1
|
Cornely OA, Dupont H, Mikulska M, Rautemaa-Richardson R, Garcia-Vidal C, Thompson GR, Hoenigl M. Rezafungin in special populations with candidaemia and/or invasive candidiasis. J Infect 2025; 90:106435. [PMID: 39921063 DOI: 10.1016/j.jinf.2025.106435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Achieving and maintaining therapeutic drug exposures with antifungals can be challenging in special patient populations, such as those with organ dysfunction (liver or kidney) or obesity, or elderly patients, due to dose-exposure relationships and potential drug-drug interactions. Dose adjustments may be needed in these populations to maintain therapeutic efficacy and/or prevent toxicity. We reviewed specific dosing considerations for antifungals in special populations with candidaemia and/or invasive candidiasis, focusing on those relating to echinocandins (based on prescribing information), and then explored the utility of the second-generation echinocandin rezafungin in treating these populations (based on currently available data identified from a PubMed and congress abstract search). Available data showed that echinocandins may sometimes require dosing modifications for special populations with candidaemia/invasive candidiasis, primarily due to decreases in pharmacokinetic exposures. Rezafungin appears to be suitable for use in a variety of special populations without the need for dose modifications based on available data, including patients with organ dysfunction or obesity, and elderly and critically ill patients. Further research is needed in populations where rezafungin data are not available including children, people living with HIV, patients receiving extracorporeal membrane oxygenation and those with underlying neurological conditions.
Collapse
Affiliation(s)
- Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| | - Hervé Dupont
- Department of Anaesthesiology and Critical Care Medicine, Amiens-Picardie University Hospital, Amiens, France
| | - Malgorzata Mikulska
- Department of Health Sciences, University of Genova, Genoa, Italy; Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester and Department of Infectious Diseases, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Carolina Garcia-Vidal
- Infectious Diseases Department, Hospital Clínic de Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Excellence Center for Medical Mycology (ECMM), Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
2
|
Abdul-Aziz MH, Diehl A, Liu X, Cheng V, Corley A, Gilder E, Levkovich B, McGuinness S, Ordonez J, Parke R, Pellegrino V, Wallis SC, Fraser JF, Shekar K, Roberts JA. Population pharmacokinetics of caspofungin in critically ill patients receiving extracorporeal membrane oxygenation-an ASAP ECMO study. Antimicrob Agents Chemother 2025; 69:e0143524. [PMID: 39692515 PMCID: PMC11823646 DOI: 10.1128/aac.01435-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/17/2024] [Indexed: 12/19/2024] Open
Abstract
This study aimed to describe the population pharmacokinetics of caspofungin in critically ill patients receiving extracorporeal membrane oxygenation (ECMO) and to identify dosing regimens with a high likelihood of achieving effective exposures. Serial blood samples were collected over a single-dosing interval during ECMO. Total plasma concentrations were measured by a validated chromatographic assay. A population pharmacokinetic model was built and Monte Carlo dosing simulations were performed using Monolix. The probability of target attainment (PTA) and fractional target attainment (FTA) rates were simulated for various caspofungin dosing regimens against Candida albicans, Candida glabrata, and Candida parapsilosis. In all, 64 plasma concentration-time points were obtained from 8 critically ill patients receiving ECMO. Plasma concentration-time data for caspofungin were best described by a one-compartment model with first-order elimination. Lean body weight was identified as a significant covariate of volume of distribution. The typical volume of distribution and clearance of caspofungin in this cohort were 8.13 L and 0.55 L/h, respectively. The licensed caspofungin dosing regimen (a loading dose of 70 mg on day 1 followed by a maintenance dose of either 50 mg/day or 70 mg/day) demonstrated optimal PTA rates (≥90%) against C. albicans with an MIC of ≤0.064 mg/L, C. glabrata with an MIC of ≤0.125 mg/L, and C. parapsilosis with an MIC of ≤0.064 mg/L. The FTA analysis suggested that the licensed dosing regimen is only optimal (≥95%) against Candida glabrata, regardless of lean body weight. A higher-than-standard empirical dosing regimen (e.g., a loading dose of 100 mg on day 1, followed by a maintenance dose of 100 mg daily) is likely advantageous for critically ill patients receiving ECMO.
