. The levels of cystatin C and all 4 indicators of the urine microprotein in the recipient group were significantly higher than those in the control group (P < .05). The concentrations of transferrin differed significantly in each CYP3A5 genotype group (P < .05). Based on diverse CYP2C8 genotypes, we divided all the recipients into 2 groups: CYP2C8*1*1 group and CYP2C8*3*1 group. The concentrations of α1-microglobulin and cystatin C differed significantly between the 2 groups (P < .05). For CYP2C8*3, the positive predictive value is 68.5% and negative predictive value is 70.2%. For CYP3A5*3, the positive predictive value is 55.3% and negative predictive value is 60.4%. CONCLUSIONS CYP2C8*3 and CYP3A5*3 appear to be predictive of risk of tacrolimus-induced early renal impairment. CYP3A5*3 was associated with the risk of early renal glomerular lesion, while CYP2C8*3 was associated with the risk of the tubulointerstitial injury. ABCB1 polymorphisms (both C3435T and C1236T) were not associated with the early renal injury in liver transplant recipients.
Collapse
|
22
|
Hendijani F, Azarpira N, Kaviani M. Effect of CYP3A5*1 expression on tacrolimus required dose after liver transplantation: A systematic review and meta-analysis. Clin Transplant 2018; 32:e13306. [DOI: 10.1111/ctr.13306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Fatemeh Hendijani
- Endocrinology and Metabolism Research Center; Hormozgan University of Medical Sciences; Bandar Abbas Iran
- Faculty of Pharmacy; Hormozgan University of Medical Sciences; Bandar Abbas Iran
| | - Negar Azarpira
- Transplant Research Center; Shiraz Institute for Stem Cell and Regenerative Medicine; Shiraz University of Medical Sciences; Shiraz Iran
| | - Maryam Kaviani
- Transplant Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
23
|
Impact of ABCB1, ABCG2, and CYP3A5 polymorphisms on plasma trough concentrations of apixaban in Japanese patients with atrial fibrillation. Pharmacogenet Genomics 2018; 27:329-336. [PMID: 28678049 DOI: 10.1097/fpc.0000000000000294] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES During anticoagulant therapy, major bleeding is one of the most severe adverse effects. This study aimed to evaluate the relationships between ABCB1, ABCG2, and CYP3A5 polymorphisms and plasma trough concentrations of apixaban, a direct inhibitor of coagulation factor X. PATIENTS AND METHODS A total of 70 plasma concentrations of apixaban from 44 Japanese patients with atrial fibrillation were analyzed. In these analyses, the plasma trough concentration/dose (C/D) ratio of apixaban was used as a pharmacokinetic index and all data were stratified according to the presence of ABCB1 (ABCB1 1236C>T, 2677G>T/A, and 3435C>T), ABCG2 (ABCG2 421C>A), and CYP3A5 (CYP3A5*3) polymorphisms. Influences of various clinical laboratory parameters (age, serum creatinine, estimated glomerular filtration rate, aspartate amino transferase, and alanine amino transferase) on the plasma trough C/D ratio of apixaban were included in analyses. RESULTS Although no ABCB1 polymorphisms affected the plasma trough C/D ratio of apixaban, the plasma trough C/D ratio of apixaban was significantly higher in patients with the ABCG2 421A/A genotype than in patients with the ABCG2 421C/C genotype (P<0.01). The plasma trough C/D ratio of apixaban in patients with CYP3A5*1/*3 or *3/*3 genotypes was also significantly higher than that in patients with the CYP3A5*1/*1 genotype (P<0.05). Furthermore, the plasma trough C/D ratio of apixaban decreased with increased estimated glomerular filtration rate. CONCLUSION These results indicate that ABCG2 421A/A and CYP3A5*3 genotypes and renal function are considered potential factors affecting trough concentrations of apixaban.
Collapse
|
24
|
Thishya K, Vattam KK, Naushad SM, Raju SB, Kutala VK. Artificial neural network model for predicting the bioavailability of tacrolimus in patients with renal transplantation. PLoS One 2018; 13:e0191921. [PMID: 29621269 PMCID: PMC5886400 DOI: 10.1371/journal.pone.0191921] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
The objective of the current study was to explore the role of ABCB1 and CYP3A5 genetic polymorphisms in predicting the bioavailability of tacrolimus and the risk for post-transplant diabetes. Artificial neural network (ANN) and logistic regression (LR) models were used to predict the bioavailability of tacrolimus and risk for post-transplant diabetes, respectively. The five-fold cross-validation of ANN model showed good correlation with the experimental data of bioavailability (r2 = 0.93-0.96). Younger age, male gender, optimal body mass index were shown to exhibit lower bioavailability of tacrolimus. ABCB1 1236 C>T and 2677G>T/A showed inverse association while CYP3A5*3 showed a positive association with the bioavailability of tacrolimus. Gender bias was observed in the association with ABCB1 3435 C>T polymorphism. CYP3A5*3 was shown to interact synergistically in increasing the bioavailability in combination with ABCB1 1236 TT or 2677GG genotypes. LR model showed an independent association of ABCB1 2677 G>T/A with post transplant diabetes (OR: 4.83, 95% CI: 1.22-19.03). Multifactor dimensionality reduction analysis (MDR) revealed that synergistic interactions between CYP3A5*3 and ABCB1 2677 G>T/A as the determinants of risk for post-transplant diabetes. To conclude, the ANN and MDR models explore both individual and synergistic effects of variables in modulating the bioavailability of tacrolimus and risk for post-transplant diabetes.
