1
|
Maslat AO, Al-Mahmood OM, Al Khawaja NM, Al-Shdefat R. Association of Genetic polymorphisms of EDN1 gene and Endothelin-1 level in patients with type 2 diabetes mellitus in the Jordanian population. Heliyon 2024; 10:e23676. [PMID: 38187330 PMCID: PMC10767158 DOI: 10.1016/j.heliyon.2023.e23676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 11/25/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Endothelin-1 (ET-1) is one of the most potent vasoconstrictors, encoded by the endothelin-1 (EDN1) gene. It has been shown to play an important role in different diseases including Diabetes Mellitus (DM). Various single nucleotide polymorphisms (SNPs) in the EDN1 gene are related to microvascular complications of type 2 diabetes mellitus (T2DM) such as retinopathy, neuropathy and nephropathy. This study aims to determine the association between two selected EDN1 gene polymorphisms (rs2071942 G > A, rs5370 G > T) and T2DM in the Jordanian population, also to measure the level of ET-1 in T2DM. The samples were collected from the National Center of Diabetes, Endocrinology, and Genetics- Amman, Jordan, including 97 patients with T2DM and 80 healthy individuals. PCR-RFLP was used for SNPs genotyping. ET-1 level was determined using IQELISA kits. The univariate analysis for both SNPs didn't show statistically significant differences in the genotype or allele frequencies among T2DM cases as well as in controls. The same results were obtained regarding ET-1 concentration. The subgroup analysis by sex showed that the genotype and allelic frequencies of rs5370, rs2071942 G/A polymorphisms were not significantly different in males and females. Multivariate Analysis adjusted for various confounders didn't express statistical significance difference for occurrences of both SNPs. However, height and gender showed to be significant risk factors for occurrences of heterozygote alleles in both SNPs. On the other hand, the duration of diabetes has appeared to be related to the recessive allele in rs5370.
Collapse
Affiliation(s)
- Ahmed O. Maslat
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Jordan and Faculty of Pharmacy, Jadara University, Jordan
| | - Omar M. Al-Mahmood
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Jordan
| | - Nahla M. Al Khawaja
- National Center for Diabetes, Endocrinology and Genetics, Jordan University, Jordan
| | | |
Collapse
|
2
|
Shen Q, Zhang H, Huang Y, Li M, Zhao H, Yang Z, Zhao H, Liu Q, Fu Z, Di Y, Liu L, Bai H, Lv F, Chen Y, Liu Y, Wang S. Sensitive detection of single-nucleotide polymorphisms by conjugated polymers for personalized treatment of hypertension. Sci Transl Med 2023; 15:eabq5753. [PMID: 36888697 DOI: 10.1126/scitranslmed.abq5753] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Genetic variants among individuals have been associated with ineffective control of hypertension. Previous work has shown that hypertension has a polygenic nature, and interactions between these loci have been associated with variations in drug response. Rapid detection of multiple genetic loci with high sensitivity and specificity is needed for the effective implementation of personalized medicine for the treatment of hypertension. Here, we used a cationic conjugated polymer (CCP)-based multistep fluorescence resonance energy transfer (MS-FRET) technique to qualitatively analyze DNA genotypes associated with hypertension in the Chinese population. Assessment of 10 genetic loci using this technique successfully identified known hypertensive risk alleles in a retrospective study of whole-blood samples from 150 patients hospitalized with hypertension. We then applied our detection method in a prospective clinical trial of 100 patients with essential hypertension and found that personalized treatment of patients with hypertension based on results from the MS-FRET technique could effectively improve blood pressure control rate (94.0% versus 54.0%) and shorten the time duration to controlling blood pressure (4.06 ± 2.10 versus 5.82 ± 1.84 days) as compared with conventional treatment. These results suggest that CCP-based MS-FRET genetic variant detection may assist clinicians in rapid and accurate classification of risk in patients with hypertension and improve treatment outcomes.
