1
|
Chen Y, Chen B, Huang Y, Li X, Wu J, Lin R, Chen M, Liu M, Qiu H, Cheng Y. Population Pharmacokinetics-Based Evaluation of Ceftazidime-Avibactam Dosing Regimens in Critically and Non-Critically Ill Patients With Carbapenem-Resistant Klebsiella pneumoniae. Infect Drug Resist 2025; 18:941-955. [PMID: 39990787 PMCID: PMC11846486 DOI: 10.2147/idr.s495279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/29/2024] [Indexed: 02/25/2025] Open
Abstract
Purpose This study aimed to describe the population pharmacokinetics (PopPK) of ceftazidime-avibactam (CAZ-AVI) in adult patients, and to develop optimal dosing regimens for both non-critically ill and critically ill patients by combining different pharmacokinetic/pharmacodynamic (PK/PD) targets. Patients and Methods A prospective, single-center study involving patients who were infected with CRKP and received CAZ-AVI therapy was conducted. Nonlinear mixed-effect modeling was used to develop a PopPK model. The optimal dosing regimen was assessed using Monte Carlo simulation. Results The PopPK analysis of CAZ-AVI included 91 steady-state concentrations from 45 adult patients. The data were modeled using a one-compartment model. The typical population values of CAZ and AVI clearances were 2.96 L/h and 3.09 L/h, and the volumes of distribution were 17.76 L and 18.25 L, respectively. Our study showed that creatinine clearance (CrCL) calculated using the Cockcroft-Gault equation significantly affected the pharmacokinetics of CAZ-AVI. The Monte Carlo simulation optimized the dosing regimen for both non-critically ill and critically ill patients with varying renal functions, providing detailed supplements to the instructions. Conclusion Our study established a PopPK model for CAZ-AVI and proposed a reference for dosing regimen adjustment based on the severity of the disease and renal functional status.
Collapse
Affiliation(s)
- Yiying Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Bo Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Yingbin Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Xueyong Li
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Junnan Wu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Rongqi Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
- Shanghang County Hospital, Longyan, 364200, People’s Republic of China
| | - Ming Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Hongqiang Qiu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Yu Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| |
Collapse
|
2
|
Swartling M, Hamberg AK, Furebring M, Tängdén T, Nielsen EI. Model-informed precision dosing of vancomycin in clinical practice: an intervention development study. Int J Clin Pharm 2025; 47:178-186. [PMID: 39514047 PMCID: PMC11741990 DOI: 10.1007/s11096-024-01822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Current guidelines recommend dosing vancomycin based on the area under the concentration time curve (AUC) to maximise efficacy and minimise the risk of nephrotoxicity. The preferred approach to AUC-guided therapy is to apply model-informed precision dosing (MIPD). However, the adoption in clinical practice has been slow. AIM We aimed to develop an intervention, including a standardised MIPD workflow and an implementation plan for vancomycin AUC-guided dosing, in a Swedish tertiary hospital. METHOD The intervention was developed in a framework-guided process. The design phase included stakeholder feedback (nurses, pharmacists, physicians), local data collection and feasibility testing of intervention components with parallel consideration of implementation aspects. The hypothesised relationships between the different components, implementation strategies and the mechanism of action resulting in expected outcomes were represented by a logic model. RESULTS The final intervention consisted of a workflow for MIPD, with defined roles and responsibilities, as well as processes for data and information transfer. Details were provided in supportive documents; an instruction on therapeutic drug monitoring (TDM) sampling and documentation for nurses, and a detailed dosing software instruction for MIPD consultants and clinical pharmacists. Activities to facilitate implementation included the development of a local clinical routine for vancomycin dosing, staff training and recurring MIPD rounds. CONCLUSION An intervention for MIPD, with an implementation plan for AUC-guided dosing of vancomycin, was developed for a tertiary hospital setting. The process can be used as guidance for other institutions with similar context wishing to initiate MIPD.
Collapse
Affiliation(s)
- Maria Swartling
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Anna-Karin Hamberg
- Department of Clinical Chemistry and Pharmacology, Uppsala University Hospital, Uppsala, Sweden
| | - Mia Furebring
- Department of Medical Sciences, Infection Medicine, Uppsala University, Uppsala, Sweden
| | - Thomas Tängdén
- Department of Medical Sciences, Infection Medicine, Uppsala University, Uppsala, Sweden
| | - Elisabet I Nielsen
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden.