Collapse
Affiliation(s)
- Kalluri Thishya
- Departments of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences Hyderabad, Telangana, India
| | | | | | - Shree Bhushan Raju
- Department of Nephrology, Nizam's Institute of Medical Sciences, Hyderabad, Telanagana, India
| | - Vijay Kumar Kutala
- Departments of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
25
|
Chen L, Prasad GVR. CYP3A5 polymorphisms in renal transplant recipients: influence on tacrolimus treatment. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2018; 11:23-33. [PMID: 29563827 PMCID: PMC5846312 DOI: 10.2147/pgpm.s107710] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tacrolimus is a commonly used immunosuppressant after kidney transplantation. It has a narrow therapeutic range and demonstrates wide interindividual variability in pharmacokinetics, leading to potential underimmunosuppression or toxicity. Genetic polymorphism in CYP3A5 enzyme expression contributes to differences in tacrolimus bioavailability between individuals. Individuals carrying one or more copies of the wild-type allele *1 express CYP3A5, which increases tacrolimus clearance. CYP3A5 expressers require 1.5 to 2-fold higher tacrolimus doses compared to usual dosing to achieve therapeutic blood concentrations. Individuals with homozygous *3/*3 genotype are CYP3A5 nonexpressers. CYP3A5 nonexpression is the most frequent phenotype in most ethnic populations, except blacks. Differences between CYP3A5 genotypes in tacrolimus disposition have not translated into differences in clinical outcomes, such as acute rejection and graft survival. Therefore, although genotype-based dosing may improve achievement of therapeutic drug concentrations with empiric dosing, its role in clinical practice is unclear. CYP3A5 genotype may predict differences in absorption of extended-release and immediate-release oral formulations of tacrolimus. Two studies found that CYP3A5 expressers require higher doses of tacrolimus in the extended-release formulation compared to immediate release. CYP3A5 genotype plays a role in determining the impact of interacting drugs, such as fluconazole, on tacrolimus pharmacokinetics. Evidence conflicts regarding the impact of CYP3A5 genotype on risk of nephrotoxicity associated with tacrolimus. Further study is required.
Collapse
Affiliation(s)
- Lucy Chen
- Kidney Transplant Program, St Michael's Hospital, Toronto, ON, Canada
| | | |
Collapse
|
26
|
Awdishu L, Mehta RL. The 6R's of drug induced nephrotoxicity. BMC Nephrol 2017; 18:124. [PMID: 28372552 PMCID: PMC5379580 DOI: 10.1186/s12882-017-0536-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/25/2017] [Indexed: 01/05/2023] Open
Abstract
Drug induced kidney injury is a frequent adverse event which contributes to morbidity and increased healthcare utilization. Our current knowledge of drug induced kidney disease is limited due to varying definitions of kidney injury, incomplete assessment of concurrent risk factors and lack of long term outcome reporting. Electronic surveillance presents a powerful tool to identify susceptible populations, improve recognition of events and provide decision support on preventative strategies or early intervention in the case of injury. Research in the area of biomarkers for detecting kidney injury and genetic predisposition for this adverse event will enhance detection of injury, identify those susceptible to injury and likely mitigate risk. In this review we will present a 6R framework to identify and mange drug induced kidney injury – risk, recognition, response, renal support, rehabilitation and research.
Collapse
Affiliation(s)
- Linda Awdishu
- UC San Diego Skaggs School of Pharmacy, San Diego, USA. .,UC San Diego School of Medicine, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Ravindra L Mehta
- UC San Diego School of Medicine, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
27
|
Contrasting exome constancy and regulatory region variation in the gene encoding CYP3A4: an examination of the extent and potential implications. Pharmacogenet Genomics 2017; 26:255-70. [PMID: 27139836 DOI: 10.1097/fpc.0000000000000207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE CYP3A4 expression varies up to 100-fold among individuals, and, to date, genetic causes remain elusive. As a major drug-metabolizing enzyme, elucidation of such genetic causes would increase the potential for introducing personalized dose adjustment of therapies involving CYP3A4 drug substrates. The foetal CYP3A isoform, CYP3A7, is reported to be expressed in ∼10% of European adults and may thus contribute towards the metabolism of endogenous substances and CYP3A drug substrates. However, little is known about the distribution of the variant expressed in the adult. METHODS We resequenced the exons, flanking introns, regulatory elements and 3'UTR of CYP3A4 in five Ethiopian populations and incorporated data from the 1000 Genomes Project. Using bioinformatic analysis, we assessed likely consequences of observed CYP3A4 genomic variation. We also conducted the first extensive geographic survey of alleles associated with adult expression of CYP3A7 - that is, CYP3A7*1B and CYP3A7*1C. RESULTS AND CONCLUSION Ethiopia contained 60 CYP3A4 variants (26 novel) and more variants (>1%) than all non-African populations combined. No nonsynonymous mutation was found in the homozygous form or at more than 2.8% in any population. Seventy-nine per cent of haplotypes contained 3'UTR and/or regulatory region variation with striking pairwise population differentiation, highlighting the potential for interethnic variation in CYP3A4 expression. Conversely, coding region variation showed that significant interethnic variation is unlikely at the protein level. CYP3A7*1C was found at up to 17.5% in North African populations and in significant linkage disequilibrium with CYP3A5*3, indicating that adult expression of the foetal isoform is likely to be accompanied by reduced or null expression of CYP3A5.