Collapse
Affiliation(s)
- Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Honghong Zhang
- Cardiac Department, Sixth Center of Chinese PLA General Hospital; Cardiac Department, First Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases; Department of Cardiology & National Clinical Research Center of Geriatric Disease; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, First Center of Chinese PLA General Hospital, Beijing 100141, P.R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Mingyu Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haijing Zhao
- Cardiac Department, Sixth Center of Chinese PLA General Hospital; Cardiac Department, First Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases; Department of Cardiology & National Clinical Research Center of Geriatric Disease; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, First Center of Chinese PLA General Hospital, Beijing 100141, P.R. China
| | - Qi Liu
- Cardiac Department, Sixth Center of Chinese PLA General Hospital; Cardiac Department, First Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases; Department of Cardiology & National Clinical Research Center of Geriatric Disease; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, First Center of Chinese PLA General Hospital, Beijing 100141, P.R. China
| | - Zihao Fu
- Cardiac Department, Sixth Center of Chinese PLA General Hospital; Cardiac Department, First Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases; Department of Cardiology & National Clinical Research Center of Geriatric Disease; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, First Center of Chinese PLA General Hospital, Beijing 100141, P.R. China
| | - Yufei Di
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yundai Chen
- Cardiac Department, Sixth Center of Chinese PLA General Hospital; Cardiac Department, First Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases; Department of Cardiology & National Clinical Research Center of Geriatric Disease; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, First Center of Chinese PLA General Hospital, Beijing 100141, P.R. China
| | - Yuqi Liu
- Cardiac Department, Sixth Center of Chinese PLA General Hospital; Cardiac Department, First Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases; Department of Cardiology & National Clinical Research Center of Geriatric Disease; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, First Center of Chinese PLA General Hospital, Beijing 100141, P.R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Kolur V, Vastrad B, Vastrad C, Kotturshetti S, Tengli A. Identification of candidate biomarkers and therapeutic agents for heart failure by bioinformatics analysis. BMC Cardiovasc Disord 2021; 21:329. [PMID: 34218797 PMCID: PMC8256614 DOI: 10.1186/s12872-021-02146-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Heart failure (HF) is a heterogeneous clinical syndrome and affects millions of people all over the world. HF occurs when the cardiac overload and injury, which is a worldwide complaint. The aim of this study was to screen and verify hub genes involved in developmental HF as well as to explore active drug molecules. METHODS The expression profiling by high throughput sequencing of GSE141910 dataset was downloaded from the Gene Expression Omnibus (GEO) database, which contained 366 samples, including 200 heart failure samples and 166 non heart failure samples. The raw data was integrated to find differentially expressed genes (DEGs) and were further analyzed with bioinformatics analysis. Gene ontology (GO) and REACTOME enrichment analyses were performed via ToppGene; protein-protein interaction (PPI) networks of the DEGs was constructed based on data from the HiPPIE interactome database; modules analysis was performed; target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed; hub genes were validated; molecular docking studies was performed. RESULTS A total of 881 DEGs, including 442 up regulated genes and 439 down regulated genes were observed. Most of the DEGs were significantly enriched in biological adhesion, extracellular matrix, signaling receptor binding, secretion, intrinsic component of plasma membrane, signaling receptor activity, extracellular matrix organization and neutrophil degranulation. The top hub genes ESR1, PYHIN1, PPP2R2B, LCK, TP63, PCLAF, CFTR, TK1, ECT2 and FKBP5 were identified from the PPI network. Module analysis revealed that HF was associated with adaptive immune system and neutrophil degranulation. The target genes, miRNAs and TFs were identified from the target gene-miRNA regulatory network and target gene-TF regulatory network. Furthermore, receiver operating characteristic (ROC) curve analysis and RT-PCR analysis revealed that ESR1, PYHIN1, PPP2R2B, LCK, TP63, PCLAF, CFTR, TK1, ECT2 and FKBP5 might serve as prognostic, diagnostic biomarkers and therapeutic target for HF. The predicted targets of these active molecules were then confirmed. CONCLUSION The current investigation identified a series of key genes and pathways that might be involved in the progression of HF, providing a new understanding of the underlying molecular mechanisms of HF.