Collapse
Affiliation(s)
- Mohd H. Abdul-Aziz
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| | - Arne Diehl
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Xin Liu
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Vesa Cheng
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda Corley
- Critical Care Research Group and Adult Intensive Care Services, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Eileen Gilder
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Bianca Levkovich
- Experiential Development and Graduate Education and Centre for Medicines Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Shay McGuinness
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Jenny Ordonez
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Rachael Parke
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
- School of Nursing, The University of Auckland, Auckland, New Zealand
| | - Vincent Pellegrino
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Steven C. Wallis
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - John F. Fraser
- Critical Care Research Group and Adult Intensive Care Services, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Kiran Shekar
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Jason A. Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Queensland, Australia
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Albanell-Fernández M. Echinocandins Pharmacokinetics: A Comprehensive Review of Micafungin, Caspofungin, Anidulafungin, and Rezafungin Population Pharmacokinetic Models and Dose Optimization in Special Populations. Clin Pharmacokinet 2025; 64:27-52. [PMID: 39707078 PMCID: PMC11762474 DOI: 10.1007/s40262-024-01461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/23/2024]
Abstract
In recent years, many population pharmacokinetic (popPK) models have been developed for echinocandins to better understand the pharmacokinetics (PK) of these antifungals. This comprehensive review aimed to summarize popPK models of echinocandins (micafungin, caspofungin, anidulafungin, and rezafungin), by focusing on dosage optimization to maximize the probability of attaining the PK/PD target proposed in special populations. A search in PubMed, Embase, Web of Science, and Scopus, supplemented by the bibliography of relevant articles, was conducted from inception to March 2024, including both observational and prospective trials. A total of 1126 articles were identified, 47 of them were included in the review (22 for micafungin, 13 for caspofungin, 9 for anidulafungin, and 3 for rezafungin). A two-compartment model was more frequently used to describe the PK parameters of echinocandin (78.7% of developed models), although more complex structural models with three and four compartments have also been developed. The covariates to estimate the PK parameters such as clearance (CL) and volume of distribution (Vd) differed between models. Weight total (WT) was the most frequently reported to be a significant predictor for both parameters, especially for estimating the CL in pediatrics. The PD parameter most widely reported assessing the drug exposure-efficacy relationship was the area under the concentration-time curve to minimum inhibitory concentration (MIC) ratio (AUC0-24/MIC) with different targets proposed for each echinocandin. In certain populations such as patients that are critically ill, obese, receiving extracorporeal membrane oxygenation (ECMO) and/or continuous renal replacement therapy (CRRT), or pediatric patients and/or patients with cancer or that are immunocompromised, the fixed dosing strategies recommended in the drug prescribing information may not reach the PK/PD target. For these populations, different strategies have been proposed, such as a dosing regimen based on body weight or increasing the loading and/or maintenance dose. Despite echinocandins' favorable safety profile and predictable PK, certain groups at risk of suboptimal drug exposure can benefit from therapeutic drug monitoring (TDM) to prevent clinical failures. Numerous popPK models of echinocandins have been developed. However, an external validation of the suggested dosing regimens in conjunction with an analysis of population subgroups should be conducted before implementing a popPK model in clinical practice.
Collapse
Affiliation(s)
- Marta Albanell-Fernández
- Pharmacy Service, Division of Medicines, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain.
- Department of Physiological Science, School of Medicine, L'Hospitalet de Llobregat, Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
4
|
García-Díaz HC, Sánchez-Sancho P, Lalueza-Broto P, Nuvials X, Gorgas Torner MQ, Doménech Moral L. [Translated article] Drug dosing in obese critically ill patients, a literature review. FARMACIA HOSPITALARIA 2024:S1130-6343(24)00191-0. [PMID: 39734111 DOI: 10.1016/j.farma.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 09/05/2024] [Indexed: 12/31/2024] Open
Abstract
INTRODUCTION Obesity constitutes a global public health problem, and knowledge about drug dosing in obese patients is limited. Clinical trials in critically ill patients rarely include obese individuals, resulting in a lack of specific dosing information in product data sheets. The aim of this literature review is to provide clinicians with efficient and safe guidelines for this group of patients. METHODS A multidisciplinary group composed of pharmacists specialised in hospital pharmacy and physicians specialised in intensive care medicine was formed. The therapeutic groups and, in depth, the most commonly used active ingredients in the intensive care unit were identified and reviewed. The bibliographic review was carried out using terms such as: "obese", "overweight", "critical illness", "drug dosification", and "therapeutic dose monitoring". All the information was evaluated by the working group, which reached a consensus on dosing recommendations for each drug in obese critically ill patients. RESULTS Eighty three drugs belonging to the following therapeutic groups were identified: antivirals, antibacterials, antifungals, immunosuppressants, antiepileptics, vasopressors, anticoagulants, neuromuscular blocking agents, and sedatives. A table with the consensus dosing recommendation for each of these was produced after review. CONCLUSIONS Drug dosing in obese patients, both in critical and non-critical settings, remains an area with significant uncertainties. This review provides updated and exhaustive information on the dosing of the main therapeutic groups in obese critically ill patients, and is a useful tool for both physicians in critical care units and clinical pharmacists in their practice in this setting.
Collapse
Affiliation(s)
| | | | | | - Xavier Nuvials
- Servicio de Medicina Intensiva, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | |
Collapse
|
5
|
Hussain A, Wang Y, Mo E, Khan MN, Zhang Q, Li L, Zhu J, Zhu M. Epidemiology and Antifungal Susceptibilities of Clinically Isolated Aspergillus Species in Tertiary Hospital of Southeast China. Infect Drug Resist 2024; 17:5451-5462. [PMID: 39669311 PMCID: PMC11636293 DOI: 10.2147/idr.s495250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
Background and Aim Infection caused by Aspergillus species poses a growing global concern, yet their prevalence in Southeast China lacks comprehensive documentation. This retrospective analysis aims to elucidate the epidemiological role and antifungal susceptibilities of Aspergillus species at Huashan Hospital of Fudan University, Shanghai, China. Methods Data spanning from 2018 to 2022, encompassing demographic, clinical, and laboratory information on Aspergillus species isolates were analyzed. The isolates were subjected to susceptibility testing using YeastOneTM broth microdilution system. Results A total of 253 Aspergillus isolates were identified, with A. fumigatus (57.71%) being the predominant species, followed by A. niger (26.88%), A. flavus (10.67%), and A. terreus (3.95%). Notably, the highest number of isolates originated from the Department of Infectious Disease (28.06%), with sputum (54.94%) being the primary source of isolation, where A. fumigatus was the dominant species. Gastrointestinal disorder (23.90%), hepatic disorder (9.09%), and diabetes (8.30%) were identified as the most prevalent underlying conditions, with A. fumigatus being the most abundant species in each case, accounting for 65.08%, 82.60%, and 73.91%, respectively, followed by A. flavus. Non-wild-type (NWT) Aspergillus isolates exhibited higher resistance against amphotericin B (AMB) compared to triazoles. Specifically, A. fumigatus showed greater resistance to AMB, with only 23.28% of isolates being susceptible, while the majority of isolates were susceptible to triazoles like itraconazole (ITR) and posaconazole (POS). POS demonstrated the highest efficacy against all species. Sequencing revealed mutations in the promoter region of the cyp51A gene and at positions Y121F and E247K in A, fumigatus which confer resistance to ITR, voriconazole (VRC), and POS. Conclusion These findings contribute to a better understanding of the epidemiology and antifungal resistance pattern of Aspergillus species in the region, providing valuable insights for the management of Aspergillus-related infections.