Collapse
|
28
|
High tacrolimus blood concentrations early after lung transplantation and the risk of kidney injury. Eur J Clin Pharmacol 2017; 73:573-580. [PMID: 28132082 PMCID: PMC5384949 DOI: 10.1007/s00228-017-2204-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/17/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE Lung transplant recipients often develop acute kidney injury (AKI) evolving into chronic kidney disease (CKD). The immunosuppressant tacrolimus might be associated with the emergence of AKI. We analyzed the development and recovery of kidney injury after lung transplantation and related AKI to whole-blood tacrolimus trough concentrations and other factors causing kidney injury. METHODS We retrospectively studied kidney injury in 186 lung-transplantation patients at the UMC Utrecht between 2001 and 2011. Kidney function and whole-blood tacrolimus trough concentrations were determined from day 1 to 14 and at 1, 3, 6, and 12 months postoperative. Systemic inflammatory response syndrome (SIRS), septic shock, and nephrotoxic medications were evaluated as covariates for AKI. We analyzed liver injury and drug-drug interactions. RESULTS AKI was present in 85 (46%) patients. Tacrolimus concentrations were supra-therapeutic in 135 of 186 patients (73%). AKI in the first week after transplantation was related to supra-therapeutic tacrolimus concentrations (OR 1.55; 95% CI 1.06-2.27), ≥3 other nephrotoxic drugs (OR 1.96; 95% CI 1.02-3.77), infection (OR 2.48; 95% CI 1.31-4.70), and cystic fibrosis (OR 2.17; 95% CI 1.16-4.06). Recovery rate of AKI was lower than expected (19%), and the cumulative incidence of severe CKD at 1 year was 15%. CONCLUSIONS After lung transplantation, AKI is common and often evolves into severe CKD, which is a known cause of morbidity and mortality. Supra-therapeutic whole-blood tacrolimus trough concentrations are related to the early onset of AKI. Conscientious targeting tacrolimus blood concentrations might be vital in the early phase after lung transplantation. What is known about this subject? • Lung transplant recipients often develop acute kidney injury evolving into chronic kidney disease increasing both morbidity and mortality. • To date, the pathophysiology of kidney injury after lung transplantation has not been fully elucidated. • The immunosuppressant tacrolimus is difficult to dose, especially in the unstable clinical setting, and is nephrotoxic. WHAT THIS STUDY ADDS • For the first time, supra-therapeutic whole-blood tacrolimus trough concentrations are related to the emergence of acute kidney injury in the first days after lung transplantation. • Supra-therapeutic whole-blood tacrolimus trough concentrations often occur early after lung transplantation. • AKI after lung transplantation shows low recovery rates.
Collapse
|
29
|
Abstract
Despite the central role of the liver in drug metabolism, surprisingly there is lack of certainty in anticipating the extent of modification of the clearance of a given drug in a given patient. The intent of this review is to provide a conceptual framework in considering the impact of liver disease on drug disposition and reciprocally the impact of drug disposition on liver disease. It is proposed that improved understanding of the situation is gained by considering the issue as a special example of a drug-gene-environment interaction. This requires an integration of knowledge of the drug's properties, knowledge of the gene products involved in its metabolism, and knowledge of the pathophysiology of its disposition. This will enhance the level of predictability of drug disposition and toxicity for a drug of interest in an individual patient. It is our contention that advances in pharmacology, pharmacogenomics, and hepatology, together with concerted interests in the academic, regulatory, and pharmaceutical industry communities provide an ideal immediate environment to move from a qualitative reactive approach to quantitative proactive approach in individualizing patient therapy in liver disease.
Collapse
Affiliation(s)
- Nathalie K Zgheib
- a Department of Pharmacology and Toxicology , American University of Beirut Faculty of Medicine , Beirut , Lebanon
| | - Robert A Branch
- b Department of Medicine, School of Medicine , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
30
|
Asada A, Bamba S, Morita Y, Takahashi K, Imaeda H, Nishida A, Inatomi O, Sugimoto M, Sasaki M, Andoh A. The effect of CYP3A5 genetic polymorphisms on adverse events in patients with ulcerative colitis treated with tacrolimus. Dig Liver Dis 2017; 49:24-28. [PMID: 27717793 DOI: 10.1016/j.dld.2016.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/30/2016] [Accepted: 09/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Tacrolimus is an immunosuppressive agent, used in the remission induction therapy of ulcerative colitis (UC). AIMS We investigated the correlation between CYP3A5 genetic polymorphisms and the adverse events in patients with UC. The pharmacokinetics of tacrolimus after oral administration were also analyzed. METHODS We enrolled 29 hospitalized patients with UC received oral tacrolimus. Genotyping for CYP3A5 A6986G (rs776746) was performed using Custom TaqMan® SNP genotyping assays. Adverse events, concentration and dose (C/D) ratios and clinical outcomes were investigated. RESULTS CYP3A5 expressers and non-expressers were 16 and 13, respectively. C/D ratios of CYP3A5 expressers were significantly lower compared to non-expressers. The response rate in CYP3A5 non-expressers was relatively higher in the early phase of treatment compared to expressers, but not statistically significant. The incidence of overall adverse events was significantly higher in CYP3A5 expressers than in non-expressers (P=0.034, chi-squared test). In particular, the incidence of nephrotoxicity was significantly higher in CYP3A5 expressers compared to non-expressers (P=0.027, chi-squared test). All of the nephrotoxicity were reversible and resolved by discontinuation or dose reduction of tacrolimus. CONCLUSION The adverse events especially nephrotoxicity were frequently observed in CYP3A5 expressers. CYP3A5 expressers should be paid attention to the onset of nephrotoxicity.
