1
|
Kocur A, Pawiński T. Microsampling techniques and patient-centric therapeutic drug monitoring of immunosuppressants. Bioanalysis 2025; 17:413-427. [PMID: 40153274 PMCID: PMC11959920 DOI: 10.1080/17576180.2025.2477976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/04/2025] [Indexed: 03/30/2025] Open
Abstract
Immunosuppressive pharmacotherapy after solid organ transplantation (SOT) requires therapeutic drug monitoring (TDM) for therapy individualization. The venous whole blood is still considered as routine matrix for monitoring immunosuppressive drug concentration. On the other hand, as an alternative, capillary blood collected using noninvasive sampling is convergent with a patient-centric approach. Despite their disadvantages regarding sample homogeneity and the hematocrit effect, well-known dried blood spot techniques have shown promising results. Volumetric absorptive microsampling (VAMS) and quantitative dried blood spot (qDBS) have successfully eliminated these unfavorable biased elements. Microsampling can be used in transplant recipients' care, mainly due to long-term therapy under control drug concentrations and the long distance between the place of the patient's residence and the diagnostic laboratory in the transplant center. The study aimed to discuss the clinical consequences of implementing microsampling techniques for TDM of immunosuppressants. Additionally, we have discussed the 'hot topics' in microsampling: home-based self-sampling, adherence to therapy monitoring, and drug concentration conversion to estimated traditional matrices. Finally, based on our experience and current practice, we propose best practices for microsampling implementation from bench to bedside. Microsampling techniques can potentially revolutionise immunosuppressive pharmacotherapy by enabling patient-centric individualisation in various subpopulations, significantly improving post-transplant care.
Collapse
Affiliation(s)
- Arkadiusz Kocur
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Pawiński
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Minichmayr IK, Dreesen E, Centanni M, Wang Z, Hoffert Y, Friberg LE, Wicha SG. Model-informed precision dosing: State of the art and future perspectives. Adv Drug Deliv Rev 2024; 215:115421. [PMID: 39159868 DOI: 10.1016/j.addr.2024.115421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Model-informed precision dosing (MIPD) stands as a significant development in personalized medicine to tailor drug dosing to individual patient characteristics. MIPD moves beyond traditional therapeutic drug monitoring (TDM) by integrating mathematical predictions of dosing and considering patient-specific factors (patient characteristics, drug measurements) as well as different sources of variability. For this purpose, rigorous model qualification is required for the application of MIPD in patients. This review delves into new methods in model selection and validation, also highlighting the role of machine learning in improving MIPD, the utilization of biosensors for real-time monitoring, as well as the potential of models integrating biomarkers for efficacy or toxicity for precision dosing. The clinical evidence of TDM and MIPD is discussed for various medical fields including infection medicine, oncology, transplant medicine, and inflammatory bowel diseases, thereby underscoring the role of pharmacokinetics/pharmacodynamics and specific biomarkers. Further research, particularly randomized clinical trials, is warranted to corroborate the value of MIPD in enhancing patient outcomes and advancing personalized medicine.
Collapse
Affiliation(s)
- I K Minichmayr
- Dept. of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - E Dreesen
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - M Centanni
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Z Wang
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Y Hoffert
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - L E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - S G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
3
|
Brunkhorst L, Terhardt M, Bulitta B, Gutting M, Janzen N, Haffner D, Kanzelmeyer N. Dried Blood Spot Sampling for Monitoring Children With Immune-Mediated Glomerulopathies and After Kidney Transplantation. Kidney Int Rep 2024; 9:3236-3249. [PMID: 39534197 PMCID: PMC11551135 DOI: 10.1016/j.ekir.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Monitoring kidney function and immunosuppressant levels in children post-kidney transplantation or those with glomerulopathies is challenging due to frequent venipunctures and clinic visits. Capillary dried blood spot sampling (DBS) offers a potential alternative. Methods In this prospective single-center study, 89 children (38% female and 62% male) requiring therapeutic drug monitoring (TDM) and kidney function assessment were enrolled. Of the patients, 79% were kidney transplant recipients, and 21% had immune-mediated glomerulopathies. The mean age was 13.4 (range, 5.7-18.0) years. DBS and standard venous serum samples were collected simultaneously for tacrolimus (TAC), cyclosporine A (CsA), everolimus (EVR), and creatinine levels. Furthermore, patient feedback on pain perception and feasibility was collected via questionnaire. Results No significant differences in parameter values between DBS and standard methods were observed (creatinine, -1.7 ± 14.5 μmol/l; EVR, 0.1 ± 1.2 μg/l; TAC, 0.3 ± 1.1 μg/l; CsA, 2.8 ± 9.8 μg/l). DBS demonstrated sufficient accuracy compared with standard methods. Patients favored DBS and telehealth consultations, especially due to less travel and school absences. Patients preferred finger pricking over ear pricking. Conclusion Capillary DBS proves reliable for TDM and kidney function assessment in pediatric kidney disease. It reduces patient and family burden compared with venous blood collection and enables telehealth consultations.