Collapse
Affiliation(s)
- Arshad Hussain
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yijing Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Emily Mo
- Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Muhammad Nadeem Khan
- Department of Cell Biology & Genetics, Shantou University Medical College, Shantou, People’s Republic of China
| | - Qiangqiang Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Li Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Junhao Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Min Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Elkayal O, Hoffert Y, Mertens B, Van Daele R, Lagrou K, Wauters J, Spriet I, Dreesen E. Anidulafungin exposure and population pharmacokinetics in critically ill patients with invasive candidiasis. Infection 2024:10.1007/s15010-024-02448-x. [PMID: 39641856 DOI: 10.1007/s15010-024-02448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Anidulafungin is recommended as a first-line treatment for invasive Candida infections in critically ill patients. Pharmacokinetic (PK) variability is large in critically ill patients, potentially compromising pharmacokinetic-pharmacodynamic (PKPD) target attainment under standard dosing. We aimed to assess anidulafungin exposure, PKPD target attainment, and population (pop)PK in critically ill patients. METHODS Adult ICU patients receiving standard anidulafungin dosing [200 mg on day 1, then 100 mg daily] were included (NCT04045366). We performed rich blood sampling on an early (day 2 ± 1) and/or late (day 5 ± 1) treatment day. Using total anidulafungin plasma concentrations, we developed a popPK model (NONMEM7.5) and conducted Monte Carlo simulations (n = 1,000 per virtual patient) to evaluate the impact of patient factors on PKPD target attainment (AUC24h target 83.5 mg×h/L). RESULTS Twenty patients contributed 188 anidulafungin concentrations. PKPD target attainment was 45% and 65% on early and late sampling days, respectively. A two-compartment popPK model with first-order elimination described the data. Anidulafungin clearance increased with bodyweight and central volume of distribution increased as serum albumin decreased. Both bodyweight and serum albumin had a clinically relevant impact on PKPD target attainment at day 1 (area under the ROC curve; AUROC 0.82 and 0.62, respectively), and bodyweight on PKPD target attainment at day 14 (AUROC 0.94). Standard anidulafungin dosing regimen fails to achieve adequate target attainment throughout the treatment period. CONCLUSION Standard anidulafungin dosing is insufficient for achieving adequate exposure in critically ill patients. An interactive simulation tool is provided to aid dose-finding research and explore different dosing strategies and targets.
Collapse
Affiliation(s)
- Omar Elkayal
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Yannick Hoffert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Beatrijs Mertens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, UZ Leuven, Leuven, Belgium
| | - Ruth Van Daele
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, UZ Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- National Reference Center for Mycosis, UZ Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, UZ Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, UZ Leuven, Leuven, Belgium
| | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
García-Díaz HC, Sánchez-Sancho P, Lalueza-Broto P, Nuvials X, Gorgas-Torner MQ, Doménech-Moral L. Drug dosing in obese critically ill patients, a literature review. FARMACIA HOSPITALARIA 2024:S1130-6343(24)00150-8. [PMID: 39419675 DOI: 10.1016/j.farma.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION The prevalence of obesity represents a significant global public health challenge, and the available evidence concerning the appropriate dosing of pharmaceutical in patients with obesity is limited. It is uncommon for clinical trials in critically ill patients to include obese individuals, which results in a lack of specific dosing information in product data sheets. The objective of this literature review is to provide clinicians with efficacious and secure guidelines for this cohort of patients. METHODS A multidisciplinary team comprising pharmacists specialized in hospital pharmacy and physicians with expertise in intensive care medicine was established. The therapeutic groups and, in particular, the most commonly used active ingredients within the Intensive Care Unit were identified and subjected to detailed analysis. The following terms were included in the search: "obese", "overweight", "critical illness", "drug dosification", and "therapeutic dose monitoring". All the information was then evaluated by the working group, which reached a consensus on the dosing recommendations for each drug in obese critically ill patients. RESULTS A total of 83 drugs belonging to the following therapeutic groups were identified: antivirals, antibacterials, antifungals, immunosuppressants, antiepileptics, vasopressors, anticoagulants, neuromuscular blocking agents and sedatives. A table was produced containing the consensus dosing recommendations for each of the aforementioned drugs following a review of the available evidence. CONCLUSIONS Drug dosing in obese patients, both in critical and noncritical settings, remains an area with significant uncertainty. This review provides comprehensive and up-to-date information on the dosing of the main therapeutic groups in obese critically ill patients, offering a valuable resource physicians in critical care units and clinical pharmacists in their practice in this setting.