Collapse
Affiliation(s)
- Vijayakrishna Kolur
- Vihaan Heart Care & Super Specialty Centre, Vivekananda General Hospital, Deshpande Nagar, Hubli, Karnataka, 580029, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karnataka, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karnataka, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| |
Collapse
|
4
|
de Lima-Seolin BG, Hennemann MM, Fernandes RO, Colombo R, Bonetto JHP, Teixeira RB, Khaper N, Godoy AEG, Litvin IE, Sander da Rosa Araujo A, Schenkel PC, Belló-Klein A. Bucindolol attenuates the vascular remodeling of pulmonary arteries by modulating the expression of the endothelin-1 A receptor in rats with pulmonary arterial hypertension. Biomed Pharmacother 2018; 99:704-714. [DOI: 10.1016/j.biopha.2018.01.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/19/2022] Open
|
5
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to present our current understanding of the genetic etiologies that may cause or predispose to heart failure. We highlight known phenotypes for which a genetic evaluation has clinical utility. RECENT FINDINGS The literature continues to demonstrate and confirm a genetic basis for conditions that cause heart failure. Evidence suggests a genetic model involving rare and common variants of strong or weak effect, in combination with environmental factors that may manifest as familial or simplex disease. Clinical genetic testing is available for several phenotypes, which can aid in the diagnosis and identification of at-risk family members. The evaluation of heart failure should include investigating etiologies with a genetic basis. Conducting a genetic evaluation in patients with heart failure requires the ability to identify possible genetic etiologies in an individual's phenotype, obtain relevant family history, and clinically interpret genetic testing results.
Collapse
|
6
|
Mottet F, Vardeny O, de Denus S. Pharmacogenomics of heart failure: a systematic review. Pharmacogenomics 2016; 17:1817-1858. [PMID: 27813451 DOI: 10.2217/pgs-2016-0118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Heart failure (HF) and multiple HF-related phenotypes are heritable. Genes implicated in the HF pathophysiology would be expected to influence the response to treatment. METHODS We conducted a series of systematic literature searches on the pharmacogenetics of HF therapy to assess the current knowledge on this field. RESULTS Existing data related to HF pharmacogenomics are still limited. The ADRB1 gene is a likely candidate to predict response to β-blockers. Moreover, the cytochrome P450 2D6 coding gene (CYP2D6) clearly affects the pharmacokinetics of metoprolol, although the clinical impact of this association remains to be established. CONCLUSION Given the rising prevalence of HF and related costs, a more personalized use of HF drugs could have a remarkable benefit for patients, caregivers and healthcare systems.
Collapse
Affiliation(s)
- Fannie Mottet
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada.,Montreal Heart Institute, Montreal, Canada
| | - Orly Vardeny
- Associate Professor of Pharmacy & Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Simon de Denus
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada.,Montreal Heart Institute, Montreal, Canada
| |
Collapse
|
7
|
Guo M, Guo G, Ji X. Genetic polymorphisms associated with heart failure: A literature review. J Int Med Res 2016; 44:15-29. [PMID: 26769713 PMCID: PMC5536573 DOI: 10.1177/0300060515604755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022] Open
Abstract
Objective To review possible associations reported between genetic variants and the risk, therapeutic response and prognosis of heart failure. Methods Electronic databases (PubMed, Web of Science and CNKI) were systematically searched for relevant papers, published between January 1995 and February 2015. Results Eighty-two articles covering 29 genes and 39 polymorphisms were identified. Conclusion Genetic association studies of heart failure have been highly controversial. There may be interaction or synergism of several genetic variants that together result in the ultimate pathological phenotype for heart failure.