Collapse
Affiliation(s)
- Lena Brunkhorst
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | | | | | - Miriam Gutting
- Department of Pediatric Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Nils Janzen
- Screening-Labor Hannover, Hannover, Germany
- Department of Clinical Chemistry, Medical School Hannover, Hannover, Germany
- Division of Laboratory Medicine, Center for Children and Adolescents, Kinder und Jugendkrankenhaus “Auf der Bult,” Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Nele Kanzelmeyer
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Kocur A, Kot B, Moczulski M, Czajkowska A, Rubik J, Sierakowski M, Pawiński T. A novel approach to therapeutic drug monitoring of Ciclosporin in pediatric renal transplant recipients using volumetric absorptive microsampling (VAMS) - Teaching old dog new tricks. Clin Chim Acta 2024; 562:119877. [PMID: 39025199 DOI: 10.1016/j.cca.2024.119877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND AND AIMS Ciclosporin (CSA) is an immunosuppressive agent that requires therapeutic drug monitoring (TDM). High partitioning in erythrocytes indicates that whole blood (WB) is a suitable matrix for CSA determination. Alternative sampling strategies, such as volumetric absorptive microsampling (VAMS), are novel possibilities for blood collection during TDM for various analytes, including immunosuppressants. This technique is attractive for vulnerable pediatric patients, including home-based self-sampling, remote therapy, and adherence control. MATERIALS AND METHODS This study aimed to develop and validate a new method for CSA determination based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) of WB and VAMS samples. Additionally, these methods were applied for CSA determination in clinical samples from pediatric transplant recipients. A strong point of this study is the assessment of an external proficiency testing scheme. RESULTS Both methods were successfully validated within the 1-2000 ng/mL calibration range, with LOD 0.5 and 1 ng/mL for WB and VAMS methods, respectively. All the validation parameters fulfilled the international acceptance criteria for bioanalytical methods. Cross-validation confirmed the interchangeability of the LC-MS/MS method developed in this study. CONCLUSION This study developed and validated novel methods for CSA determination in whole blood and VAMS using LC-MS/MS. Clinical validation and proficiency testing confirmed their utility in routine clinical practice.
Collapse
Affiliation(s)
- Arkadiusz Kocur
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; Therapeutic Drug Monitoring, Clinical Pharmacokinetics and Toxicology Laboratory Unit, Department of Clinical Biochemistry, The Children's Memorial Health Institute, 04-730 Warsaw, Poland.