Collapse
Affiliation(s)
- Ayumi Asada
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Shigeki Bamba
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan.
| | - Yukihiro Morita
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | - Hirotsugu Imaeda
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | - Masaya Sasaki
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
31
|
Wu Z, Xu Q, Qiu X, Jiao Z, Zhang M, Zhong M. FOXP3 rs3761548 polymorphism is associated with tacrolimus-induced acute nephrotoxicity in renal transplant patients. Eur J Clin Pharmacol 2016; 73:39-47. [DOI: 10.1007/s00228-016-2140-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/27/2016] [Indexed: 11/29/2022]
|
32
|
Influence of Donor and Recipient CYP3A4, CYP3A5, and ABCB1 Genotypes on Clinical Outcomes and Nephrotoxicity in Liver Transplant Recipients. Transplantation 2016; 100:2129-2137. [DOI: 10.1097/tp.0000000000001394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Kato H, Usui M, Muraki Y, Tanemura A, Murata Y, Kuriyama N, Azumi Y, Kishiwada M, Mizuno S, Sakurai H, Okuda M, Nakatani K, Isaji S. Long-Term Influence of CYP3A5 Gene Polymorphism on Pharmacokinetics of Tacrolimus and Patient Outcome After Living Donor Liver Transplantation. Transplant Proc 2016; 48:1087-1094. [PMID: 27320564 DOI: 10.1016/j.transproceed.2016.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND We investigated a long-term association between donor/recipient CYP3A5 polymorphisms, pharmacokinetics of tacrolimus, and recipient outcomes in settings of living donor liver transplantation (LDLT). METHODS From February 2002 to November 2009, 67 couples of donor/recipients with tacrolimus administration, who could be genotyped for CYP3A5*3 and *1, were eligible in this study. We compared the dose-adjusted trough levels (C/D ratio) and dose/weight ratio of tacrolimus at 1 to 36 months postoperatively and recipient prognosis according to donor/recipient CYP3A5 polymorphisms; *1*1 in 7, *1*3 in 15, and *3*3 in 45, based on recipient genotype, and *1*1 in 1, *1*3 in 28, and *3*3 in 38, based on donor genotype. RESULTS On the basis of the data from C/D ratio and dose/weight ratio of tacrolimus, the recipients who had *1 allele and/or whose donor had *1allele required significantly high doses of tacrolimus with, compared with those without, all through 3 years after transplantation. These data allowed us to show the importance of not only recipient CYP3A5 polymorphisms but also donor polymorphisms to obtain the target tacrolimus blood concentration. The overall survival rates of the recipients with *1*1 (5-year survival rate: 28.6%) were significantly unfavorable, which might have been caused by over-immunosuppression, compared with those with *1*3 (5-year survival rate: 78.8%) and *3*3 genotype (5-year survival rate: 84.3%). CONCLUSIONS Immune suppressive therapy with the use of tacrolimus should be tailored on the basis of CYP3A5 genotype, which may reduce the adverse effects and improve graft outcome.
Collapse
Affiliation(s)
- H Kato
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Hospital, Mie, Japan
| | - M Usui
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Hospital, Mie, Japan.
| | - Y Muraki
- Department of Pharmacy, Mie University Hospital, Mie, Japan
| | - A Tanemura
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Hospital, Mie, Japan
| | - Y Murata
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Hospital, Mie, Japan
| | - N Kuriyama
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Hospital, Mie, Japan
| | - Y Azumi
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Hospital, Mie, Japan
| | - M Kishiwada
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Hospital, Mie, Japan
| | - S Mizuno
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Hospital, Mie, Japan
| | - H Sakurai
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Hospital, Mie, Japan
| | - M Okuda
- Department of Pharmacy, Mie University Hospital, Mie, Japan
| | - K Nakatani
- Department of Clinical Laboratory Medicine, Mie University Hospital, Mie, Japan
| | - S Isaji
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Hospital, Mie, Japan
| |
Collapse
|
34
|
Ling Q, Xu X, Wang B, Li L, Zheng S. The Origin of New-Onset Diabetes After Liver Transplantation: Liver, Islets, or Gut? Transplantation 2016; 100:808-813. [PMID: 26910326 DOI: 10.1097/tp.0000000000001111] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New-onset diabetes is a frequent complication after solid organ transplantation. Although a number of common factors are associated with the disease, including recipient age, body mass index, hepatitis C infection, and use of immunosuppressive drugs, new-onset diabetes after liver transplantation (NODALT) has the following unique aspects and thus needs to be considered its own entity. First, a liver graft becomes the patient's primary metabolic regulator after liver transplantation, but this would not be the case for kidney or other grafts. The metabolic states, as well as the genetics of the graft, play crucial roles in the development of NODALT. Second, dysfunction of the islets of Langerhans is common in cirrhotic patients and would be exacerbated by immunosuppressive agents, particularly calcineurin inhibitors. On the other hand, minimized immunosuppressive protocols have been widely advocated in liver transplantation because of liver tolerance (immune privilege). Third and last, through the "gut-liver axis," graft function is closely linked to gut microbiota, which is now considered an important metabolic organ and known to independently influence the host's metabolic homeostasis. Liver transplant recipients present with specific gut microbiota that may be prone to trigger metabolic disorders. In this review, we proposed 3 possible sites for the origin of NODALT, which are liver, islets, and gut, to help elucidate the underlying mechanism of NODALT.
Collapse
Affiliation(s)
- Qi Ling
- 1 Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. 2 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, China. 3 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | |
Collapse
|
35
|
Ladda MA, Goralski KB. The Effects of CKD on Cytochrome P450-Mediated Drug Metabolism. Adv Chronic Kidney Dis 2016; 23:67-75. [PMID: 26979145 DOI: 10.1053/j.ackd.2015.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
Abstract
CKD affects a significant proportion of the world's population, and the prevalence of CKD is increasing. Standard practice currently is to adjust the dose of renally eliminated medications as kidney function declines in effort to prevent adverse drug reactions. It is increasingly becoming recognized that CKD also impacts nonrenal clearance mechanisms such as hepatic and intestinal cytochrome P450 (CYP) enzymes and drug transport proteins, the latter of which is beyond the scope of this review. CYPs are responsible for the metabolism of many clinically used drugs. Genetics, patient factors (eg, age and disease) and drug interactions are well known to affect CYP metabolism resulting in variable pharmacokinetics and responses to medications. There now exists an abundance of evidence demonstrating that CKD can impact the activity of many CYP isoforms either through direct inhibition by circulating uremic toxins and/or by reducing CYP gene expression. Evidence suggests that reductions in CYP metabolism in ESRD are reversed by kidney transplantation and temporarily restored via hemodialysis. This review summarizes the current understanding of the effects that CKD can have on CYP metabolism and also discusses the impact that CYP metabolism phenotypes can have on the development of kidney injury.