| |
Collapse
|
3
|
Ngougni Pokem P, Vanneste D, Schouwenburg S, Abdulla A, Gijsen M, Dhont E, Van der Linden D, Spriet I, De Cock P, Koch B, Van Bambeke F, Wijnant GJ. Dose optimization of β-lactam antibiotics in children: from population pharmacokinetics to individualized therapy. Expert Opin Drug Metab Toxicol 2024:1-18. [PMID: 39078238 DOI: 10.1080/17425255.2024.2385403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/21/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION β-Lactams are the most widely used antibiotics in children. Their optimal dosing is essential to maximize their efficacy, while minimizing the risk for toxicity and the further emergence of antimicrobial resistance. However, most β-lactams were developed and licensed long before regulatory changes mandated pharmacokinetic studies in children. As a result, pediatric dosing practices are poorly harmonized and off-label use remains common today. AREAS COVERED β-Lactam pharmacokinetics and dose optimization strategies in pediatrics, including fixed dose regimens, therapeutic drug monitoring, and model-informed precision dosing are reviewed. EXPERT OPINION/COMMENTARY Standard pediatric doses can result in subtherapeutic exposure and non-target attainment for specific patient subpopulations (neonates, critically ill children, e.g.). Such patients could benefit greatly from more individualized approaches to dose optimization, beyond a relatively simple dose adaptation based on weight, age, or renal function. In this context, Therapeutic Drug Monitoring (TDM) and Model-Informed Precision Dosing (MIPD) emerge as particularly promising avenues. Obstacles to their implementation include the lack of strong evidence of clinical benefit due to the paucity of randomized clinical trials, of standardized assays for monitoring concentrations, or of adequate markers for renal function. The development of precision medicine tools is urgently needed to individualize therapy in vulnerable pediatric subpopulations.
Collapse
Affiliation(s)
- Perrin Ngougni Pokem
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Department of Microbiology, Cliniques Universitaires Saint-Luc - Université catholique de Louvain, Brussels, Belgium
| | - Dorian Vanneste
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Stef Schouwenburg
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Matthias Gijsen
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, UZ Leuven, Leuven, Belgium
| | - Evelyn Dhont
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Dimitri Van der Linden
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Pediatric Infectious Diseases, Service of Specialized Pediatrics, Department of Pediatrics, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Isabel Spriet
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, UZ Leuven, Leuven, Belgium
| | - Pieter De Cock
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Birgit Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Françoise Van Bambeke
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Gert-Jan Wijnant
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Wessel RJ, Rivera CG, Ausman SE, Martin N, Braga SA, Hagy NT, Moreland-Head LN, Abu Saleh OM, Gajic O, Jannetto PJ, Barreto EF. Use of the DMAIC Lean Six Sigma quality improvement framework to improve beta-lactam antibiotic adequacy in the critically ill. Int J Qual Health Care 2024; 36:mzae062. [PMID: 38955670 PMCID: PMC11439991 DOI: 10.1093/intqhc/mzae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/12/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024] Open
Abstract
Beta-lactam antibiotics are widely used in the intensive care unit due to their favorable effectiveness and safety profiles. Beta-lactams given to patients with sepsis must be delivered as soon as possible after infection recognition (early), treat the suspected organism (appropriate), and be administered at a dose that eradicates the infection (adequate). Early and appropriate antibiotic delivery occurs in >90% of patients, but less than half of patients with sepsis achieve adequate antibiotic exposure. This project aimed to address this quality gap and improve beta-lactam adequacy using the Define, Measure, Analyze, Improve, and Control Lean Six Sigma quality improvement framework. A multidisciplinary steering committee was formed, which completed a stakeholder analysis to define the gap in practice. An Ishikawa cause and effect (Fishbone) diagram was used to identify the root causes and an impact/effort grid facilitated prioritization of interventions. An intervention that included bundled education with the use of therapeutic drug monitoring (TDM; i.e. drug-level testing) was projected to have the highest impact relative to the amount of effort and selected to address beta-lactam inadequacy in the critically ill. The education and TDM intervention were deployed through a Plan, Do, Study, Act cycle. In the 3 months after "go-live," 54 episodes of beta-lactam TDM occurred in 41 unique intensive care unit patients. The primary quality metric of beta-lactam adequacy was achieved in 94% of individuals after the intervention. Ninety-four percent of clinicians gauged the education provided as sufficient. The primary counterbalance of antimicrobial days of therapy, a core antimicrobial stewardship metric, was unchanged over time (favorable result; P = .73). Application of the Define, Measure, Analyze, Improve, and Control Lean Six Sigma quality improvement framework effectively improved beta-lactam adequacy in critically ill patients. The approach taken in this quality improvement project is widely generalizable to other drugs, drug classes, or settings to increase the adequacy of drug exposure.