Collapse
Affiliation(s)
- Mengqi Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Guanlun Guo
- Hubei Key Laboratory of Advanced Technology of Automotive Components, School of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Xiaoping Ji
- Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
8
|
Tomar A, Malhotra S, Sarkar S. Polymorphism profiling of nine high altitude relevant candidate gene loci in acclimatized sojourners and adapted natives. BMC Genet 2015; 16:112. [PMID: 26373931 PMCID: PMC4572652 DOI: 10.1186/s12863-015-0268-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/28/2015] [Indexed: 01/31/2023] Open
Abstract
Background Sea level sojourners, on ascent to high altitude, undergo acclimatization through integrated physiological processes for defending the body against oxygen deprivation while the high altitude natives (resident population) are adapted to the prevailing hypobaric hypoxic condition through natural selection. Separating the acclimatization processes from adaptive changes and identifying genetic markers in lowlanders that may be beneficial for offsetting the high altitude hypoxic stress, although challenging, is worth investigating. We genotyped nine candidate gene polymorphisms, suggested to be relevant in high altitude environment, in sea level acclimatized sojourners and adapted natives for understanding differences/commonality between the acclimatized and the adapted cohorts at the genetic level. Results Statistically similar genotypic and allelic frequencies were observed between the sea level sojourners (acclimatized) and the high altitude natives (adapted) in six loci viz., EDN1 (endothelin 1) -3A/-4A VNTR, ADRB2 (beta-2 adrenergic receptor, surface) Arg16Gly (rs1042713:A > G), ADRB3 (beta-3 adrenergic receptor) Trp64Arg (rs4994:T > C), eNOS (nitric oxide synthase, endothelial) Glu298Asp (rs1799983:T > G), TH (tyrosine hydroxylase) Val81Met (rs6356:G > A) and VEGF (vascular endothelial growth factor) 963C > T (rs3025039:C > T) while SCNN1B (amiloride-sensitive sodium channel, subunit beta) Thr594Met (rs1799979:C > T) was monomorphic. Genotypic and allelic frequencies in EDN1 9465G > A (rs2071942:G > A) and ADRB2 Gln27Glu (rs1042714:G > C) were significantly different between the acclimatized sojourners and the high altitude natives with higher frequency of GG and GA genotypes of EDN1 rs2071942 and CC genotype of ADRB2 rs1042714 being observed in Ladakh natives. Mutated A allele (AA genotype) of rs2071942 and carriers of G allele (GG + GC genotypes) of rs1042714 were less favorable during acclimatization under recessive and dominant genetic models of inheritance respectively indicating thereby that GG genotype and G allele of EDN1 rs2071942 and CC genotype of ADRB2 rs1042714 conferred acclimatization benefit. Conclusion Sea level acclimatized individuals shared similarity with the adapted natives in certain high altitude relevant genetically based trait variation suggesting advantageous consequence as well as commonality in gene regulatory pathways in which these gene products function both during process of acclimatization and adaptation in high altitude environment. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0268-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arvind Tomar
- Defence Research and Development Establishment, Ministry of Defence R&D Organization, Jhansi Road, Gwalior, 474002, India.
| | - Seema Malhotra
- Defence Institute of Physiology and Allied Sciences, Ministry of Defence R&D Organization, Lucknow Road, Delhi, 110054, India.
| | - Soma Sarkar
- Defence Institute of Physiology and Allied Sciences, Ministry of Defence R&D Organization, Lucknow Road, Delhi, 110054, India.
| |
Collapse
|
9
|
The Affymetrix DMET Plus platform reveals unique distribution of ADME-related variants in ethnic Arabs. DISEASE MARKERS 2015; 2015:542543. [PMID: 25802476 PMCID: PMC4353852 DOI: 10.1155/2015/542543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 11/17/2022]
Abstract
Background. The Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus Premier Pack has been designed to genotype 1936 gene variants thought to be essential for screening patients in personalized drug therapy. These variants include the cytochrome P450s (CYP450s), the key metabolizing enzymes, many other enzymes involved in phase I and phase II pharmacokinetic reactions, and signaling mediators associated with variability in clinical response to numerous drugs not only among individuals, but also between ethnic populations. Materials and Methods. We genotyped 600 Saudi individuals for 1936 variants on the DMET platform to evaluate their clinical potential in personalized medicine in ethnic Arabs. Results. Approximately 49% each of the 437 CYP450 variants, 56% of the 581 transporters, 56% of 419 transferases, 48% of the 104 dehydrogenases, and 58% of the remaining 390 variants were detected. Several variants, such as rs3740071, rs6193, rs258751, rs6199, rs11568421, and rs8187797, exhibited significantly either higher or lower minor allele frequencies (MAFs) than those in other ethnic groups. Discussion. The present study revealed some unique distribution trends for several variants in Arabs, which displayed partly inverse allelic prevalence compared to other ethnic populations. The results point therefore to the need to verify and ascertain the prevalence of a variant as a prerequisite for engaging it in clinical routine screening in personalized medicine in any given population.