Collapse
Affiliation(s)
| | | | - Pilar Lalueza-Broto
- Servicio de Farmacia, Hospital Universitari Vall d'Hebron, Barcelona, España
| | - Xavier Nuvials
- Servicio de Medicina Intensiva, Hospital Universitari Vall d'Hebron, Barcelona, España
| | | | | |
Collapse
|
8
|
Kriegl L, Hatzl S, Schilcher G, Zollner-Schwetz I, Boyer J, Geiger C, Hoenigl M, Krause R. Antifungals in Patients With Extracorporeal Membrane Oxygenation: Clinical Implications. Open Forum Infect Dis 2024; 11:ofae270. [PMID: 38887481 PMCID: PMC11181180 DOI: 10.1093/ofid/ofae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/05/2024] [Indexed: 06/20/2024] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-saving technique used in critical care medicine for patients with severe respiratory or cardiac failure. This review examines the treatment and prophylaxis of fungal infections in ECMO patients, proposing specific regimens based on available data for different antifungals (azoles, echinocandins, amphotericin B/liposomal amphotericin B) and invasive fungal infections. Currently, isavuconazole and posaconazole have the most supported data, while modified dosages of isavuconazole are recommended in ECMO. Echinocandins are preferred for invasive candidiasis. However, choosing echinocandins is challenging due to limited and varied data on concentration loss in the ECMO circuit. Caution is likewise advised when using liposomal amphotericin B due to uncertain concentrations and potential ECMO dysfunction based on scarce data. We further conclude with the importance of further research on the impact of ECMO on antifungal drug concentrations to optimize dosing regimens in critically ill patients.
Collapse
Affiliation(s)
- Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Stefan Hatzl
- BioTechMed-Graz, Graz, Austria
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Ines Zollner-Schwetz
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Christina Geiger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
9
|
Boyer J, Hoenigl M, Kriegl L. Therapeutic drug monitoring of antifungal therapies: do we really need it and what are the best practices? Expert Rev Clin Pharmacol 2024; 17:309-321. [PMID: 38379525 DOI: 10.1080/17512433.2024.2317293] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Despite advancements, invasive fungal infections (IFI) still carry high mortality rates, often exceeding 30%. The challenges in diagnosis, coupled with limited effective antifungal options, make managing IFIs complex. Antifungal drugs are essential for IFI management, but their efficacy can be diminished by drug-drug interactions and pharmacokinetic variability. Therapeutic Drug Monitoring (TDM), especially in the context of triazole use, has emerged as a valuable strategy to optimize antifungal therapy. AREAS COVERED This review provides current evidence regarding the potential benefits of TDM in IFI management. It discusses how TDM can enhance treatment response, safety, and address altered pharmacokinetics in specific patient populations. EXPERT OPINION TDM plays a crucial role in achieving optimal therapeutic outcomes in IFI management, particularly for certain antifungal agents. Preclinical studies consistently show a link between therapeutic drug levels and antifungal efficacy. However, clinical research in mycology faces challenges due to patient heterogeneity and the diversity of fungal infections. TDM's potential advantages in guiding Echinocandin therapy for critically ill patients warrant further investigation. Additionally, for drugs like Posaconazole, assessing whether serum levels or alternative markers like saliva offer the best measure of efficacy is an intriguing question.
Collapse
Affiliation(s)
- Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
- Translational Mycology Working Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
10
|
Kamatham S, Seeralan M, Sekar U, Kuppusamy S. Development and Validation of UFLC-MS/MS Analytical Method for the Simultaneous Quantification of Antibiotic Residues in Surface Water, Groundwater, and Pharmaceutical Waste Water Samples from South India. ACS OMEGA 2024; 9:12801-12809. [PMID: 38524455 PMCID: PMC10956121 DOI: 10.1021/acsomega.3c08566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Antibiotic residues in pharmaceutical wastewater pose a significant environmental concern due to their potential role in fostering antimicrobial resistance. South Indian pharmaceutical companies produce a wide range of antibiotics. As a result, the industries that discharge water may include antibiotic residues, which could be harmful to the environment. In this study, a novel, quick, accurate, and sensitive approach for the simultaneous detection of 11 antibiotics was established, and triple quadrupole mass spectrometry, ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS), and selective solid-phase extraction (SPE) were used for validation. Utilizing a mixed mode reversed-phase/cation-exchange cartridge (SPE using Strata X, 33 μm), the single-cartridge extraction procedure was performed and validated. Relative standard deviations for most of the antibiotics ranged from 3.5 to 0.56 with recoveries ranging from 57 to 85%. The samples were injected into the UFLC-MS/MS apparatus at a volume of 10 μL for analysis. The auto sampler cooler temperature was kept at 150 °C, while the column temperature was kept at 40 °C. After validation, the technique was determined to be linear in the range of 2.0-1000.0 ng/mL. The retention period for antibiotics was between 1.2 and 1.5 min. Antibiotics transitions for multiple reaction monitoring| were between 235.1/105.9 and 711.5/467.9 m/z. The method of analysis took 2.5 min to run completely. Antibiotic residues were efficiently analyzed using the established analytical approach in pharmaceutical wastewater (influent and effluent), surface, and groundwater. Eleven antibiotics were found in the water samples during examination with concentrations ranging between 2.313 and 95.744 ng/L. The procedure was shown to be much more environmentally friendly than other contemporary methods based on the green analytical procedure index's evaluation of greenness. Blue applicability grade index tool indicated the developed method's practicality in comparison with that of other reported method.