Collapse
Affiliation(s)
- Rebecca J Wessel
- Strategy Department, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Christina G Rivera
- Department of Pharmacy, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Sara E Ausman
- Department of Pharmacy, Mayo Clinic Health System, 733 W Clairemont Ave, Eau Claire, WI 54701, United States
| | - Nathaniel Martin
- Department of Pharmacy, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Shienna A Braga
- Department of Pharmacy, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Natalie T Hagy
- Department of Pharmacy, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Lindsay N Moreland-Head
- Indiana University School of Medicine, 340 West 10th Street, Fairbanks Hall, Suite 6200, Indianapolis, IN 46202, United States
| | - Omar M Abu Saleh
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Ognjen Gajic
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Paul J Jannetto
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Erin F Barreto
- Department of Pharmacy, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| |
Collapse
|
5
|
Pai Mangalore R, Udy AA, Peel TN, Peleg AY, Ayton D. Implementation Strategies Addressing Stakeholder-Perceived Barriers and Enablers to the Establishment of a Beta-Lactam Antibiotic Therapeutic Drug Monitoring Program: A Qualitative Analysis. Ther Drug Monit 2024; 46:351-362. [PMID: 38018820 DOI: 10.1097/ftd.0000000000001162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) of beta-lactam antibiotics (beta-lactams) is increasingly recommended for optimizing antibiotic exposure in intensive care patients with sepsis. However, limited data are available on the implementation of beta-lactam TDM in complex health care settings. Theory-based approaches were used to systematically explore barriers and enablers perceived by key stakeholders in the implementation of beta-lactam TDM in the intensive care unit. METHODS In this qualitative descriptive study, the authors interviewed key stakeholders (n = 40): infectious disease physicians, intensive care unit physicians, pharmacists, clinical leaders, scientists, and nurses. The data were thematically analyzed and coded using the theoretical domains framework, and the codes and themes were mapped to the relevant domains of the capability, opportunity, and motivation behavior-change wheel model. RESULTS Barriers included a lack of knowledge, experience, evidence, and confidence, which led to concerns about capability, lack of resources, and harm in straying from standard practice. Access to education and guidelines, on-site assays with short turnaround times, communication among teams, and workflow integration were identified as enablers. A focus on patient care, trust in colleagues, and endorsement by hospital leaders were strong motivators. Pharmacist and nursing stakeholder groups emerged as key targets in the implementation of strategies. CONCLUSIONS Using theory-based approaches, the authors identified the key barriers and enablers to establishing beta-lactam TDM. These data were used to identify strategies, policies, and key target groups for the implementation of interventions.
Collapse
Affiliation(s)
- Rekha Pai Mangalore
- Department of Infectious Diseases, The Alfred, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew Alexander Udy
- Department of Intensive Care and Hyperbaric Medicine, The Alfred, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; and
| | - Trisha Nicole Peel
- Department of Infectious Diseases, The Alfred, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anton Yariv Peleg
- Department of Infectious Diseases, The Alfred, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Darshini Ayton
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; and
| |
Collapse
|
6
|
Carland JE, Stojanova J, Lau C, Day RO, Marriott DJE. Crying Over Stark Differences: Resource Disparity and Therapeutic Drug Monitoring. Ther Drug Monit 2024; 46:415-416. [PMID: 38321597 DOI: 10.1097/ftd.0000000000001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Affiliation(s)
- Jane E Carland
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Darlinghurst, NSW, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - Jana Stojanova
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Cindy Lau
- Department of Pharmacy, St Vincent's Hospital, Darlinghurst, NSW, Australia
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Richard O Day
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Darlinghurst, NSW, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
- School of Medical Sciences, UNSW Sydney, NSW, Australia; and
| | - Deborah J E Marriott
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
- Department of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Darlinghurst, NSW
| |
Collapse
|
7
|
Hansel J, Mannan F, Robey R, Kumarendran M, Bladon S, Mathioudakis AG, Ogungbenro K, Dark P, Felton TW. Covariates in population pharmacokinetic studies of critically ill adults receiving β-lactam antimicrobials: a systematic review and narrative synthesis. JAC Antimicrob Resist 2024; 6:dlae030. [PMID: 38410250 PMCID: PMC10895699 DOI: 10.1093/jacamr/dlae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Population pharmacokinetic studies of β-lactam antimicrobials in critically ill patients derive models that inform their dosing. In non-linear mixed-effects modelling, covariates are often used to improve model fit and explain variability. We aimed to investigate which covariates are most commonly assessed and which are found to be significant, along with global patterns of publication. Methods We conducted a systematic review, searching MEDLINE, Embase, CENTRAL and Web of Science on 01 March 2023, including studies of critically ill adults receiving β-lactam antimicrobials who underwent blood sampling for population pharmacokinetic studies. We extracted and categorized all reported covariates and assessed reporting quality using the ClinPK checklist. Results Our search identified 151 studies with 6018 participants. Most studies reported observational cohorts (120 studies, 80%), with the majority conducted in high-income settings (136 studies, 90%). Of the 1083 identified covariate instances, 237 were unique; the most common categories were patient characteristics (n = 404), biomarkers (n = 206) and physiological parameters (n = 163). Only seven distinct commonly reported covariates (CLCR, weight, glomerular filtration rate, diuresis, need for renal replacement, serum albumin and C-reactive protein) were significant more than 20% of the time. Conclusions Covariates are most commonly chosen based on biological plausibility, with patient characteristics and biomarkers the most frequently investigated. We developed an openly accessible database of reported covariates to aid investigators with covariate selection when designing population pharmacokinetic studies. Novel covariates, such as sepsis subphenotypes, have not been explored yet, leaving a research gap for future work.