Collapse
|
36
|
Population pharmacokinetics and pharmacogenetics of once daily tacrolimus formulation in stable liver transplant recipients. Eur J Clin Pharmacol 2015; 72:163-74. [PMID: 26521259 PMCID: PMC4713720 DOI: 10.1007/s00228-015-1963-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023]
Abstract
Purpose The once daily formulation of tacrolimus is an important immunosuppressive drug. Interpatient variability in metabolism has been related to genetic variation in CYP3A4 and CYP3A5. However, in liver transplantation, both donor and recipient genotypes may affect pharmacokinetics. The primary objective of this study was to investigate the effect of CYP3A4*22 and CYP3A5*3 of both donor and recipient on once daily tacrolimus pharmacokinetics. The secondary objective was to develop a limited sampling model able to accurately predict exposure. Methods Stable liver transplant patients receiving once daily tacrolimus (N = 66) were included. Population pharmacokinetic analysis was performed with patients of whom DNA was available (N = 49), and demographic factors, CYP3A4*22 and CYP3A5*3, were tested as covariates. Moreover, a limited sampling model was developed using data of 66 patients. Results Pharmacokinetics was best described by a two-compartment model with delayed absorption. CYP3A5*1 carrying recipients engrafted with a CYP3A5*1 carrying liver had an average 1.7-fold higher clearance compared to non-carriers. CYP3A5*1 carrying recipients engrafted with a CYP3A5*1 non-carrying liver or vice versa showed an average 1.3-fold higher clearance compared with non-carriers. CYP3A4*22 was not significantly associated with once daily tacrolimus pharmacokinetics. Using 0, 2, and 3 h postdose as limited sampling model resulted in significantly improved prediction of tacrolimus exposure compared with trough concentration. Conclusions Both donor and recipient CYP3A5 genotype significantly influences tacrolimus once daily pharmacokinetics. In contrast, CYP3A4*22 appears not suitable as biomarker. The developed limited sampling model can be used to accurately estimate tacrolimus once daily exposure. Electronic supplementary material The online version of this article (doi:10.1007/s00228-015-1963-3) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Anders HJ, Weidenbusch M, Rovin B. Unmet medical needs in lupus nephritis: solutions through evidence-based, personalized medicine. Clin Kidney J 2015; 8:492-502. [PMID: 26413272 PMCID: PMC4581390 DOI: 10.1093/ckj/sfv072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/17/2015] [Indexed: 12/12/2022] Open
Abstract
Lupus nephritis (LN) remains a kidney disease with significant unmet medical needs despite extensive clinical and translational research over the past decade. These include the need to (i) predict the individual risk for LN in a patient with systemic lupus erythematosus, (ii) identify the best therapeutic option for an individual patient, (iii) distinguish chronic kidney damage from active immunologic kidney injury, (iv) develop efficient treatments with acceptable or no side effects and improve the design of randomized clinical trials so that effective drugs demonstrate efficacy. This review discusses the underlying reasons for these unmet medical needs and options of how to overcome them in the future.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Marc Weidenbusch
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Brad Rovin
- Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
38
|
Khaled SK, Palmer JM, Herzog J, Stiller T, Tsai NC, Senitzer D, Liu X, Thomas SH, Shayani S, Weitzel J, Forman SJ, Nakamura R. Influence of Absorption, Distribution, Metabolism, and Excretion Genomic Variants on Tacrolimus/Sirolimus Blood Levels and Graft-versus-Host Disease after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2015; 22:268-276. [PMID: 26325438 DOI: 10.1016/j.bbmt.2015.08.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/19/2015] [Indexed: 01/23/2023]
Abstract
Allelic variants of genes implicated in drug absorption, distribution, metabolism, and excretion (ADME) determine the pharmacokinetic variability of many medications and are increasingly recognized as important factors determining the success or failure of medical treatments. Both tacrolimus and sirolimus have narrow therapeutic ranges maintained by therapeutic drug monitoring (TDM). Using an ADME panel that covers >99% of the PharmaADME working group core list (188 single nucleotide polymorphism [SNP] and 12 copy number variant [CNV] assays in 36 pharmacogenetically relevant genes), we studied 177 patients who underwent allogeneic hematopoietic cell transplantation (HCT) using tacrolimus/sirolimus-based graft-versus-host disease (GVHD) prophylaxis. We tested for possible associations between ADME variants and tacrolimus/sirolimus drug levels, concentration/dose (C/D) ratio, and clinical endpoints, including acute GVHD. A total of 62 SNP and 6 CNV assays were evaluable after removing the variants, which were homozygous in (nearly) all samples. For sirolimus, rs2032582 (ABCB1) T-carriers versus non-T-carriers were associated with higher blood levels (P = .01), with similar results for C/D ratio. Generalized estimating equation analysis supported these findings. For tacrolimus, rs776746 CYP3A5*3/*3 and CYP3A5*3/*1 were associated with higher blood levels than CYP3A5*1/*1 (P = .002). By multivariable analysis, rs776746 CYP3A5*3/*3 and CYP3A5*3/*1 were independently associated with decreased acute GVHD compared with CYP3A5*1/*1, after adjustment for conditioning, donor type, race/ethnicity, and age. We demonstrated association of specific ADME genetic polymorphisms with blood levels of tacrolimus/sirolimus, and incidence of acute GVHD after HCT, in spite of TDM and dose adjustment. A larger ongoing study will determine whether these associations have clinical utility beyond TDM.