| | - Bartłomiej Kot
- Student's Scientific Association in the Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Mateusz Moczulski
- Student's Scientific Association in the Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Agnieszka Czajkowska
- Therapeutic Drug Monitoring, Clinical Pharmacokinetics and Toxicology Laboratory Unit, Department of Clinical Biochemistry, The Children's Memorial Health Institute, 04-730 Warsaw, Poland
| | - Jacek Rubik
- Department of Nephrology, Kidney Transplantation and Arterial Hypertension, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Maciej Sierakowski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University, 1/3 Kazimierza Wóycickiego St, 01-938, Warsaw, Poland
| | - Tomasz Pawiński
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Couacault P, Avella D, Londoño‐Osorio S, Lorenzo AS, Gradillas A, Kärkkäinen O, Want E, Witting M. Targeted and untargeted metabolomics and lipidomics in dried blood microsampling: Recent applications and perspectives. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400002. [PMID: 38948320 PMCID: PMC11210747 DOI: 10.1002/ansa.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
Blood microsampling (BµS) offers an alternative to conventional methods that use plasma or serum for profiling human health, being minimally invasive and cost effective, especially beneficial for vulnerable populations. We present a non-systematic review that offers a synopsis of the analytical methods, applications and perspectives related to dry blood microsampling in targeted and untargeted metabolomics and lipidomics research in the years 2022 and 2023. BµS shows potential in neonatal and paediatric studies, therapeutic drug monitoring, metabolite screening, biomarker research, sports supervision, clinical disorders studies and forensic toxicology. Notably, dried blood spots and volumetric absorptive microsampling options have been more extensively studied than other volumetric technologies. Therefore, we suggest that a further investigation and application of the volumetric technologies will contribute to the use of BµS as an alternative to conventional methods. Conversely, we support the idea that harmonisation of the analytical methods when using BµS would have a positive impact on its implementation.
Collapse
Affiliation(s)
- Pauline Couacault
- Metabolomics and Proteomics CoreHelmholtz Zentrum MünchenNeuherbergGermany
| | - Dennisse Avella
- Afekta Technologies Ltd.KuopioFinland
- School of PharmacyFaculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Sara Londoño‐Osorio
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesUrbanización MontepríncipeBoadilla del MonteMadridSpain
| | - Ana S. Lorenzo
- Department of MetabolismDigestion and ReproductionImperial College LondonLondonUK
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesUrbanización MontepríncipeBoadilla del MonteMadridSpain
| | - Olli Kärkkäinen
- Afekta Technologies Ltd.KuopioFinland
- School of PharmacyFaculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Elizabeth Want
- Department of MetabolismDigestion and ReproductionImperial College LondonLondonUK
| | - Michael Witting
- Metabolomics and Proteomics CoreHelmholtz Zentrum MünchenNeuherbergGermany
- Chair of Analytical Food ChemistryTUM School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| |
Collapse
|
6
|
Kocur A, Rubik J, Czarnowski P, Czajkowska A, Marszałek D, Sierakowski M, Górska M, Pawiński T. Therapeutic drug monitoring of mycophenolic acid (MPA) using volumetric absorptive microsampling (VAMS) in pediatric renal transplant recipients: ultra-high-performance liquid chromatography-tandem mass spectrometry analytical method development, cross-validation, and clinical application. Pharmacol Rep 2023:10.1007/s43440-023-00509-w. [PMID: 37452967 PMCID: PMC10374821 DOI: 10.1007/s43440-023-00509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Mycophenolic acid (MPA) is widely used in posttransplant pharmacotherapy for pediatric patients after renal transplantation. Volumetric absorptive microsampling (VAMS) is a recent approach for sample collection, particularly during therapeutic drug monitoring (TDM). The recommended matrix for MPA determination is plasma (PL), and conversion between capillary-blood VAMS samples and PL concentrations is required for the appropriate interpretation of the results. METHODS This study aimed to validate and develop a UHPLC-MS/MS method for MPA quantification in whole blood (WB), PL, and VAMS samples, with cross and clinical validation based on regression calculations. Methods were validated in the 0.10-15 µg/mL range for trough MPA concentration measurement according to the European Medicines Agency (EMA) guidelines. Fifty pediatric patients treated with MPA after renal transplantation were included in this study. PL and WB samples were obtained via venipuncture, whereas VAMS samples were collected after the fingerstick. The conversion from VAMSMPA to PLMPA concentration was performed using formulas based on hematocrit values and a regression model. RESULTS LC-MS/MS methods were successfully developed and validated according to EMA guidelines. The cross-correlation between the methods was evaluated using Passing-Bablok regression, Bland-Altman bias plots, and predictive performance calculations. Clinical validation of the developed method was successfully performed, and the formula based on regression was successfully validated for VAMSMPA to PLMPA concentration and confirmed on an independent group of samples. CONCLUSIONS This study is the first development of a triple matrix-based LC-MS/MS method for MPA determination in the pediatric population after renal transplantation. For the first time, the developed methods were cross-validated with routinely used HPLC-DAD protocol.