Collapse
Affiliation(s)
- Jan Hansel
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Acute Intensive Care Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Fahmida Mannan
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Rebecca Robey
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Mary Kumarendran
- Acute Intensive Care Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Siân Bladon
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Alexander G Mathioudakis
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Kayode Ogungbenro
- Division of Pharmacy & Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Paul Dark
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Critical Care Unit, Northern Care Alliance NHS Foundation Trust, Salford Care Organisation, Greater Manchester M6 8HD, UK
| | - Timothy W Felton
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Acute Intensive Care Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| |
Collapse
|
8
|
Pai Mangalore R, Peel TN, Udy AA, Peleg AY. The clinical application of beta-lactam antibiotic therapeutic drug monitoring in the critical care setting. J Antimicrob Chemother 2023; 78:2395-2405. [PMID: 37466209 PMCID: PMC10566322 DOI: 10.1093/jac/dkad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Critically ill patients have increased variability in beta-lactam antibiotic (beta-lactam) exposure due to alterations in their volume of distribution and elimination. Therapeutic drug monitoring (TDM) of beta-lactams, as a dose optimization and individualization tool, has been recommended to overcome this variability in exposure. Despite its potential benefit, only a few centres worldwide perform beta-lactam TDM. An important reason for the low uptake is that the evidence for clinical benefits of beta-lactam TDM is not well established. TDM also requires the availability of specific infrastructure, knowledge and expertise. Observational studies and systematic reviews have demonstrated that TDM leads to an improvement in achieving target concentrations, a reduction in potentially toxic concentrations and improvement of clinical and microbiological outcomes. However, a small number of randomized controlled trials have not shown a mortality benefit. Opportunities for improved study design are apparent, as existing studies are limited by their inclusion of heterogeneous patient populations, including patients that may not even have infection, small sample size, variability in the types of beta-lactams included, infections caused by highly susceptible bacteria, and varied sampling, analytical and dosing algorithm methods. Here we review the fundamentals of beta-lactam TDM in critically ill patients, the existing clinical evidence and the practical aspects involved in beta-lactam TDM implementation.
Collapse
Affiliation(s)
- Rekha Pai Mangalore
- Department of Infectious Diseases, Alfred Health, 55 Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Trisha N Peel
- Department of Infectious Diseases, Alfred Health, 55 Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Andrew A Udy
- Department of Intensive Care and Hyperbaric Medicine, Alfred Health, 55 Commercial Road, Melbourne, Victoria 3004, Australia
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, 553 St Kilda Road, Melbourne, Victoria 3004, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, Alfred Health, 55 Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Ewoldt TMJ, Abdulla A, Rietdijk WJR, Hunfeld N, Muller AE, Endeman H, Koch BCP. Which patients benefit from model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin at the ICU? Int J Antimicrob Agents 2023; 62:106931. [PMID: 37482257 DOI: 10.1016/j.ijantimicag.2023.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVES Antibiotic dosing is not optimal in the ICU. Our recent trial investigated the effect of model-informed precision dosing (MIPD) of beta-lactam antibiotics and ciprofloxacin and showed no significant differences in clinical outcomes in all patients. This study aimed to identify subgroups of patients in which the MIPD of these antibiotics could be beneficial for clinical outcomes. METHODS We analysed data from the DOLPHIN randomized controlled trial, which compared MIPD to standard dosing of beta-lactam antibiotics and ciprofloxacin in 388 ICU patients. We divided patients into subgroups based on baseline characteristics and assessed the effect of MIPD on 28-day mortality, 6-month mortality, change in sequential organ failure assessment (delta-SOFA), and ICU length of stay (LOS). RESULTS We found a lower 28-day mortality in patients with a SOFA below 8 randomized to MIPD (OR 0.40; 95% CI 0.17-0.88). However, patients with a higher SOFA show an increased 28-day mortality (OR 1.94; 95% CI 1.07-3.59) in the MIPD group. ICU LOS was increased in patients receiving MIPD with a SOFA below 8 (IRR 1.36; 95% CI 1.01-1.83) and those receiving MIPD for ceftriaxone (IRR 1.76; 95% CI 1.24-2.51). Patients receiving a dose recommendation within 24 hours show a trend towards decreased ICU LOS (IRR 0.77; 95% CI 0.52-1.16) and higher delta-SOFA (estimate -1.19; 95% CI -2.98-0.60). CONCLUSIONS ICU patients with a SOFA below 8 using MIPD had an increased ICU LOS but a lower 28-day mortality. Fast dose recommendations using MIPD of beta-lactam antibiotics and ciprofloxacin needs to be investigated in ICU patients.
Collapse
Affiliation(s)
- Tim M J Ewoldt
- Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands; Rotterdam Clinical Pharmacometrics Group, Rotterdam, The Netherlands.