Collapse
Affiliation(s)
- Samer K Khaled
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California; Gehr Family Center for Leukemia Research of the Hematologic Malignancies and Stem Cell Transplantation Institute of the City of Hope, Duarte, CA.
| | | | - Josef Herzog
- Division of Clinical Cancer Genetics, City of Hope, Duarte, California
| | - Tracey Stiller
- Division of Biostatistics, City of Hope, Duarte, California
| | - Ni-Chun Tsai
- Division of Biostatistics, City of Hope, Duarte, California
| | - David Senitzer
- Division of Histocompatibility (HLA Laboratory), City of Hope, Duarte, California
| | - Xueli Liu
- Division of Biostatistics, City of Hope, Duarte, California
| | - Sandra H Thomas
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | | | - Jeffrey Weitzel
- Division of Clinical Cancer Genetics, City of Hope, Duarte, California
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| |
Collapse
|
39
|
Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, Wang D, Vinks AA, He Y, Swen JJ, Leeder JS, van Schaik R, Thummel KE, Klein TE, Caudle KE, MacPhee IAM. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin Pharmacol Ther 2015; 98:19-24. [PMID: 25801146 DOI: 10.1002/cpt.113] [Citation(s) in RCA: 522] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
Tacrolimus is the mainstay immunosuppressant drug used after solid organ and hematopoietic stem cell transplantation. Individuals who express CYP3A5 (extensive and intermediate metabolizers) generally have decreased dose-adjusted trough concentrations of tacrolimus as compared with those who are CYP3A5 nonexpressers (poor metabolizers), possibly delaying achievement of target blood concentrations. We summarize evidence from the published literature supporting this association and provide dosing recommendations for tacrolimus based on CYP3A5 genotype when known (updates at www.pharmgkb.org).
Collapse
Affiliation(s)
- K A Birdwell
- Division of Nephrology Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - B Decker
- Division of Nephrology and Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J M Barbarino
- Department of Genetics, Stanford University, Stanford, California, USA
| | - J F Peterson
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, USA
| | - C M Stein
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - W Sadee
- Center for Pharmacogenomics, School of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - D Wang
- Center for Pharmacogenomics, School of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - A A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Y He
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, Peoples Republic of China
| | - J J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J S Leeder
- Division of Clinical Pharmacology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Rhn van Schaik
- Department of Clinical Chemistry, Erasmus MC Rotterdam, The Netherlands
| | - K E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - T E Klein
- Department of Genetics, Stanford University, Stanford, California, USA
| | - K E Caudle
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - I A M MacPhee
- Institute of Medical and Biomedical Education, Renal Medicine, St. George's, University of London, London, UK
| |
Collapse
|
40
|
Shi YY, Hesselink DA, van Gelder T. Pharmacokinetics and pharmacodynamics of immunosuppressive drugs in elderly kidney transplant recipients. Transplant Rev (Orlando) 2015; 29:224-30. [PMID: 26048322 DOI: 10.1016/j.trre.2015.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 02/05/2023]
Abstract
Elderly patients are a fast growing population among transplant recipients over the past decades. Both the innate and adaptive immune reactivity decrease with age, which is believed to contribute to the decreased incidence of acute rejection and increased infectious death rate in elderly transplant recipients. In contrast to recipient age, donor age is associated with a higher incidence of acute rejection. Pharmacokinetic studies in renal transplant recipients show that CNI troughs are >5% higher in elderly compared to younger patients given the same dose normalized by body weight. This may impact the starting dose of tacrolimus and cyclosporine. Possibly in elderly patients the intracellular (in lymphocyte) concentrations are relatively high in relation to the whole blood concentration, resulting in a stronger pharmacodynamic effect at the same whole blood trough concentration. For cyclosporine this has been shown, but it is not clear if the same is true for other immunosuppressive drugs. Pharmacodynamic studies have compared the inhibition of target enzymes, or more downstream effects of immunosuppressive drugs, in younger and older patients. Measurement of nuclear factor of activated T-cell (NFAT)-regulated gene expression (RGE), a pharmacodynamic read-out of CNI, is a promising biomarker of immunosuppression. Low levels of NFAT RGE are associated with increased risk of infection and non-melanoma skin cancer in elderly patients. Clinical trials to evaluate the safety and efficacy of immunosuppression regimens in this specific patient population, which is underrepresented in published trials, are lacking. More studies in elderly patients are needed to investigate the impact of age on the pharmacokinetics or pharmacodynamics of immunosuppressive drugs, and to decide on the optimal regimen and target levels for elderly transplant recipients.
Collapse
Affiliation(s)
- Yun-Ying Shi
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
41
|
Zhu L, Yang J, Zhang Y, Jing Y, Zhang Y, Li G. Effects ofCYP3A5genotypes,ABCB1 C3435TandG2677T/Apolymorphism on pharmacokinetics of Tacrolimus in Chinese adult liver transplant patients. Xenobiotica 2015; 45:840-6. [DOI: 10.3109/00498254.2015.1021733] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Genetic variance in ABCB1 and CYP3A5 does not contribute toward the development of chronic kidney disease after liver transplantation. Pharmacogenet Genomics 2015; 24:427-35. [PMID: 25014506 DOI: 10.1097/fpc.0000000000000063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Chronic kidney disease (CKD) after liver transplantation (LT) is a major clinical problem that appears to be associated with nongenetic as well as genetic determinants. Calcineurin inhibitor (CNI) use is considered to play a major role in the development of CKD after LT. We studied the influence of single-nucleotide polymorphisms (SNPs) in the genes of the donor and recipient CNI-metabolizing enzyme CYP3A5 and the CNI-transporting ABCB1 on the development of CKD after LT. MATERIALS AND METHODS Tacrolimus (Tac) predose concentrations at different time-points after transplantation and the CYP3A5 6986A>G and ABCB1 3435C>T SNPs were determined in 125 LT recipients and their respective donors to study the influence of Tac predose levels and genetics on the development of CKD. RESULTS After a median follow-up of 5.7±2.9 years, CKD developed in 47 patients (36%). The Tac predose levels were not correlated with the development of CKD. Neither did we find a correlation between the investigated SNPs in either donor or recipient ABCB1 and CYP3A5 genes (or combinations thereof) and the development of CKD. These genetic variations did not relate to Tac predose blood concentrations in our study. CONCLUSION An individual's risk of developing CKD after LT is not associated with genetic variation in either recipient or donor CYP3A5 or ABCB1 genotype status.