Collapse
Affiliation(s)
- Sravani Kamatham
- Department
of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, (DU), Porur, Chennai 600116, India
| | - Manoharan Seeralan
- Vaccine
Research Centre—Bacterial Vaccine, Centre for Animal Health
Studies, TANUVAS, Madhavaram, Chennai 600051, India
| | - Uma Sekar
- Department
of Microbiology, SRMC & RI, Sri Ramachandra
Institute of Higher Education and Research, (DU), Porur, Chennai 600116, India
| | - Sujatha Kuppusamy
- Department
of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, (DU), Porur, Chennai 600116, India
- Department
of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and
Research, (DU), Porur, Chennai 600116, India
| |
Collapse
|
11
|
Chastain DB, White BP, Tu PJ, Chan S, Jackson BT, Kubbs KA, Bandali A, McDougal S, Henao-Martínez AF, Cluck DB. Candidemia in Adult Patients in the ICU: A Reappraisal of Susceptibility Testing and Antifungal Therapy. Ann Pharmacother 2024; 58:305-321. [PMID: 37272474 DOI: 10.1177/10600280231175201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
OBJECTIVE To provide updates on the epidemiology and recommendations for management of candidemia in patients with critical illness. DATA SOURCES A literature search using the PubMed database (inception to March 2023) was conducted using the search terms "invasive candidiasis," "candidemia," "critically ill," "azoles," "echinocandin," "antifungal agents," "rapid diagnostics," "antifungal susceptibility testing," "therapeutic drug monitoring," "antifungal dosing," "persistent candidemia," and "Candida biofilm." STUDY SELECTION/DATA EXTRACTION Clinical data were limited to those published in the English language. Ongoing trials were identified through ClinicalTrials.gov. DATA SYNTHESIS A total of 109 articles were reviewed including 25 pharmacokinetic/pharmacodynamic studies and 30 studies including patient data, 13 of which were randomized controlled clinical trials. The remaining 54 articles included fungal surveillance data, in vitro studies, review articles, and survey data. The current 2016 Infectious Diseases Society of America (IDSA) Clinical Practice Guideline for the Management of Candidiasis provides recommendations for selecting empiric and definitive antifungal therapies for candidemia, but data are limited regarding optimized dosing strategies in critically ill patients with dynamic pharmacokinetic changes or persistent candidemia complicated. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Outcomes due to candidemia remain poor despite improved diagnostic platforms, antifungal susceptibility testing, and antifungal therapy selection for candidemia in critically ill patients. Earlier detection and identification of the species causing candidemia combined with recognition of patient-specific factors leading to dosing discrepancies are crucial to improving outcomes in critically ill patients with candidemia. CONCLUSIONS Treatment of candidemia in critically ill patients must account for the incidence of non-albicans Candida species and trends in antifungal resistance as well as overcome the complex pathophysiologic changes to avoid suboptimal antifungal exposure.
Collapse
Affiliation(s)
- Daniel B Chastain
- Department of Clinical & Administrative Pharmacy, University of Georgia College of Pharmacy, Albany, GA, USA
| | - Bryan P White
- University of Oklahoma Health Medical Center, Oklahoma City, OK, USA
| | - Patrick J Tu
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Sophea Chan
- Department of Clinical & Administrative Pharmacy, University of Georgia College of Pharmacy, Albany, GA, USA
- Department of Pharmacy, Phoebe Putney Memorial Hospital, Albany, GA, USA
| | | | - Kara A Kubbs
- University of Oklahoma Health Medical Center, Oklahoma City, OK, USA
| | - Aiman Bandali
- Overlook Medical Center, Atlantic Health System, Summit, NJ, USA
| | | | - Andrés F Henao-Martínez
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David B Cluck
- Department of Pharmacy Practice, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
12
|
Novy E, Roger C, Roberts JA, Cotta MO. Pharmacokinetic and pharmacodynamic considerations for antifungal therapy optimisation in the treatment of intra-abdominal candidiasis. Crit Care 2023; 27:449. [PMID: 37981676 PMCID: PMC10659066 DOI: 10.1186/s13054-023-04742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Intra-abdominal candidiasis (IAC) is one of the most common of invasive candidiasis observed in critically ill patients. It is associated with high mortality, with up to 50% of deaths attributable to delays in source control and/or the introduction of antifungal therapy. Currently, there is no comprehensive guidance on optimising antifungal dosing in the treatment of IAC among the critically ill. However, this form of abdominal sepsis presents specific pharmacokinetic (PK) alterations and pharmacodynamic (PD) challenges that risk suboptimal antifungal exposure at the site of infection in critically ill patients. This review aims to describe the peculiarities of IAC from both PK and PD perspectives, advocating an individualized approach to antifungal dosing. Additionally, all current PK/PD studies relating to IAC are reviewed in terms of strength and limitations, so that core elements for the basis of future research can be provided.
Collapse
Affiliation(s)
- Emmanuel Novy
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia
- Department of Anaesthesiology, Critical Care and Peri-Operative Medicine, University Hospital of Nancy, Nancy, France
- Université de Lorraine, SIMPA, 54500, Nancy, France
| | - Claire Roger
- Department of Anesthesiology, Critical Care, Pain and Emergency Medicine, Nimes University Hospital, Place du Professeur Robert Debré, 30029, Nîmes Cedex 9, France
- UR UM103 IMAGINE, Univ Montpellier, Montpellier, France
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia.