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands; Rotterdam Clinical Pharmacometrics Group, Rotterdam, The Netherlands
| | - Wim J R Rietdijk
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole Hunfeld
- Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anouk E Muller
- Rotterdam Clinical Pharmacometrics Group, Rotterdam, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Medical Microbiology, Haaglanden Medisch Centrum, The Hague, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands; Rotterdam Clinical Pharmacometrics Group, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Angelini J, Giuliano S, Flammini S, Pagotto A, Lo Re F, Tascini C, Baraldo M. Meropenem PK/PD Variability and Renal Function: "We Go Together". Pharmaceutics 2023; 15:2238. [PMID: 37765207 PMCID: PMC10534409 DOI: 10.3390/pharmaceutics15092238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Meropenem is a carbapenem antibiotic widely employed for serious bacterial infections. Therapeutic drug monitoring (TDM) is a strategy to optimize dosing, especially in critically ill patients. This study aims to show how TDM influences the management of meropenem in a real-life setting, not limited to intensive care units. METHODS From December 2021 to February 2022, we retrospectively analyzed 195 meropenem serum concentrations (Css). We characterized patients according to meropenem exposure, focusing on the renal function impact. RESULTS A total of 36% (n = 51) of the overall observed patients (n = 144) were in the therapeutic range (8-16 mg/L), whereas 64% (n = 93) required a meropenem dose modification (37 patients (26%) underexposed; 53 (38%) overexposed). We found a strong relationship between renal function and meropenem concentrations (correlation coefficient = -0.7; p-value < 0.001). We observed different dose-normalized meropenem exposure (Css/D) among renal-impaired (severe and moderate), normal, and hyperfiltrating patients, with a median (interquartile range) of 13.1 (10.9-20.2), 7.9 (6.1-9.5), 3.8 (2.6-6.0), and 2.4 (1.6-2.7), respectively (p-value < 0.001). CONCLUSIONS Meropenem TDM in clinical practice allows modification of dosing in patients inadequately exposed to meropenem to maximize antibiotic efficacy and minimize the risk of antibiotic resistance, especially in renal alterations despite standard dose adaptations.
Collapse
Affiliation(s)
- Jacopo Angelini
- Clinical Pharmacology and Toxicology Institute, University Hospital Friuli Centrale ASUFC, 33100 Udine, Italy; (F.L.R.); (M.B.)
- Department of Medicine, University of Udine (UNIUD), 33100 Udine, Italy;
| | - Simone Giuliano
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (S.G.); (S.F.); (A.P.)
| | - Sarah Flammini
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (S.G.); (S.F.); (A.P.)
| | - Alberto Pagotto
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (S.G.); (S.F.); (A.P.)
| | - Francesco Lo Re
- Clinical Pharmacology and Toxicology Institute, University Hospital Friuli Centrale ASUFC, 33100 Udine, Italy; (F.L.R.); (M.B.)
- Department of Medicine, University of Udine (UNIUD), 33100 Udine, Italy;
| | - Carlo Tascini
- Department of Medicine, University of Udine (UNIUD), 33100 Udine, Italy;
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (S.G.); (S.F.); (A.P.)
| | - Massimo Baraldo
- Clinical Pharmacology and Toxicology Institute, University Hospital Friuli Centrale ASUFC, 33100 Udine, Italy; (F.L.R.); (M.B.)
- Department of Medicine, University of Udine (UNIUD), 33100 Udine, Italy;
| |
Collapse
|
11
|
Ausman SE, Moreland-Head LN, Abu Saleh OM, Jannetto PJ, Rivera CG, Stevens RW, Wessel RJ, Wieruszewski PM, Barreto EF. 'How to' Guide for Pharmacist-led Implementation of Beta-Lactam Therapeutic Drug Monitoring in the Critically Ill. JOURNAL OF THE AMERICAN COLLEGE OF CLINICAL PHARMACY 2023; 6:964-975. [PMID: 37731602 PMCID: PMC10511216 DOI: 10.1002/jac5.1819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/12/2023] [Indexed: 09/22/2023]
Abstract
Beta-lactam therapeutic drug monitoring (TDM) can improve precision dosing and clinical outcomes in critically ill patients, but has not been implemented widely in the United States. Mayo Clinic recently implemented a beta-lactam TDM program. This single-center experience forms the basis of the manuscript which outlines practical considerations involved with implementation, including the pharmacist's role as a leader. Our implementation effort focused on three primary domains. First, we aimed to ensure a supportive organizational infrastructure. Early leadership engagement by the pharmacist-led core team facilitated advocacy for the clinical need, allocation of resources, and assay development. Second, core clinical workflows were developed that addressed the preferred patient population for use, desirable pharmacokinetic and pharmacodynamic targets, and the preferred sampling strategy. Clinical tools to guide pharmacists in interpreting the results (e.g., pharmacokinetics calculator) and documenting decisions were developed. Third, stakeholders were offered repeated exposure to evidence and expertise to facilitate understanding and application of the new practice. This act of 'individual internalization' seems to be uniquely important to beta-lactam TDM implementation compared with implementation of other antimicrobial TDM programs. Educational strategies and supportive materials that were developed were focused on providing substantive and varied information tailored to the stakeholders' role in the process. For pharmacists, this included both clinical and operational considerations. A continuous improvement plan to support management of the process was instituted to address necessary updates and changes that inevitably emerged. In summary, the described approach to implementation of a pharmacist led beta-lactam TDM program could be used as a roadmap to aid other institutions that aim to develop such a program.