Collapse
|
43
|
Naito T, Mino Y, Aoki Y, Hirano K, Shimoyama K, Ogawa N, Kagawa Y, Kawakami J. ABCB1 genetic variant and its associated tacrolimus pharmacokinetics affect renal function in patients with rheumatoid arthritis. Clin Chim Acta 2015; 445:79-84. [PMID: 25817604 DOI: 10.1016/j.cca.2015.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/18/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND This study aimed to evaluate the blood exposure of and clinical responses to tacrolimus based on genetic variants of CYP3A5 and ABCB1 in patients with rheumatoid arthritis. METHODS Seventy rheumatoid arthritis patients treated with oral tacrolimus once daily were enrolled. Blood concentrations of tacrolimus and its major metabolite 13-O-demethylate at 12h after dosing were determined. The relationships between the tacrolimus pharmacokinetics and efficacy, renal function, and CYP3A5 and ABCB1 genotypes were evaluated. RESULTS Dose-normalized blood concentration of tacrolimus was significantly higher in the CYP3A5*3/*3 group than in the *1 allele carrier group. A lower metabolic ratio of 13-O-demethylate to tacrolimus was observed in the CYP3A5*3/*3 group. The ABCB1 3435TT group had higher dose-normalized blood concentrations of tacrolimus and 13-O-demethylate. The blood tacrolimus concentration was inversely correlated with the estimated glomerular filtration rate (eGFR). ABCB1 C3435T but not CYP3A5 genotype had decreased eGFR. Patients lacking the CYP3A5*3 allele had a higher incidence of tacrolimus withdrawal. CONCLUSION CYP3A5*3 increased the blood exposure of tacrolimus through its metabolic reduction. ABCB1 C3435T led to a higher blood exposure of tacrolimus and its major metabolite. The ABCB1 genetic variant and its associated tacrolimus pharmacokinetics affected renal function in rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Takafumi Naito
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.
| | - Yasuaki Mino
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuki Aoki
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; Department of Clinical Pharmaceutics and Pharmacy Practice, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Kumi Hirano
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kumiko Shimoyama
- Department of Rheumatology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Noriyoshi Ogawa
- Department of Rheumatology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yoshiyuki Kagawa
- Department of Clinical Pharmaceutics and Pharmacy Practice, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Junichi Kawakami
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
44
|
Effects of Combinational CYP3A5 6986A>G Polymorphism in Graft Liver and Native Intestine on the Pharmacokinetics of Tacrolimus in Liver Transplant Patients. Ther Drug Monit 2014; 36:442-7. [DOI: 10.1097/ftd.0000000000000032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
|
46
|
Xue F, Han L, Chen Y, Xi Z, Li Q, Xu N, Xia Y, Streicher K, Zhang J, Xia Q. CYP3A5 genotypes affect tacrolimus pharmacokinetics and infectious complications in Chinese pediatric liver transplant patients. Pediatr Transplant 2014; 18:166-76. [PMID: 24438215 DOI: 10.1111/petr.12216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 12/01/2022]
Abstract
Little information is available regarding the impact of cytochrome P450 (CYP) 3A5 on the metabolism of TAC in infant LTx. Therefore, the CYP3A5 genotype of Chinese pediatric recipients (intestine) as well as donors (graft liver) was performed for the purpose of establishing an optimal dosage regimen in children. Sixty-four patients were divided according to CYP3A5 genotype (expression of *1 allele: EX and NEX) for each recipient (R) and donor (D), EX-R/EX-D (n = 21), EX-R/NEX-D (n = 8), NEX-R/EX-D (n = 8) and NEX-R/NEX-D (n = 27). Results indicated that initial TAC daily dose requirement was higher among EX-R/EX-D children compared with those who did not express CYP3A5 (0.28 ± 0.10 vs. 0.19 ± 0.08 mg/kg/day, p < 0.01). CYP3A5 expression contributed an overall of 38.35% to its C/D ratios, and graft liver was a key determinant. Additionally, the EX-R/EX-D group showed significantly higher incidence of infectious complications, lower immune response and was an independent risk factor for the development of infections (odds ratio 3.86, p = 0.025). Donor CYP3A5 expression partially explains TAC dose requirement, the effect of CYP3A5 variation may influence clinical outcomes; therefore, monitoring immune response may be important for preventing risks associated with under- and over-immunosuppression.