Collapse
Affiliation(s)
- Arkadiusz Kocur
- Department of Drug Chemistry, Medical University of Warsaw, 1 Banacha St, 02-091, Warsaw, Poland.
- Pharmacokinetics Laboratory, Department of Biochemistry, Radioimmunology, and Experimental Medicine, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730, Warsaw, Poland.
| | - Jacek Rubik
- Department of Nephrology, Kidney Transplantation, and Arterial Hypertension, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Paweł Czarnowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Agnieszka Czajkowska
- Pharmacokinetics Laboratory, Department of Biochemistry, Radioimmunology, and Experimental Medicine, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Dorota Marszałek
- Department of Drug Chemistry, Medical University of Warsaw, 1 Banacha St, 02-091, Warsaw, Poland
| | - Maciej Sierakowski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University, 1/3 Kazimierza Wóycickiego St, 01-938, Warsaw, Poland
| | - Marta Górska
- Pharmacokinetics Laboratory, Department of Biochemistry, Radioimmunology, and Experimental Medicine, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Tomasz Pawiński
- Department of Drug Chemistry, Medical University of Warsaw, 1 Banacha St, 02-091, Warsaw, Poland
| |
Collapse
|
7
|
Cafaro A, Conti M, Pigliasco F, Barco S, Bandettini R, Cangemi G. Biological Fluid Microsampling for Therapeutic Drug Monitoring: A Narrative Review. Biomedicines 2023; 11:1962. [PMID: 37509602 PMCID: PMC10377272 DOI: 10.3390/biomedicines11071962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Therapeutic drug monitoring (TDM) is a specialized area of laboratory medicine which involves the measurement of drug concentrations in biological fluids with the aim of optimizing efficacy and reducing side effects, possibly modifying the drug dose to keep the plasma concentration within the therapeutic range. Plasma and/or whole blood, usually obtained by venipuncture, are the "gold standard" matrices for TDM. Microsampling, commonly used for newborn screening, could also be a convenient alternative to traditional sampling techniques for pharmacokinetics (PK) studies and TDM, helping to overcome practical problems and offering less invasive options to patients. Although technical limitations have hampered the use of microsampling in these fields, innovative techniques such as 3-D dried blood spheroids, volumetric absorptive microsampling (VAMS), dried plasma spots (DPS), and various microfluidic devices (MDS) can now offer reliable alternatives to traditional samples. The application of microsampling in routine clinical pharmacology is also hampered by the need for instrumentation capable of quantifying analytes in small volumes with sufficient sensitivity. The combination of microsampling with high-sensitivity analytical techniques, such as liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), is particularly effective in ensuring high accuracy and sensitivity from very small sample volumes. This manuscript provides a critical review of the currently available microsampling devices for both whole blood and other biological fluids, such as plasma, urine, breast milk, and saliva. The purpose is to provide useful information in the scientific community to laboratory personnel, clinicians, and researchers interested in implementing the use of microsampling in their routine clinical practice.
Collapse
Affiliation(s)
- Alessia Cafaro
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Matteo Conti
- Public Health Department, Imola Local Unit, Regione Emilia-Romagna Healthcare Service, 40026 Imola, Italy
| | - Federica Pigliasco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Sebastiano Barco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Roberto Bandettini
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
8
|
Thangavelu MU, Wouters B, Kindt A, Reiss IKM, Hankemeier T. Blood microsampling technologies: Innovations and applications in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:154-180. [PMID: 38716066 PMCID: PMC10989553 DOI: 10.1002/ansa.202300011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 06/23/2024]
Abstract
With the development of highly sensitive bioanalytical techniques, the volume of samples necessary for accurate analysis has reduced. Microsampling, the process of obtaining small amounts of blood, has thus gained popularity as it offers minimal-invasiveness, reduced logistical costs and biohazard risks while simultaneously showing increased sample stability and a potential for the decentralization of the approach and at-home self-sampling. Although the benefits of microsampling have been recognised, its adoption in clinical practice has been slow. Several microsampling technologies and devices are currently available and employed in research studies for various biomedical applications. This review provides an overview of the state-of-the-art in microsampling technology with a focus on the latest developments and advancements in the field of microsampling. Research published in the year 2022, including studies (i) developing strategies for the quantitation of analytes in microsamples and (ii) bridging and comparing the interchangeability between matrices and choice of technology for a given application, is reviewed to assess the advantages, challenges and limitations of the current state of microsampling. Successful implementation of microsampling in routine clinical care requires continued efforts for standardization and harmonization. Microsampling has been shown to facilitate data-rich studies and a patient-centric approach to healthcare and is foreseen to play a central role in the future digital revolution of healthcare through continuous monitoring to improve the quality of life.