Collapse
|
10
|
Tayeb HT, Bakheet DH, Zaza K, Wakil SM, Dzimiri N. Genotyping of CYP2C19 polymorphisms and its clinical validation in the ethnic Arab population. J Pharm Pharmacol 2015; 67:972-9. [PMID: 25684066 DOI: 10.1111/jphp.12391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/21/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The drug-metabolizing enzymes and transporters (DMET) Plus microarray and x-Tag assays have recently been developed for genotyping individuals in personalized medicine. Furthermore, the cytochrome 450-2C19 (CYP2C19) is a key metabolic enzyme encoded by a polymorphic gene commonly associated with diminished metabolism and variable clinical responses to several drugs in an ethnicity-dependent fashion. Therefore, validation of these clinical procedures as well as knowledge of the ethnic-specific incidences of these gene variants is prerequisite for determining their clinical relevance in any given population. METHODS We determined the distribution of familiar CYP2C19 variants by the DMET Plus chip in 600 candidates and replicated the findings by the Affymetrix Axiom Genome-Wide Asian Structure Identification Array in 5413 individuals, all Saudis of ethic Arab origin. We then tested the robustness of employing the Luminex xMAP system clinically by comparing the results of genotyping 500 Saudi individuals visiting the Blood Bank of our institution with the findings of the two platforms. KEY FINDINGS The DMET Plus genotyping revealed that eight of the CYP2C19 variants showed some changes. Thereby, the CYP2C19*17 exhibited the highest minor allele frequency (MAF) of 0.256, followed by the CYP2C19_801 (frequency = 0.055). Six other variants, including the CYP2C19*3, showed MAF in the range of 0.001-0.002. We replicated the frequencies of the CYP2C19*17 and CYP2C19*3, and additionally established that of the CYP2C19*2 (0.099) using the Axiom platform. The xTag genotyping also indicated that 0.834 of the 500 Saudi individuals were extensive metabolizers (*1/*1), 0.158 carried the *1/*2 genotype, 0.01% carried *2/*2 (poor metabolizers) and one each (0.2%) harboured the *1/*8, *2/*3 (intermediate metabolizers) and *8/*8 (poor metabolizers) genotypes. CONCLUSIONS The results showed reproducible genotyping of the CYP2C19 variants in the Saudi Arab population using two Affymetrix platforms and phenotyping using the Luminex xTag assay. The prevalence of two clinically relevant genotypes (CYP2C19*2 and CYP2C19*3) were similar to other ethnic groups, while that of the CYP2C19*17 was comparably higher.
Collapse
Affiliation(s)
- Hamsa T Tayeb
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dana H Bakheet
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Zaza
- Faculty of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Salma M Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nduna Dzimiri
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Taylor MR, Sun AY, Davis G, Fiuzat M, Liggett SB, Bristow MR. Race, common genetic variation, and therapeutic response disparities in heart failure. JACC. HEART FAILURE 2014; 2:561-72. [PMID: 25443111 PMCID: PMC4302116 DOI: 10.1016/j.jchf.2014.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 12/19/2022]
Abstract
Because of its comparatively recent evolution, Homo sapiens exhibit relatively little within-species genomic diversity. However, because of genome size, a proportionately small amount of variation creates ample opportunities for both rare mutations that may cause disease as well as more common genetic variations that may be important in disease modification or pharmacogenetics. Primarily because of the East African origin of modern humans, individuals of African ancestry (AA) exhibit greater degrees of genetic diversity than more recently established populations, such as those of European ancestry (EA) or Asian ancestry. Those population effects extend to differences in frequency of common gene variants that may be important in heart failure natural history or therapy. For cell-signaling mechanisms important in heart failure, we review and present new data for genetic variation between AA and EA populations. Data indicate that: 1) neurohormonal signaling mechanisms frequently (16 of the 19 investigated polymorphisms) exhibit racial differences in the allele frequencies of variants comprising key constituents; 2) some of these differences in allele frequency may differentially affect the natural history of heart failure in AA compared with EA individuals; and 3) in many cases, these differences likely play a role in observed racial differences in drug or device response.