Collapse
Affiliation(s)
- Sara E. Ausman
- Department of Pharmacy, Mayo Clinic Health System, Eau Claire, Wisconsin, USA
| | | | - Omar M. Abu Saleh
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul J. Jannetto
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ryan W. Stevens
- Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Erin F. Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
12
|
Barreto EF, Chitre PN, Pine KH, Shepel KK, Rule AD, Alshaer MH, Abdul Aziz MH, Roberts JA, Scheetz MH, Ausman SE, Moreland-Head LN, Rivera CG, Jannetto PJ, Mara KC, Boehmer KR. Why is the Implementation of Beta-Lactam Therapeutic Drug Monitoring for the Critically Ill Falling Short? A Multicenter Mixed-Methods Study. Ther Drug Monit 2023; 45:508-518. [PMID: 37076424 PMCID: PMC10348918 DOI: 10.1097/ftd.0000000000001059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/02/2022] [Indexed: 04/21/2023]
Abstract
BACKGROUND Beta-lactam therapeutic drug monitoring (BL TDM; drug level testing) can facilitate improved outcomes in critically ill patients. However, only 10%-20% of hospitals have implemented BL TDM. This study aimed to characterize provider perceptions and key considerations for successfully implementing BL TDM. METHODS This was a sequential mixed-methods study from 2020 to 2021 of diverse stakeholders at 3 academic medical centers with varying degrees of BL TDM implementation (not implemented, partially implemented, and fully implemented). Stakeholders were surveyed, and a proportion of participants completed semistructured interviews. Themes were identified, and findings were contextualized with implementation science frameworks. RESULTS Most of the 138 survey respondents perceived that BL TDM was relevant to their practice and improved medication effectiveness and safety. Integrated with interview data from 30 individuals, 2 implementation themes were identified: individual internalization and organizational features. Individuals needed to internalize, make sense of, and agree to BL TDM implementation, which was positively influenced by repeated exposure to evidence and expertise. The process of internalization appeared more complex with BL TDM than with other antibiotics (ie, vancomycin). Organizational considerations relevant to BL TDM implementation (eg, infrastructure, personnel) were similar to those identified in other TDM settings. CONCLUSIONS Broad enthusiasm for BL TDM among participants was found. Prior literature suggested that assay availability was the primary barrier to implementation; however, the data revealed many more individual and organizational attributes, which impacted the BL TDM implementation. Internalization should particularly be focused on to improve the adoption of this evidence-based practice.
Collapse
Affiliation(s)
| | - Pooja N. Chitre
- School for the Future of Innovation in Society, Arizona State University, Tempe, AZ
| | - Kathleen H. Pine
- College of Health Solutions, Arizona State University, Phoenix, AZ
| | | | - Andrew D. Rule
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
- Division of Epidemiology, Mayo Clinic, Rochester, MN
| | - Mohammad H. Alshaer
- Infectious Disease Pharmacokinetics Lab, Emerging Pathogens Institute, University of Florida, Gainesville, FL
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL
| | - Mohd Hafiz Abdul Aziz
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital, Australia
| | - Jason A. Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital, Australia
| | - Marc H. Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL
| | - Sara E. Ausman
- Department of Pharmacy, Mayo Clinic Health System, Eau Claire, WI
| | | | | | - Paul J. Jannetto
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | - Kristin C. Mara
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Kasey R. Boehmer
- Knowledge and Evaluation Research Unit, Mayo Clinic, Rochester, MN
- Division of Health Care Delivery Research, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
13
|
Pai Mangalore R, Ashok A, Lee SJ, Romero L, Peel TN, Udy AA, Peleg AY. Beta-Lactam Antibiotic Therapeutic Drug Monitoring in Critically Ill Patients: A Systematic Review and Meta-Analysis. Clin Infect Dis 2022; 75:1848-1860. [PMID: 35731853 PMCID: PMC9662173 DOI: 10.1093/cid/ciac506] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 11/12/2022] Open
Abstract
Therapeutic drug monitoring (TDM) of beta-lactam antibiotics is recommended to address the variability in exposure observed in critical illness. However, the impact of TDM-guided dosing on clinical outcomes remains unknown. We conducted a systematic review and meta-analysis on TDM-guided dosing and clinical outcomes (all-cause mortality, clinical cure, microbiological cure, treatment failure, hospital and intensive care unit length of stay, target attainment, antibiotic-related adverse events, and emergence of resistance) in critically ill patients with suspected or proven sepsis. Eleven studies (n = 1463 participants) were included. TDM-guided dosing was associated with improved clinical cure (relative risk, 1.17; 95% confidence interval [CI], 1.04 to 1.31), microbiological cure (RR, 1.14; 95% CI, 1.03 to 1.27), treatment failure (RR, 0.79; 95% CI, .66 to .94), and target attainment (RR, 1.85; 95% CI, 1.08 to 3.16). No associations with mortality and length of stay were found. TDM-guided dosing improved clinical and microbiological cure and treatment response. Larger, prospective, randomized trials are required to better assess the utility of beta-lactam TDM in critically ill patients.