Collapse
Affiliation(s)
| | - Bert Wouters
- Metabolomics and Analytics CentreLeiden UniversityLeidenThe Netherlands
| | - Alida Kindt
- Metabolomics and Analytics CentreLeiden UniversityLeidenThe Netherlands
| | - Irwin K. M. Reiss
- Department of Neonatal and Pediatric Intensive CareDivision of NeonatologyErasmus MCRotterdamThe Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics CentreLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
9
|
Deprez S, Stove CP. Dried blood microsampling-assisted therapeutic drug monitoring of immunosuppressants: An overview. J Chromatogr A 2023; 1689:463724. [PMID: 36592482 DOI: 10.1016/j.chroma.2022.463724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In the field of solid organ transplantation, chemotherapy and autoimmune disorders, treatment with immunosuppressant drugs requires intensive follow-up of the blood concentrations via therapeutic drug monitoring (TDM) because of their narrow therapeutic window and high intra- and inter-subject variability. This requires frequent hospital visits and venepunctures to allow the determination of these analytes, putting a high burden on the patients. In the context of patient-centric thinking, it is becoming increasingly established that at least part of these conventional blood draws could be replaced by microsampling, allowing home-sampling and increasing the quality of life for these patients. In this review we discuss the published methods - mostly using liquid chromatography coupled to tandem mass spectrometry - that have utilized (volumetric) dried blood samples as an alternative for conventional liquid whole blood for the TDM of immunosuppressant drugs. Furthermore, some pre-analytical considerations using DBS or volumetric alternatives are considered, as well as the applicability on clinical samples. The implementation status in clinical practice is also discussed, including (1) the cost-effectiveness of this approach compared to venepuncture, (2) the availability of multiplexed methods, (3) the status of harmonization and (4) patient perception. A brief perspective on potential future developments for the dried blood-based TDM of immunosuppressant drugs is provided, by considering how obstacles for the implementation of these strategies into clinical practice might be overcome.
Collapse
Affiliation(s)
- Sigrid Deprez
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
10
|
Kocur A, Pawiński T. Volumetric Absorptive Microsampling in Therapeutic Drug Monitoring of Immunosuppressive Drugs-From Sampling and Analytical Issues to Clinical Application. Int J Mol Sci 2022; 24:681. [PMID: 36614123 PMCID: PMC9821248 DOI: 10.3390/ijms24010681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Miniaturisation and simplification are novel approaches in clinical bioanalysis, especially in therapeutic drug monitoring (TDM). These contemporary trends are related to the sampling, pre-treatment, and analysis of biological fluids. Currently, dried blood spot (DBS), one of the most popular microsampling techniques, is feasible and inexpensive. However, obtaining reliable results with sample homogeneity and volume variability is difficult. Volumetric Absorptive Microsampling (VAMS) has recently enabled the accurate and precise collection of a fixed blood volume. It reduced the hematocrit effect, improved volumetric accuracy, and generated results correlating with the dose and drug exposure from wet blood. This review focuses on VAMS-Mitra™ devices, which have become increasingly important since 2014, mainly for TDM and toxicology studies. First, the current literature has been reviewed based on immunosuppressants and their determination in samples obtained using Mitra™. Second, the critical points, weaknesses, and strengths have been characterized in contrast to classic venipuncture and other microsampling methods. Finally, we indicate the points of attention according to the perspective of Mitra™ as well as its usefulness in clinical practice. VAMS is currently state-of-the-art in microsampling and seems to be a good instrument for improving adherence to immunosuppressive therapy, especially in the pediatric population.
Collapse
Affiliation(s)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|