Collapse
Affiliation(s)
- Feng Xue
- Department of Liver Surgery and Liver Transplantation, Shanghai Jiao-tong University School of Medicine, Renji Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gérard C, Stocco J, Hulin A, Blanchet B, Verstuyft C, Durand F, Conti F, Duvoux C, Tod M. Determination of the most influential sources of variability in tacrolimus trough blood concentrations in adult liver transplant recipients: a bottom-up approach. AAPS JOURNAL 2014; 16:379-91. [PMID: 24526611 DOI: 10.1208/s12248-014-9577-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/25/2014] [Indexed: 01/10/2023]
Abstract
Tacrolimus, an immunosuppressant drug, presents a narrow therapeutic window and a large pharmacokinetic variability with poor correlation between drug dosing regimen and blood concentration. The objective was to identify predictive factors influencing tacrolimus trough concentrations (C0) using a bottom-up approach. A physiologically based pharmacokinetic (PBPK) model of tacrolimus was proposed, taking into account the body weight, the proportion of fat (P(fat)), hematocrit, lipid fraction of organs, typical intrinsic clearance (CLi(typ)), CYP3A5 genotype of liver donor, plasma unbound fraction of tacrolimus (fu(p)), and concomitant drugs (CYP3A4 inhibitors). For the evaluation of the PBPK model, mean C0 and concentrations 2 h after oral dose of tacrolimus were compared with those from 66 liver transplant recipients included in a multicentric pharmacokinetic study and were found very close. Tacrolimus concentration profiles were simulated in a virtual population defined by a set of covariate values similar to those from the real population. The sensitivity of tacrolimus C0 with respect to each covariate has been tested to identify the most influential ones. With the range of covariate values tested, the impact of each covariate on tacrolimus C0 may be ranked as follows: fu(p), CLi(typ), bioavailability, body weight, hematocrit, CYP3A5 polymorphism, P(fat), and CYP3A4 inhibitory drug-drug interactions. Values for initial dosing regimen of tacrolimus in order to reach a C0 of 10 ng/ml at day 5 (assuming a constant dosing schedule) as a function of CYP3A5 donor genotype and patient's hematocrit and body weight are proposed.
Collapse
Affiliation(s)
- Cécile Gérard
- EMR 3738 Ciblage Thérapeutique en Oncologie, Faculté de Médecine Lyon-Sud, Université de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kurzawski M, Droździk M. Pharmacogenetics in solid organ transplantation: genes involved in mechanism of action and pharmacokinetics of immunosuppressive drugs. Pharmacogenomics 2014; 14:1099-118. [PMID: 23837483 DOI: 10.2217/pgs.13.89] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Allogenic solid organ transplantation has become the routine procedure in patients with end stage organ disease. Although the transplanted organ compensates deficient body functions, its allogenic nature requires institution of immune tolerance, nowadays provided by immunosuppressive drug administration. Both the safety and efficacy of immunosuppressive treatment depend on many factors, and maintaining levels of immunosuppressants within therapeutic range is the essential target for success in graft function preservation. It is obvious that drug and metabolite concentrations depend on efficiency of individual patient metabolism. Recently, many studies were undertaken to investigate the relationship between genetic factors, drug pharmacokinetics and therapy outcome, and interindividual variability apparently can be explained, at least in part, by genetically determined polymorphisms of xenobiotic-metabolizing enzymes, transport proteins and also in some cases, drug targets. This review presents the recent state of knowledge in the field of pharmacogenetics related to solid organ transplantation.
Collapse
Affiliation(s)
- Mateusz Kurzawski
- Department of Experimental & Clinical Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland
| | | |
Collapse
|
49
|
Hamzah S, Teh LK, Siew JSK, Ahmad G, Wong HS, Zakaria ZA, Salleh MZ. Pharmacogenotyping of CYP3A5 in predicting dose-adjusted trough levels of tacrolimus among Malaysian kidney-transplant patients. Can J Physiol Pharmacol 2014; 92:50-7. [DOI: 10.1139/cjpp-2013-0128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tacrolimus (FK506) is a calcineurin inhibitor with a narrow therapeutic index that exhibits large interindividual variation. Seventy-eight kidney transplant patients treated with tacrolimus were recruited to study the correlation of dose adjusted trough level (level/dose; L/D) of tacrolimus with CYP3A5 and ABCB1 genotypes, as well as the mRNA copy number of ABCB1 in blood. Patients were genotyped for ABCB1 (C1236T, G2677T/A, and C3435T) and CYP3A5 (G6986A), while ABCB1 mRNA transcript copy number was determined by absolute quantification (real-time PCR) in 46 patients. CYP3A5*3 genotypes were found to be a good predictor of tacrolimus L/D in kidney-transplant patients. Significantly higher L/D was observed among non-expressors (2.85, 95%: 2.05–3.70 (ng·mL–1)/(mg·kg–1)) as compared with the expressors (1.15, 95%: 0.95–1.80 (ng·mL–1)/(mg·kg–1)) of CYP3A5 (Mann–Whitney U test; P < 0.001). No correlation was observed between L/D and the ABCB1 genotypes. A significant inverse correlation of blood ABCB1 mRNA level with L/D was demonstrated (Spearman’s Rank Order correlation; P = 0.016, rs = –0.348). However, in multiple regression analysis, only CYP3A5*3 genotype groups were found to be significantly correlated with tacrolimus L/D (P < 0.001). These findings highlight the importance of CYP3A5*3 pharmacogenotyping among kidney-transplant patients treated with tacrolimus, and confirm the role of blood cell P-glycoprotein in influencing the L/D for tacrolimus.
Collapse
Affiliation(s)
- Sharina Hamzah
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA (UiTM), 42300 Puncak Alam, Selangor DE, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA (UiTM), 42300 Puncak Alam, Selangor DE, Malaysia
| | - John Shia Kwong Siew
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA (UiTM), 42300 Puncak Alam, Selangor DE, Malaysia
| | - Ghazali Ahmad
- Department of Nephrology, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Hin Seng Wong
- Department of Nephrology, Hospital Selayang, Selangor, Malaysia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), 42300 Puncak Alam, Selangor DE, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA (UiTM), 42300 Puncak Alam, Selangor DE, Malaysia
| |
Collapse
|
50
|
Developmental Changes in the Processes Governing Oral Drug Absorption. PEDIATRIC FORMULATIONS 2014. [DOI: 10.1007/978-1-4899-8011-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|