Collapse
Affiliation(s)
- Rekha Pai Mangalore
- Department of Infectious Diseases, Alfred Hospital, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Aadith Ashok
- Department of Infectious Diseases, Alfred Hospital, Alfred Health, Melbourne, Victoria, Australia
| | - Sue J Lee
- Department of Infectious Diseases, Alfred Hospital, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lorena Romero
- Ian Potter Library, Alfred Hospital, Melbourne, Victoria, Australia
| | - Trisha N Peel
- Department of Infectious Diseases, Alfred Hospital, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew A Udy
- Department of Intensive Care and Hyperbaric Medicine, Alfred Hospital, Alfred Health, Melbourne, Victoria, Australia
- School of Public Health and Preventative Medicine Australia, Monash University, Melbourne, Victoria, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, Alfred Hospital, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Tritscher P, Delannoy M, Agrinier N, Charmillon A, Degand N, Dellamonica J, Roger C, Leone M, Scala-Bertola J, Novy E. Assessment of current practice for β-lactam therapeutic drug monitoring in French ICUs in 2021: a nationwide cross-sectional survey. J Antimicrob Chemother 2022; 77:2650-2657. [PMID: 36059108 DOI: 10.1093/jac/dkac291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Current guidelines and literature support the use of therapeutic drug monitoring (TDM) to optimize β-lactam treatment in adult ICU patients. OBJECTIVES To describe the current practice of β-lactam monitoring in French ICUs. METHODS A nationwide cross-sectional survey was conducted from February 2021 to July 2021 utilizing an online questionnaire that was sent as an email link to ICU specialists (one questionnaire per ICU). RESULTS Overall, 119 of 221 (53.8%) French ICUs participated. Eighty-seven (75%) respondents reported having access to β-lactam TDM, including 52 (59.8%) with on-site access. β-Lactam concentrations were available in 24-48 h and after 48 h for 36 (41.4%) and 26 (29.9%) respondents, respectively. Most respondents (n = 61; 70.1%) reported not knowing whether the β-lactam concentrations in the TDM results were expressed as unbound fractions or total concentrations. The 100% unbound fraction of the β-lactam above the MIC was the most frequent pharmacokinetic and pharmacodynamic target used (n = 62; 73.0%). CONCLUSIONS Despite the publication of international guidelines, β-lactam TDM is not optimally used in French ICUs. The two major barriers are β-lactam TDM interpretation and the required time for results.
Collapse
Affiliation(s)
- Perrine Tritscher
- Université de Lorraine, CHRU-Nancy, Service d'anesthésie-réanimation et médecine péri-opératoire Brabois Adulte, F-54000 Nancy, France
| | - Matthieu Delannoy
- Université de Lorraine, CHRU-Nancy, Service d'anesthésie-réanimation et médecine péri-opératoire Brabois Adulte, F-54000 Nancy, France
| | - Nelly Agrinier
- Université de Lorraine, APEMAC, F-54000 Nancy, France.,CHRU-Nancy, INSERM, Université de Lorraine, CIC, Épidémiologie Clinique, F-54000 Nancy, France
| | - Alexandre Charmillon
- Université de Lorraine, CHRU-Nancy, Service de maladies infectieuses, coordonnateur équipe transversale en infectiologie, F-54000 Nancy, France
| | - Nicolas Degand
- Centre Hospitalier d'Antibes Juan les Pins, Service de Biologie, F-06600 Antibes, France
| | - Jean Dellamonica
- Université de Nice Cote d'Azur, CHU de Nice, Service de médecine intensive et réanimation, F-06202 Nice, France.,UR2CA Unité de Recherche Clinique Côte d'Azur, Université Cote d'Azur, F-06202 Nice, France
| | - Claire Roger
- CHU Nîmes, Service des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, F-30000 Nîmes, France.,UR UM 103 IMAGINE, Université de Montpellier, F-34090 Montpellier, France
| | - Marc Leone
- Aix Marseille Université, APHM, Hôpital Nord, Service d'anesthésie et de Réanimation, F-13015 Marseille, France
| | - Julien Scala-Bertola
- Université de Lorraine, CHRU-Nancy, Service de pharmacologie Clinique et toxicologie, F-54000 Nancy, France.,Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Emmanuel Novy
- Université de Lorraine, CHRU-Nancy, Service d'anesthésie-réanimation et médecine péri-opératoire Brabois Adulte, F-54000 Nancy, France.,Université de Lorraine, SIMPA, F-54000 Nancy, France
| |
Collapse
|
15
|
Ewoldt TMJ, Abdulla A, van den Broek P, Hunfeld N, Bahmany S, Muller AE, Gommers D, Polinder S, Endeman H, Spronk I, Koch BCP. Barriers and facilitators for therapeutic drug monitoring of beta-lactams and ciprofloxacin in the ICU: a nationwide cross-sectional study. BMC Infect Dis 2022; 22:611. [PMID: 35831793 PMCID: PMC9277596 DOI: 10.1186/s12879-022-07587-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background Recent studies demonstrated that failure of achieving pharmacodynamic targets of commonly used antibiotics is common in critically ill patients. Therapeutic drug monitoring (TDM) can contribute to optimize the exposure of beta-lactams and ciprofloxacin. While evidence for TDM of these antibiotics is growing, translation into clinical implementation remains limited. Therefore, perceived barriers and facilitators are important for implementing TDM in this population. The primary aim of this study was to identify healthcare professionals’ barriers and facilitators for the implementation of TDM of beta-lactams and ciprofloxacin in Dutch intensive care units (ICU). Methods We conducted