Collapse
Affiliation(s)
- Mathew R Taylor
- Section of Pharmacogenetics, University of Colorado Cardiovascular Institute, Aurora, Colorado
| | - Albert Y Sun
- Divisions of Cardiology and Clinical Pharmacology, Duke University Medical Center, Durham, North Carolina
| | | | - Mona Fiuzat
- Divisions of Cardiology and Clinical Pharmacology, Duke University Medical Center, Durham, North Carolina
| | - Stephen B Liggett
- Center for Personalized Medicine and Genomics, University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Michael R Bristow
- Section of Pharmacogenetics, University of Colorado Cardiovascular Institute, Aurora, Colorado; ARCA biopharma, Westminster, Colorado.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Novel medical approaches and personalized medicine seek to use genetic information to 'individualize' and improve diagnosis, prevention, and therapy. The personalized management of cardiovascular disease involves a large spectrum of potential applications, from diagnostics of monogenic disorders, to prevention and management strategies based on modifier genes, to pharmacogenetics, in which individual genetic information is used to optimize the pharmacological treatments. RECENT FINDINGS Evidence suggests that the common polymorphic variants of modifier genes could influence drug response in cardiovascular disease in a variety of areas, including heart failure, arrhythmias, dyslipidemia, and hypertension. In heart failure, common genetic variants of β-adrenergic receptors, α-adrenergic receptors, and endothelin receptors (among others) have been associated with variable response to heart failure therapies. The challenge remains to develop strategies to leverage this information in ways that personalize and optimize cardiovascular therapy based on a patient's genetic profile. SUMMARY Although advances in technologies will continue to transition personalized medicine from the research to the clinical setting, healthcare providers will need to reshape the clinical diagnostic paradigms. Ultimately, pharmacogenetics will give providers the options for improving patient management on the basis of pharmacogenetic data.
Collapse
Affiliation(s)
- Luisa Mestroni
- University of Colorado Cardiovascular Institute and Adult Medical Genetics Program, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
13
|
Liu LCY, Voors AA, Valente MAE, van der Meer P. A novel approach to drug development in heart failure: towards personalized medicine. Can J Cardiol 2013; 30:288-95. [PMID: 24565253 DOI: 10.1016/j.cjca.2013.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 12/31/2022] Open
Abstract
Evidence-based treatment has succeeded in improving clinical outcomes in heart failure. Nevertheless, morbidity, mortality, and the economic burden associated with the syndrome remain unsatisfactorily high. Most landmark heart failure studies included broad study populations, and thus current recommendations dictate standardized, universal therapy. While most patients included in recent trials benefit from this background treatment, exceeding this already significant gain has proven to be a challenge. The early identification of responders and nonresponders to treatment could result in improved therapeutic effectiveness, while reduction of unnecessary exposure may limit harmful and unpleasant side effects. In this review, we examine the potential value of currently available information on differential responses to heart failure therapy-a first step toward personalized medicine in the management of heart failure.
Collapse
Affiliation(s)
- Licette C Y Liu
- Department of Cardiology, University of Groningen, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, Groningen, The Netherlands.
| | - Mattia A E Valente
- Department of Cardiology, University of Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Filigheddu F. Genetic prediction of heart failure incidence, prognosis and beta-blocker response. Mol Diagn Ther 2013; 17:205-19. [PMID: 23592012 DOI: 10.1007/s40291-013-0035-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heart failure (HF) is a widespread syndrome due to left ventricular dysfunction with high mortality, morbidity and health-care costs. Beta-blockers, together with diuretics and ACE-inhibitors or angiotensin receptor blockers, are a cornerstone of HF therapy, as they reduce mortality and morbidity. Nevertheless, their efficacy varies among patients, and genetics is likely to be one of the modifying factors. In this article, literature on the role of candidate genes on the development of HF, its prognosis and pharmacogenomics of β-blockers in patients with HF is reviewed. The available findings do not support, at the present time, a role for genetic tests in the treatment of HF. More large-scale genome-wide studies with adequate methodology and statistical analysis are required before considering genetic tailoring of HF therapy in patients with systolic HF.
Collapse
Affiliation(s)
- Fabiana Filigheddu
- Department of Clinical and Experimental Medicine, University of Sassari, Viale S.Pietro 8, 07100 Sassari, Italy.
| |
Collapse
|
15
|
Bristow MR. Pharmacogenetic targeting of drugs for heart failure. Pharmacol Ther 2012; 134:107-15. [DOI: 10.1016/j.pharmthera.2012.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
|
16
|
Abstract
The individual patient responses to chronic heart failure (HF) pharmacotherapies are highly variable. This variability cannot be entirely explained by clinical characteristics, and genetic variation may play a role. Therefore, this review will summarize the background pharmacogenetic literature for major HF pharmacotherapy classes (ie, β-blockers, angiotensin-converting enzyme inhibitors, digoxin, and loop diuretics), evaluate recent advances in the HF pharmacogenetic literature in the context of previous findings, and discuss the challenges and conclusions for HF pharmacogenetic data and its clinical application.
