1
|
Thomas D, Wu M, Nakauchi Y, Zheng M, Thompson-Peach CA, Lim K, Landberg N, Köhnke T, Robinson N, Kaur S, Kutyna M, Stafford M, Hiwase D, Reinisch A, Peltz G, Majeti R. Dysregulated Lipid Synthesis by Oncogenic IDH1 Mutation Is a Targetable Synthetic Lethal Vulnerability. Cancer Discov 2023; 13:496-515. [PMID: 36355448 PMCID: PMC9900324 DOI: 10.1158/2159-8290.cd-21-0218] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/18/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH) are mutated in multiple cancers and drive production of (R)-2-hydroxyglutarate (2HG). We identified a lipid synthesis enzyme [acetyl CoA carboxylase 1 (ACC1)] as a synthetic lethal target in mutant IDH1 (mIDH1), but not mIDH2, cancers. Here, we analyzed the metabolome of primary acute myeloid leukemia (AML) blasts and identified an mIDH1-specific reduction in fatty acids. mIDH1 also induced a switch to b-oxidation indicating reprogramming of metabolism toward a reliance on fatty acids. Compared with mIDH2, mIDH1 AML displayed depletion of NADPH with defective reductive carboxylation that was not rescued by the mIDH1-specific inhibitor ivosidenib. In xenograft models, a lipid-free diet markedly slowed the growth of mIDH1 AML, but not healthy CD34+ hematopoietic stem/progenitor cells or mIDH2 AML. Genetic and pharmacologic targeting of ACC1 resulted in the growth inhibition of mIDH1 cancers not reversible by ivosidenib. Critically, the pharmacologic targeting of ACC1 improved the sensitivity of mIDH1 AML to venetoclax. SIGNIFICANCE Oncogenic mutations in both IDH1 and IDH2 produce 2-hydroxyglutarate and are generally considered equivalent in terms of pathogenesis and targeting. Using comprehensive metabolomic analysis, we demonstrate unexpected metabolic differences in fatty acid metabolism between mutant IDH1 and IDH2 in patient samples with targetable metabolic interventions. See related commentary by Robinson and Levine, p. 266. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Daniel Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Manhong Wu
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Yusuke Nakauchi
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Ming Zheng
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Chloe A.L. Thompson-Peach
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kelly Lim
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Niklas Landberg
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, South Australia, Australia
| | - Satinder Kaur
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Monika Kutyna
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa Stafford
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Devendra Hiwase
- Adelaide Medical School, University of Adelaide, South Australia and Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andreas Reinisch
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
- Division of Hematology and Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Gary Peltz
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California
- Corresponding Author: Ravindra Majeti, Department of Medicine, Division of Hematology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA 94305. Phone: 650-721-6376; Fax: 650-736-2961; E-mail:
| |
Collapse
|
2
|
Choi IY, Kim SY, Chang JG, Song HR, Kim WJ, Lee SY, Kim HS, Hong M. Lethality-Associated Factors in Deliberate Self-Poisoning. Soa Chongsonyon Chongsin Uihak 2021; 32:17-27. [PMID: 33424238 PMCID: PMC7788670 DOI: 10.5765/jkacap.200034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 10/08/2020] [Indexed: 11/06/2022] Open
Abstract
Objectives Deliberate self-poisoning (DSP) is the most common suicide method and can be life-threatening. The purpose of this study was to investigate the factors related to the lethality of DSP and the characteristics of the adolescent group. Methods A retrospective study was conducted on patients who had visited an academic hospital’s regional emergency medical center between 2015 and 2018. The data reviewed through their medical records included sociodemographic factors, clinical variables, and psychiatric treatment. Four groups (Q1–Q4) were categorized by descriptive analysis using the risk-rescue rating scale. Results A total of 491 patients were enrolled in this study. This study showed that high lethality had statistically significant associa-tions with male sex, older age, admitting suicidal intentions, and the use of herbicides for suicide. Logistic regression analyses showed a significant association between high-lethality and female [odds ratio (OR)=0.50, 95% confidence interval (CI)=0.30–0.81, p=0.01], non-psychiatric drugs (over-the-counter drug: OR=2.49, 95% CI=1.08–5.74, p=0.03; herbicide: OR=8.65, 95% CI=3.91–19.13, p<0.01), and denial of suicide intent (OR=0.28, 95% CI=0.15–0.55, p<0.01). Conclusion This study showed the clinical factors associated with the high lethality of DSP and suggested that efforts were needed to care for and thoroughly examine patients with DSP.