a nationwide cross-sectional online survey among healthcare professionals (HCPs) involved in antibiotic treatment of ICU patients. An adapted version of the Measurement Instrument for Determinants of Innovations was sent out. Items were considered barriers when ≥ 20% of participants responded with a negative answer. If ≥ 80% of the participants responded with a positive answer, the item was considered a facilitator. Results Sixty-four HCPs completed the survey, of which 14 were from academic hospitals, 25 from general hospitals, and 25 from teaching hospitals. Most participants were hospital pharmacists (59%) or medical specialists (23%). Eleven barriers and four facilitators for implementation of TDM of beta-lactams were identified; 17 barriers for TDM of ciprofloxacin and no facilitators. The most important barriers were a lack of conclusive evidence, organizational support, and low availability of assays. Additional barriers were a lack of consensus on which specific patients to apply TDM and which pharmacodynamic targets to use. Identified facilitators for beta-lactam TDM implementation are low complexity and high task perception, combined with the perception that TDM is important to prevent side effects and to adequately treat infections. Twenty-eight percent of participants reported that flucloxacillin could be analyzed in their hospital. Assay availability of other beta-lactams and ciprofloxacin was lower (3–17%). Conclusion Several barriers were identified that could obstruct the implementation of TDM of beta-lactams and ciprofloxacin in the ICU. In particular, education, clear guidelines, and organizational support should be considered when creating tailored implementation strategies. Finally, evidence of beneficial clinical outcomes on TDM of beta-lactams and ciprofloxacin can enhance further implementation. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07587-w.
Collapse
Affiliation(s)
- Tim M J Ewoldt
- Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Nicole Hunfeld
- Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Soma Bahmany
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anouk E Muller
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Medical Microbiology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Diederik Gommers
- Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Suzanne Polinder
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Inge Spronk
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Morales Junior R, Pereira GO, Tiguman GMB, Juodinis VD, Telles JP, de Souza DC, Santos SRCJ. Beta-Lactams Therapeutic Monitoring in Septic Children-What Target Are We Aiming for? A Scoping Review. Front Pediatr 2022; 10:777854. [PMID: 35359889 PMCID: PMC8960241 DOI: 10.3389/fped.2022.777854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/31/2022] [Indexed: 01/25/2023] Open
Abstract
The antimicrobial therapy of sepsis and septic shock should be individualized based on pharmacokinetic/pharmacodynamic (PK/PD) parameters to deliver effective and timely treatment of life-threatening infections. We conducted a literature scoping review to identify therapeutic targets of beta-lactam antibiotics in septic pediatric patients and the strategies that have been applied to overcome sepsis-related altered pharmacokinetics and increase target attainment against susceptible pathogens. A systematic search was conducted in the MEDLINE, EMBASE and Web of Science databases to select studies conducted since 2010 with therapeutic monitoring data of beta-lactams in septic children. Last searches were performed on 02 September 2021. Two independent authors selected the studies and extracted the data. A narrative and qualitative approach was used to summarize the findings. Out of the 118 identified articles, 21 met the eligibility criteria. Population pharmacokinetic modeling was performed in 12 studies, while nine studies reported data from bedside monitoring of beta-lactams. Most studies were conducted in the United States of America (n = 9) and France (n = 5) and reported PK/PD data of amoxicillin, ampicillin, azlocillin, aztreonam, cefazolin, cefepime, cefotaxime, ceftaroline, ceftazidime, doripenem, meropenem and piperacillin/tazobactam. Therapeutic targets ranged from to 40% fT> MIC to 100% fT> 6 × MIC. Prolonging the infusion time and frequency were most described strategies to increase target attainment. Monitoring beta-lactam serum concentrations in clinical practice may potentially maximize therapeutic target attainment. Further studies are required to define the therapeutic target associated with the best clinical outcomes.
Collapse
Affiliation(s)
- Ronaldo Morales Junior
- Clinical Pharmacokinetics Center, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Pediatric Intensive Care Unit, Department of Pediatrics, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Gabriela Otofuji Pereira
- Clinical Pharmacokinetics Center, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Vanessa D'Amaro Juodinis
- Pediatric Intensive Care Unit, Department of Pediatrics, Hospital Sírio-Libanês, São Paulo, Brazil
| | - João Paulo Telles
- Department of Infectious Diseases, AC Camargo Cancer Center, São Paulo, Brazil
| | - Daniela Carla de Souza
- Pediatric Intensive Care Unit, Department of Pediatrics, Hospital Sírio-Libanês, São Paulo, Brazil
- Pediatric Intensive Care Unit, University Hospital, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|