- Department of Anesthesiology, Critical Care, Pain and Emergency Medicine, Nimes University Hospital, Place du Professeur Robert Debré, 30029, Nîmes Cedex 9, France.
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.
| | - Menino Osbert Cotta
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia
| |
Collapse
|
13
|
Hall, RG, Liu S, Putnam WC, Kallem R, Gumbo T, Pai MP. Optimizing anidulafungin exposure across a wide adult body size range. Antimicrob Agents Chemother 2023; 67:e0082023. [PMID: 37850741 PMCID: PMC10649049 DOI: 10.1128/aac.00820-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
Echinocandins like anidulafungin are first-line therapies for candidemia and invasive candidiasis, but their dosing may be suboptimal in obese patients. Our objective was to quantify anidulafungin exposure in a cohort of adults across a wide body size range to test if body size affects anidulafungin pharmacokinetics (PK). We enrolled 20 adults between the ages of 18 and 80 years, with an equal distribution of patients above and below a body mass index of 30 kg/m2. A single 100-mg dose of anidulafungin was administered, followed by intensive sampling over 72 h. Population PK analysis was used to identify and compare covariates of anidulafungin PK parameters. Monte Carlo simulations were performed to compute the probability of target attainment (PTA) based on alternative dosing regimens. Participants (45% males) had a median (range) age of 45 (21-78) years and a median (range) weight of 82.7 (42.4-208.3) kg. The observed median (range) of AUC0-∞ was 106.4 (51.9, 138.4) mg∙h/L. Lean body weight (LBW) and adjusted body weight (AdjBW) were more influential than weight as covariates of anidulafungin PK parameters. The conventional 100 mg daily maintenance is predicted to have a PTA below 90% in adults with an LBW > 55 kg or an AdjBW > 75 kg. A daily maintenance dose of 150-200 mg is predicted in these heavier adults. Anidulafungin AUC0-∞ declines with increasing body size. A higher maintenance dose will increase the PTA compared to the current approach in obese patients.
Collapse
Affiliation(s)
- Ronald G. Hall,
- Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas, USA
| | - Shuhan Liu
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - William C. Putnam
- Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas, USA
| | - Rajareddy Kallem
- Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas, USA
| | | | - Manjunath P. Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Maseda E, Martín-Loeches I, Zaragoza R, Pemán J, Fortún J, Grau S, Aguilar G, Varela M, Borges M, Giménez MJ, Rodríguez A. Critical appraisal beyond clinical guidelines for intraabdominal candidiasis. Crit Care 2023; 27:382. [PMID: 37789338 PMCID: PMC10546659 DOI: 10.1186/s13054-023-04673-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Regardless of the available antifungals, intraabdominal candidiasis (IAC) mortality continues to be high and represents a challenge for clinicians. MAIN BODY This opinion paper discusses alternative antifungal options for treating IAC. This clinical entity should be addressed separately from candidemia due to the peculiarity of the required penetration of antifungals into the peritoneal cavity. Intraabdominal concentrations may be further restricted in critically ill patients where pathophysiological facts alter normal drug distribution. Echinocandins are recommended as first-line treatment in guidelines for invasive candidiasis. However, considering published data, our pharmacodynamic analysis suggests the required increase of doses, postulated by some authors, to attain adequate pharmacokinetic (PK) levels in peritoneal fluid. Given the limited evidence in the literature on PK/PD-based treatments of IAC, an algorithm is proposed to guide antifungal treatment. Liposomal amphotericin B is advocated as first-line therapy in patients with sepsis/septic shock presenting candidemia or endophthalmitis, or with prior exposure to echinocandins and/or fluconazole, or with infections by Candida glabrata. Other situations and alternatives, such as new compounds or combination therapy, are also analysed. CONCLUSION There is a critical need for more robust clinical trials, studies examining patient heterogeneity and surveillance of antifungal resistance to enhance patient care and optimise treatment outcomes. Such evidence will help refine the existing guidelines and contribute to a more personalised and effective approach to treating this serious medical condition. Meanwhile, it is suggested to broaden the consideration of other options, such as liposomal amphotericin B, as first-line treatment until the results of the fungogram are available and antifungal stewardship could be implemented to prevent the development of resistance.
Collapse
Affiliation(s)
- Emilio Maseda
- Service of Anesthesia, Hospital Quirónsalud Valle del Henares, Av. de La Constitución, 249, 28850, Torrejón de Ardoz, Madrid, Spain.
| | - Ignacio Martín-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, James Street, Leinster, Dublin 8, D08 NHY1, Ireland.
- Pulmonary Intensive Care Unit, Respiratory Institute, Hospital Clinic of Barcelona, IDIBAPS (Institut d'Investigacions Biomèdiques August Pi I Sunyer), University of Barcelona, CIBERes, Barcelona, Spain.