Collapse
Affiliation(s)
- In Young Choi
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jhin Goo Chang
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Hoo Rim Song
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Woo Jung Kim
- Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Youngin, Korea
| | - Su Young Lee
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Hyun-Soo Kim
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Minha Hong
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| |
Collapse
|
3
|
Smith JD, Suresh S, Schlecht U, Wu M, Wagih O, Peltz G, Davis RW, Steinmetz LM, Parts L, St Onge RP. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol 2016; 17:45. [PMID: 26956608 PMCID: PMC4784398 DOI: 10.1186/s13059-016-0900-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/12/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Genome-scale CRISPR interference (CRISPRi) has been used in human cell lines; however, the features of effective guide RNAs (gRNAs) in different organisms have not been well characterized. Here, we define rules that determine gRNA effectiveness for transcriptional repression in Saccharomyces cerevisiae. RESULTS We create an inducible single plasmid CRISPRi system for gene repression in yeast, and use it to analyze fitness effects of gRNAs under 18 small molecule treatments. Our approach correctly identifies previously described chemical-genetic interactions, as well as a new mechanism of suppressing fluconazole toxicity by repression of the ERG25 gene. Assessment of multiple target loci across treatments using gRNA libraries allows us to determine generalizable features associated with gRNA efficacy. Guides that target regions with low nucleosome occupancy and high chromatin accessibility are clearly more effective. We also find that the best region to target gRNAs is between the transcription start site (TSS) and 200 bp upstream of the TSS. Finally, unlike nuclease-proficient Cas9 in human cells, the specificity of truncated gRNAs (18 nt of complementarity to the target) is not clearly superior to full-length gRNAs (20 nt of complementarity), as truncated gRNAs are generally less potent against both mismatched and perfectly matched targets. CONCLUSIONS Our results establish a powerful functional and chemical genomics screening method and provide guidelines for designing effective gRNAs, which consider chromatin state and position relative to the target gene TSS. These findings will enable effective library design and genome-wide programmable gene repression in many genetic backgrounds.
Collapse
Affiliation(s)
- Justin D Smith
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Sundari Suresh
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
| | - Ulrich Schlecht
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
| | - Manhong Wu
- Department of Anesthesia, Stanford University School of Medicine, Stanford University, Stanford, California, 94305, USA
| | - Omar Wagih
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Genome Campus, Hinxton, CB101SD, UK
| | - Gary Peltz
- Department of Anesthesia, Stanford University School of Medicine, Stanford University, Stanford, California, 94305, USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117, Heidelberg, Germany
| | - Leopold Parts
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117, Heidelberg, Germany.
- Current address: Wellcome Trust Sanger Institute, Hinxton, CB101SA, UK.
| | - Robert P St Onge
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
5
|
Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Weerasinghe D, Zhang P, Karp PD. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 2014; 42:D459-71. [PMID: 24225315 PMCID: PMC3964957 DOI: 10.1093/nar/gkt1103] [Citation(s) in RCA: 829] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/19/2013] [Indexed: 12/20/2022] Open
Abstract
The MetaCyc database (MetaCyc.org) is a comprehensive and freely accessible database describing metabolic pathways and enzymes from all domains of life. MetaCyc pathways are experimentally determined, mostly small-molecule metabolic pathways and are curated from the primary scientific literature. MetaCyc contains >2100 pathways derived from >37,000 publications, and is the largest curated collection of metabolic pathways currently available. BioCyc (BioCyc.org) is a collection of >3000 organism-specific Pathway/Genome Databases (PGDBs), each containing the full genome and predicted metabolic network of one organism, including metabolites, enzymes, reactions, metabolic pathways, predicted operons, transport systems and pathway-hole fillers. Additions to BioCyc over the past 2 years include YeastCyc, a PGDB for Saccharomyces cerevisiae, and 891 new genomes from the Human Microbiome Project. The BioCyc Web site offers a variety of tools for querying and analysis of PGDBs, including Omics Viewers and tools for comparative analysis. New developments include atom mappings in reactions, a new representation of glycan degradation pathways, improved compound structure display, better coverage of enzyme kinetic data, enhancements of the Web Groups functionality, improvements to the Omics viewers, a new representation of the Enzyme Commission system and, for the desktop version of the software, the ability to save display states.
Collapse
Affiliation(s)
- Ron Caspi
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Tomer Altman
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Richard Billington
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Kate Dreher
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Hartmut Foerster
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Carol A. Fulcher
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Timothy A. Holland
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Ingrid M. Keseler
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Anamika Kothari
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Aya Kubo
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Markus Krummenacker
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Mario Latendresse
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Lukas A. Mueller
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Quang Ong
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Suzanne Paley
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Pallavi Subhraveti
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Daniel S. Weaver
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Deepika Weerasinghe
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Peifen Zhang
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Peter D. Karp
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| |
Collapse
|