Collapse
Affiliation(s)
- Jasmine A. Talameh
- University of North Carolina at Chapel Hill, UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Institute for Pharmacogenomics and Individualized Therapy, 120 Mason Farm Road Campus Box #7361 Chapel Hill, NC 27599, Phone: 919-966-5904, Fax: 919-966-5863,
| | - David Lanfear
- Senior Staff, Advanced Heart Failure and Cardiac Transplantation, Research Scientist, Center for Health Services Research, Assistant Professor, Wayne State University, Henry Ford Hospital, 2799 W. Grand Boulevard Detroit, MI 48202, Phone: 313-916-6375, Fax: 313-916-8799,
| |
Collapse
|
17
|
Talameh JA, McLeod HL, Adams KF, Patterson JH. Genetic tailoring of pharmacotherapy in heart failure: optimize the old, while we wait for something new. J Card Fail 2012; 18:338-49. [PMID: 22464776 DOI: 10.1016/j.cardfail.2012.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 12/20/2011] [Accepted: 01/03/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND The combination of angiotensin-converting enzyme (ACE) inhibitors and beta-adrenergic receptor blockers remains the essential component of heart failure (HF) pharmacotherapy. However, individual patient responses to these pharmacotherapies vary widely. The variability in response cannot be explained entirely by clinical characteristics, and genetic variation may play a role. The purpose of this review is to examine our current state of understanding of beta-blocker and ACE inhibitor pharmacogenetics in HF. METHODS AND RESULTS Beta-blocker and ACE inhibitor pharmacogenetic studies performed in patients with HF were identified from the Pubmed database from 1966 to July 2011. Thirty beta-blocker and 10 ACE inhibitor pharmacogenetic studies in patients with HF were identified. The ACE deletion variant was associated with greater survival benefit from ACE inhibitors and beta-blockers compared with the ACE insertion. Ser49 in the beta-1 adrenergic receptor, the insertion in the alpha-2C adrenergic receptor, and Gln41 in G-protein-coupled receptor kinase 5 are associated with greater survival benefit from beta-blockers, compared with Gly49, the deletion, and Leu41, respectively. However, many of these associations have not been validated. CONCLUSIONS The HF pharmacogenetic literature is still in its very early stages, but there are promising candidate genetic variants that may identify which HF patients are most likely to benefit from beta-blockers and ACE inhibitors and patients that may require additional therapies.
Collapse
Affiliation(s)
- Jasmine A Talameh
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, USA
| | | | | | | |
Collapse
|
18
|
Mitchell JE, Ferdinand KC, Watson KE, Wenger NK, Watkins LO, Flack JM, Gavin JR, Reed JW, Saunders E, Wright JT. Treatment of Heart Failure in African Americans— A Call to Action. J Natl Med Assoc 2011; 103:86-98. [DOI: 10.1016/s0027-9684(15)30257-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Mestroni L, Merlo M, Taylor MRG, Camerini F, Sinagra G. Heart failure and personalized medicine. J Cardiovasc Med (Hagerstown) 2011; 12:6-12. [DOI: 10.2459/jcm.0b013e32833e8b0d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Vadapalli S, Rani HS, Sastry BKS, Nallari P. Endothelin-1 and endothelial nitric oxide polymorphisms in idiopathic pulmonary arterial hypertension. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2010; 1:208-213. [PMID: 21537392 PMCID: PMC3076769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 06/08/2010] [Indexed: 05/30/2023]
Abstract
Idiopathic Pulmonary arterial hypertension (IPAH) is a debilitating disease associated with very poor prognosis. The disease is characterised by endothelial dysfunction, smooth muscle proliferation and insitu thrombosis in the pulmonary artery, eventually leading to right ventricular failure. Two of the key endothelial mediators implicated in the pathogenesis of IPAH are endothelin-1 (EDN1) and nitric oxide (NO). EDN1 is a potent endogenous vasoconstrictor whereas NO is a vasodilator. In the present study screening of the EDN1 gene (EDN1) and NOS3 polymorphisms was taken up, to evaluate their association with IPAH. A significant association of EDN1 3A/4A polymorphism (+138 A; rs10478694) (OR-3.485; CI-1.254, 9.999; p=0.013) and EDN1 Lys198Asn polymorphism (G/T, rs5370) (OR-3.378, CI-1.104, 10.582; p=0.03) with IPAH was observed. Our results indicate that EDN1 polymorphisms in interaction with other genetic markers may play a significant role in individual's susceptibility to the disease and its clinical progression.