| | | | - Javier Pemán
- Microbiology Department, Hospital Universitari I Politecnic La Fe, Valencia, Spain
- Fundación Micellium, La Eliana, Valencia, Spain
| | - Jesús Fortún
- Infectious Diseases Service, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Santiago Grau
- Service of Pharmacy, Hospital del Mar, Barcelona, Spain
| | - Gerardo Aguilar
- Service of Anesthesia, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Marina Varela
- Service of Anesthesia, Área Sanitaria de Pontevedra, Pontevedra, Spain
| | - Marcio Borges
- ICU, Hospital Universitario Son Llátzer, Palma, Spain
| | - María-José Giménez
- Faculty of Sports Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain
| | | |
Collapse
|
15
|
Yi ZM, Li X, Wang Z, Qin J, Jiang D, Tian P, Yang P, Zhao R. Status and Quality of Guidelines for Therapeutic Drug Monitoring Based on AGREE II Instrument. Clin Pharmacokinet 2023; 62:1201-1217. [PMID: 37490190 DOI: 10.1007/s40262-023-01283-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND With the progress of therapeutic drug monitoring (TDM) technology and the development of evidence-based medicine, many guidelines were developed and implemented in recent decades. OBJECTIVE The aim was to evaluate the current status of TDM guidelines and provide suggestions for their development and updates based on Appraisal of Guidelines for Research and Evaluation (AGREE) II. METHODS The TDM guidelines were systematically searched for among databases including PubMed, Embase, China National Knowledge Infrastructure, Wanfang Data, and the Chinese biomedical literature service system and the official websites of TDM-related associations. The search period was from inception to 6 April 2023. Four researchers independently screened the literature and extracted data. Any disagreement was discussed and reconciled by another researcher. The quality of guidelines was assessed using the AGREE II instrument. RESULTS A total of 92 guidelines were included, including 57 technical guidelines, three management guidelines, and 32 comprehensive guidelines. The number of TDM guidelines has gradually increased since 1979. The United States published the most guidelines (20 guidelines), followed by China (15 guidelines) and the United Kingdom (ten guidelines), and 23 guidelines were developed by international organizations. Most guidelines are aimed at adult patients only, while 28 guidelines include special populations. With respect to formulation methods, there are 23 evidence-based guidelines. As for quality evaluation results based on AGREE II, comprehensive guidelines scored higher (58.16%) than technical guidelines (51.36%) and administrative guidelines (50.00%). CONCLUSION The number of TDM guidelines, especially technical and comprehensive ones, has significantly increased in recent years. Most guidelines are confronted with the problems of unclear methodology and low quality of evidence according to AGREE II. More evidence-based research on TDM and high-quality guideline development is recommended to promote individualized therapy.
Collapse
Affiliation(s)
- Zhan-Miao Yi
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Xinya Li
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhitong Wang
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Jiguang Qin
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dan Jiang
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Panhui Tian
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ping Yang
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China.
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China.
| |
Collapse
|
16
|
Gorham J, Taccone FS, Hites M. Therapeutic Drug Monitoring of Antimicrobials in Critically Ill Obese Patients. Antibiotics (Basel) 2023; 12:1099. [PMID: 37508195 PMCID: PMC10376599 DOI: 10.3390/antibiotics12071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity is a significant global public health concern that is associated with an elevated risk of comorbidities as well as severe postoperative and nosocomial infections. The treatment of infections in critically ill obese patients can be challenging because obesity affects the pharmacokinetics and pharmacodynamics of antibiotics, leading to an increased risk of antibiotic therapy failure and toxicity due to inappropriate dosages. Precision dosing of antibiotics using therapeutic drug monitoring may help to improve the management of this patient population. This narrative review outlines the pharmacokinetic and pharmacodynamic changes that result from obesity and provides a comprehensive critical review of the current available data on dosage adjustment of antibiotics in critically ill obese patients.
Collapse
Affiliation(s)
- Julie Gorham
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (H.U.B), 1070 Brussels, Belgium
| | - Fabio S Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (H.U.B), 1070 Brussels, Belgium
| | - Maya Hites
- Clinic of Infectious Diseases, Hôpital Universitaire de Bruxelles (H.U.B), 1070 Brussels, Belgium
| |
Collapse
|
17
|
Carmo A, Rocha M, Pereirinha P, Tomé R, Costa E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics (Basel) 2023; 12:884. [PMID: 37237787 PMCID: PMC10215229 DOI: 10.3390/antibiotics12050884] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The use of antifungal drugs started in the 1950s with polyenes nystatin, natamycin and amphotericin B-deoxycholate (AmB). Until the present day, AmB has been considered to be a hallmark in the treatment of invasive systemic fungal infections. Nevertheless, the success and the use of AmB were associated with severe adverse effects which stimulated the development of new antifungal drugs such as azoles, pyrimidine antimetabolite, mitotic inhibitors, allylamines and echinochandins. However, all of these drugs presented one or more limitations associated with adverse reactions, administration route and more recently the development of resistance. To worsen this scenario, there has been an increase in fungal infections, especially in invasive systemic fungal infections that are particularly difficult to diagnose and treat. In 2022, the World Health Organization (WHO) published the first fungal priority pathogens list, alerting people to the increased incidence of invasive systemic fungal infections and to the associated risk of mortality/morbidity. The report also emphasized the need to rationally use existing drugs and develop new drugs. In this review, we performed an overview of the history of antifungals and their classification, mechanism of action, pharmacokinetic/pharmacodynamic (PK/PD) characteristics and clinical applications. In parallel, we also addressed the contribution of fungi biology and genetics to the development of resistance to antifungal drugs. Considering that drug effectiveness also depends on the mammalian host, we provide an overview on the roles of therapeutic drug monitoring and pharmacogenomics as means to improve the outcome, prevent/reduce antifungal toxicity and prevent the emergence of antifungal resistance. Finally, we present the new antifungals and their main characteristics.
Collapse
Affiliation(s)
- Anália Carmo
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Marilia Rocha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Patricia Pereirinha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Rui Tomé
- Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal;
| | - Eulália Costa
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| |
Collapse
|
18
|
Population Pharmacokinetic Model and Optimal Sampling Strategies for Micafungin in Critically Ill Patients Diagnosed with Invasive Candidiasis. Antimicrob Agents Chemother 2022; 66:e0111322. [PMID: 36377940 PMCID: PMC9765295 DOI: 10.1128/aac.01113-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Candida bloodstream infections are associated with high attributable mortality, where early initiation of adequate antifungal therapy is important to increase survival in critically ill patients. The exposure variability of micafungin, a first-line agent used for the treatment of invasive candidiasis, in critically ill patients is significant, potentially resulting in underexposure in a substantial portion of these patients. The objective of this study was to develop a population pharmacokinetic model including appropriate sampling strategies for assessing micafungin drug exposure in critically ill patients to support adequate area under the concentration-time curve (AUC) determination. A two-compartment pharmacokinetic model was developed using data from intensive care unit (ICU) patients (n = 19), with the following parameters: total body clearance (CL), volume of distribution of the central compartment (V1), inter-compartmental clearance (CL12), and volume of distribution of the peripheral compartment (V2). The final model was evaluated with bootstrap analysis and the goodness-of-fit plots for the population and individual predicted micafungin plasma concentrations. Optimal sampling strategies (with sampling every hour, 24 h per day) were developed with 1- and 2-point sampling schemes. Final model parameters (±SD) were: CL = 1.03 (0.37) (L/h/1.85 m2), V1 = 0.17 (0.07) (L/kg LBMc), CL12 = 1.80 (4.07) (L/h/1.85 m2), and V2 = 0.12 (0.06) (L/kg LBMc). Sampling strategies with acceptable accuracy and precision were developed to determine the micafungin AUC. The developed model with optimal sampling procedures provides the opportunity to achieve quick optimization of the micafungin exposure from a single blood sample using Bayesian software and may be helpful in guiding early dose decision-making.
Collapse
|
19
|
Yang Q, Zhang T, Zhang Y, Sun D, Zheng X, Du Q, Wang X, Cheng X, Xing J, Dong Y. The recommended dosage regimen for caspofungin in patients with higher body weight or hypoalbuminaemia will result in low exposure: Five years of data based on a population pharmacokinetic model and Monte-Carlo simulations. Front Pharmacol 2022; 13:993330. [PMID: 36408257 PMCID: PMC9669616 DOI: 10.3389/fphar.2022.993330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 01/04/2024] Open
Abstract
Background: To develop a population pharmacokinetic (PPK) model for caspofungin, identify parameters influencing caspofungin pharmacokinetics, and assess the required probability of target attainment (PTA) and cumulative fraction of response (CFR) for various dosing regimens of caspofungin in all patients and intensive care unit (ICU)-subgroup patients. Method: The general PPK model was developed based on data sets from all patients (299 patients). A ICU-subgroup PPK model based on data sets from 136 patients was then analyzed. The effects of demographics, clinical data, laboratory data, and concomitant medications were tested. Monte-Carlo simulations (MCS) were used to evaluate the effectiveness of different caspofungin dosage regimens. Results: One-compartment model best described the data of all patients and ICU patients. Clearances (CL) were 0.32 L/h and 0.40 L/h and volumes of distribution (V) were 13.31 L and 10.20 L for the general and ICU-subgroup PPK models, respectively. In the general model, CL and V were significantly associated with albumin (ALB) concentration and body weight (WT). In the ICU-subgroup model, CL was associated with WT. The simulated exposure in ICU patients was lower than that in all patients (p < 0.05). MCS indicated that higher caspofungin maintenance doses of 70-150 mg may achieve target CFR of >90% for patients with higher WT (>70 kg) or with C. albicans or C. parapsilosis infections, and especially for ICU patients with hypoalbuminaemia. Conclusion: The PPK model and MCS presented in the study demonstrated that the recommended dosage regimen for caspofungin in patients with higher body weight or hypoalbuminaemia will result in low exposure.
Collapse
Affiliation(s)
- Qianting Yang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dan Sun
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xiaowei Zheng
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
- Department of Pharmacy, Xi’an No.1 Hospital, Xi’an, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xue Wang
- Department of Pharmacy, Xi’an No.1 Hospital, Xi’an, China
- Department of Intensive Care Unit, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoliang Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianfeng Xing
- Department of Intensive Care Unit, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
20
|
Precision Therapy for Invasive Fungal Diseases. J Fungi (Basel) 2021; 8:jof8010018. [PMID: 35049957 PMCID: PMC8780074 DOI: 10.3390/jof8010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022] Open
Abstract
Invasive fungal infections (IFI) are a common infection-related cause of death in immunocompromised patients. Approximately 10 million people are at risk of developing invasive aspergillosis annually. Detailed study of the pharmacokinetics (PK) and pharmacodynamics (PD) of antifungal drugs has resulted in a better understanding of optimal regimens for populations, drug exposure targets for therapeutic drug monitoring, and establishing in vitro susceptibility breakpoints. Importantly, however, each is an example of a “one size fits all strategy”, where complex systems are reduced to a singularity that ensures antifungal therapy is administered safely and effectively at the level of a population. Clearly, such a notion serves most patients adequately but is completely counter to the covenant at the centre of the clinician–patient relationship, where each patient should know whether they are well-positioned to maximally benefit from an antifungal drug. This review discusses the current therapy of fungal infections and areas of future research to maximise the effectiveness of antifungal therapy at an individual level.
Collapse
|