Collapse
Affiliation(s)
- Shivani Vadapalli
- Department of Genetics, Osmania UniversityHyderabad, A.P.,India - 500007
| | - H Surekha Rani
- Department of Genetics, Osmania UniversityHyderabad, A.P.,India - 500007
| | - BKS Sastry
- Department of Cardiology, CARE HospitalsNampally, Hyderabad, A.P.,India -500001
| | - Pratibha Nallari
- Department of Genetics, Osmania UniversityHyderabad, A.P.,India - 500007
| |
Collapse
|
21
|
Tang WHW. Biomarkers of risk stratification in congestive heart failure: North American view. Biomark Med 2010; 3:443-52. [PMID: 20477515 DOI: 10.2217/bmm.09.52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There is broad adoption of various cardiac and noncardiac biomarkers in clinical practices across North America for the diagnosis and management of heart failure. Like any clinical condition, there are several overall objectives in biomarker testing: to establish or refute a diagnosis of heart failure and/or cardiac dysfunction; to understand the underlying pathophysiologic processes that may warrant specific interventions; to determine the level of disease severity in a manner to triage medical decisions; to detect and potentially avoid adverse consequences as a result of therapeutic interventions; and to monitor responses to treatment. While at present no single biomarker can serve all of these objectives, the growing experience with cardiac-specific biomarkers, such as natriuretic peptide and cardiac troponin testing, has allowed clinicians to better identify those at heightened short- or long-term risk. It is clear that difficulty remains in translating research evidence into clinical practice. While studies demonstrate statistical differences in short- and long-term outcomes, there is still limited information on how such improvements can be achieved solely based on current therapeutic options. Meanwhile, many commonly ordered tests have important prognostic information that can be overlooked, yet their changes may or may not affect prognosis. With healthcare cost on the rise in North America, clinical utility of biomarkers must demonstrate relative safety and potential incremental benefits to standard approaches.
Collapse
Affiliation(s)
- W H Wilson Tang
- Section of Heart Failure & Cardiac Transplantation Medicine, Department of Cardiovascular Medicine, Heart & Vascular Institute, The Cleveland Clinic, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH 44195, USA.
| |
Collapse
|
22
|
Lillvis JH, Lanfear DE. Progress toward genetic tailoring of heart failure therapy. CURRENT OPINION IN MOLECULAR THERAPEUTICS 2010; 12:294-304. [PMID: 20521218 PMCID: PMC3048822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Heart failure (HF) is a modern epidemic and a heterogeneous disorder with many therapeutic options. While the average response to each individual treatment is favorable, significant interindividual variation exists in the response to HF therapeutics. As a result, the optimal regimen for an individual patient or subgroup of patients is elusive, with current treatment being mainly empirical. Pharmacogenetic customization of HF therapy may provide an important opportunity to improve the treatment of HF. Common genetic variations exist in genes related to most classes of HF drugs, many of which have known functional consequences for or established relationships with drug response. This review summarizes the current understanding of the pharmacogenetics of HF therapeutics, including angiotensin-converting enzyme inhibitors and beta-blockers, and focuses on recent advances and medium-term expectations for the field.
Collapse
Affiliation(s)
- John H Lillvis
- Wayne State University, Center for Molecular Medicine and Genetics, 540 East Canfield, Detroit, MI 48201, USA
| | - David E Lanfear
- Henry Ford Hospital, Heart and Vascular Institute, Section of Advanced Heart Failure and Cardiac Transplantation, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| |
Collapse
|
23
|
|
24
|
Pharmacogenetics of the response to antihypertensive drugs. CURRENT CARDIOVASCULAR RISK REPORTS 2009. [DOI: 10.1007/s12170-009-0065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
de Boer RA, van der Harst P, van Veldhuisen DJ, van den Berg MP. Pharmacogenetics in heart failure: promises and challenges. Expert Opin Pharmacother 2009; 10:1713-25. [DOI: 10.1517/14656560903025171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|